CS 207: Discrete Structures

Graph theory
Bipartite graphs and their characterization, subgraphs

Lecture 24
Sept 22 2016
Topic 3: Graph theory

Topics covered in the last two lectures and this one:

▷ What is a Graph?
▷ Paths, cycles, walks and trails; connected graphs.
▷ Eulerian graphs and a characterization in terms of degrees of vertices.
▷ Bipartite graphs and a characterization.

Reference: Section 1.1, 1.2 of Chapter 1 from Douglas West.
Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V| > 1$ how many trails can it be decomposed into?
Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V| > 1$ how many trails can it be decomposed into? half of the odd vertices?
Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V| > 1$ how many trails can it be decomposed into? half of the odd vertices?
- can a graph have $2k + 1$ odd vertices?
Application of Eulerian graphs

Another application of Eulerian graphs

If we want to draw a given connected graph G on paper, how many times must we stop and move the pen? No segment should be drawn twice.

- This is the number of walks with no repeated edges into which it can be decomposed.
- Walks with no repeated edges are called trails.
- So, given a connected graph with $|V| > 1$ how many trails can it be decomposed into? half of the odd vertices?
- can a graph have $2k + 1$ odd vertices?

Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.
Application of Eulerian graphs

Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
Application of Eulerian graphs

Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times

- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
Application of Eulerian graphs

Theorem
For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy $2k$ odd vertices.
Application of Eulerian graphs

Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times

- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.

- Each trail has only 2 ends implies we use at least k trails to satisfy $2k$ odd vertices.

- We need at least one trail since G has an edge.
Application of Eulerian graphs

Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- A trail touches each vertex an even no. of times, except if the trail is not closed, then the endpoints are touched odd no. of times
- i.e., if we partition G into trails, each odd vertex in G must have a non-closed walk starting or ending at it.
- Each trail has only 2 ends implies we use at least k trails to satisfy $2k$ odd vertices.
- We need at least one trail since G has an edge.
- Thus, we have shown that at least $\max\{k, 1\}$ trails are required.
Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- If $k = 0$, one trail suffices (i.e., an Eulerian walk by previous Thm)
Theorem

For a connected graph with $|V| > 1$ and exactly $2k$ odd vertices, the minimum number of trails that decompose it is $\max\{k, 1\}$.

Proof idea: We will show that (i) at least these many trails are required and (ii) these many trails suffice.

- If $k = 0$, one trail suffices (i.e., an Eulerian walk by previous Thm)
- If $k > 0$ we need to prove that k trails suffice.
 - Pair up odd vertices in G (in any order) and form G' by adding an edge between them.
 - G' is connected, by previous Thm has an Eulerian walk C.
 - Traverse C in G' and for each time we cross an edge of G' not in G, start a new trail (lift pen!).
 - Thus, we get k trails decomposing G. □
Some simple types of Graphs

- We have already seen some: connected graphs.
Some simple types of Graphs

- We have already seen some: connected graphs.
- paths, cycles.
Some simple types of Graphs

- We have already seen some: connected graphs.
- paths, cycles.
- Are there other interesting classes of graphs?
Bipartite graphs

Definition

A graph is called bipartite, if the vertices of the graph can be partitioned into $V = X \cup Y$, $X \cap Y = \emptyset$ s.t., $\forall e = (u, v) \in E$,

- either $u \in X$ and $v \in Y$
- or $v \in X$ and $u \in Y$

Example: m jobs and n people, k courses and ℓ students.

- How can we check if a graph is bipartite?
- Can we characterize bipartite graphs?
Characterizing bipartite graphs using cycles.

- Recall: A path or a cycle has length n if the number of edges in it is n.
- A path (or cycle) is called odd (or even) if its length is odd (or even, respectively).

Lemma

Every closed odd walk contains an odd cycle.

Proof: By induction on the length of the given closed odd walk.

Exercise!
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
- (\(\implies\)) direction is easy.
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
- (\implies) direction is easy.
- Let G be bipartite with $(V = X \cup Y)$. Then, every walk in G alternates between X, Y.
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:
- (⇒) direction is easy.
- Let G be bipartite with $(V = X \cup Y)$. Then, every walk in G alternates between X, Y.

\Rightarrow if we start from X, each return to X can only happen after an even number of steps.

$\Rightarrow G$ has no odd cycles.
Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

\(\iff \)
Suppose \(G \) has no odd cycle, then let us construct the bipartition. Wlog assume \(G \) is connected.
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

- (⇐) Suppose G has no odd cycle, then let us construct the bipartition. Wlog assume G is connected.
- Let $u \in V$. Break V into

 \begin{align*}
 X &= \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\}, \\
 Y &= \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},
 \end{align*}
Characterizing bipartite graphs using cycles.

Lemma
Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936
A graph is bipartite iff it has no odd cycle.

Proof:

- \((\Leftarrow)\) Suppose \(G\) has no odd cycle, then let us construct the bipartition. Wlog assume \(G\) is connected.
- Let \(u \in V\). Break \(V\) into:
 \[X = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\},\]
 \[Y = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},\]
- If there is an edge \(vv'\) between two vertices of \(X\) or two vertices of \(Y\), this creates a closed odd walk: \(uP_{uv}vv'P_{v'u}u\).
Characterizing bipartite graphs using cycles.

Lemma

Every closed odd walk contains an odd cycle.

Theorem, Konig, 1936

A graph is bipartite iff it has no odd cycle.

Proof:

- \((\Longleftarrow)\) Suppose \(G\) has no odd cycle, then let us construct the bipartition. Wlog assume \(G\) is connected.
- Let \(u \in V\). Break \(V\) into
 \[X = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is even}\},\]
 \[Y = \{v \in V \mid \text{length of shortest path } P_{uv} \text{ from } u \text{ to } v \text{ is odd}\},\]
- If there is an edge \(vv'\) between two vertices of \(X\) or two vertices of \(Y\), this creates a closed odd walk: \(uP_{uv}vv'P_{v'u}u\).
- By Lemma, it must contain an odd cycle: contradiction.
- This along with \(X \cap Y = \emptyset\) and \(X \cup Y = V\), implies \(X, Y\) is a bipartition.