CS 207: Discrete Structures

Graph theory
Stable matchings

Lecture 32
Oct 18 2016
Topic 3: Graph theory

Topics in Graph theory

1. Basics concepts and definitions.
2. Eulerian graphs: Using degrees of vertices.
6. Perfect matchings in bipartite graphs: Using neighbour sets. – Hall’s theorem
7. Applications of Hall’s theorem: Minimum vertex covers – Konig-Egervary’s theorem
Topics in Graph theory

1. Basics concepts and definitions.
2. Eulerian graphs: Using degrees of vertices.
6. Perfect matchings in bipartite graphs: Using neighbour sets. – Hall’s theorem
7. Applications of Hall’s theorem: Minimum vertex covers – Konig-Egervary’s theorem
8. Today: Stable matchings...
A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof. (For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R = Q \cap X$ and $T = Q \cap Y$.
- Consider subgraphs H, H' induced by $R \cup (Y \setminus T)$, $T \cup (X \setminus R)$.
- Show that H has a matching that saturates R into $Y \setminus T$; H' has a matching saturating T (Use minimality of Q).
- Together this forms desired matching (\therefore H, H' are disjoint).
A min-max theorem

Theorem (Konig ’31, Egervary ’31)
If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof. (For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof. (For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
A min-max theorem

Theorem (Konig ’31, Egervary ’31)
If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof. (For details, see Douglas West, Chapter 3.1).
- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R = Q \cap X$ and $T = Q \cap Y$.

▶ Consider subgraphs H, H' induced by $R \cup (Y \setminus T)$, $T \cup (X \setminus R)$.
▶ Show that H has matching that saturates R into $Y \setminus T$; H' has a matching saturating T (Use minimality of Q).
▶ Together this forms desired matching (\because H, H' are disjoint).
A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a **minimum** vertex cover Q, partition into $R = Q \cap X$ and $T = Q \cap Y$.
- Consider subgraphs H, H' induced by $R \cup (Y \setminus T)$, $T \cup (X \setminus R)$.
A min-max theorem

Theorem (Konig ’31, Egervary ’31)

If G is a bipartite graph, then the size of the maximum matching of G equals the size of the minimum vertex cover of G.

Proof. (For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \geq size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a minimum vertex cover Q, partition into $R = Q \cap X$ and $T = Q \cap Y$.
- Consider subgraphs H, H' induced by $R \cup (Y \setminus T)$, $T \cup (X \setminus R)$.
- Show that H has matching that saturates R into $Y \setminus T$; H' has a matching saturating T (Use minimality of Q).
A min-max theorem

Theorem (Konig ’31, Egervary ’31)
If \(G \) is a bipartite graph, then the size of the maximum matching of \(G \) equals the size of the minimum vertex cover of \(G \).

Proof.(For details, see Douglas West, Chapter 3.1).

- Size of any vertex cover \(\geq \) size of any matching.
- Thus, it suffices to show that we can achieve a matching which has size equal to min vertex cover.
- Take a **minimum** vertex cover \(Q \), partition into \(R = Q \cap X \) and \(T = Q \cap Y \).
- Consider subgraphs \(H, H' \) induced by \(R \cup (Y \setminus T) \), \(T \cup (X \setminus R) \).
- Show that \(H \) has matching that saturates \(R \) into \(Y \setminus T \); \(H' \) has a matching saturating \(T \) (Use minimality of \(Q \)).
- Together this forms desired matching (\(\because H, H' \) are disjoint)
Next topic: Stable matchings
Stable matchings

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1</td>
<td>• A</td>
</tr>
<tr>
<td>• 2</td>
<td>• B</td>
</tr>
<tr>
<td>• 3</td>
<td>• C</td>
</tr>
<tr>
<td>• 4</td>
<td>• D</td>
</tr>
<tr>
<td>• 5</td>
<td>• E</td>
</tr>
</tbody>
</table>
Stable matchings

<table>
<thead>
<tr>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C > B > E > A > D \cdot 1$</td>
<td>$A : 35214$</td>
</tr>
<tr>
<td>$ABECD \cdot 2$</td>
<td>$B : 52143$</td>
</tr>
<tr>
<td>$DCBAE \cdot 3$</td>
<td>$C : 43512$</td>
</tr>
<tr>
<td>$ACDBE \cdot 4$</td>
<td>$D : 12345$</td>
</tr>
<tr>
<td>$ABDEC \cdot 5$</td>
<td>$E : 23415$</td>
</tr>
</tbody>
</table>
Stable matchings

Boys

\[C > B > E > A > D \]

\[ABEC \]

\[DCBA \]

\[ACDB \]

\[ABDE \]

Girls

\[A : 35214 \]

\[B : 52143 \]

\[C : 43512 \]

\[D : 12345 \]

\[E : 23415 \]

Let us try a “greedy” marriage strategy for boys.
Let us try a “greedy” marriage strategy for boys.
Stable matchings

\[
C > B > E > A > D
\]

Boys
- \(ABECD\) \(\rightarrow\) 2
- \(DCBAE\) \(\rightarrow\) 3
- \(ACDBE\) \(\rightarrow\) 4
- \(ABDEC\) \(\rightarrow\) 5

Girls
- \(A : 35214\)
- \(B : 52143\)
- \(C : 43512\)
- \(D : 12345\)
- \(E : 23415\)

Let us try a “greedy” marriage strategy for boys.
Stable matchings

Let us try a “greedy” marriage strategy for boys.

Danger!
Let us try a “greedy” marriage strategy for boys.

Danger! 4 prefers C to B and C prefers 4 to 1. Divorce!
Let us try a “greedy” marriage strategy for boys.

Danger! 4 prefers C to B and C prefers 4 to 1. Divorce!

Qn: Can you match everyone without such Rogue couples?!
More than just a funny puzzle

- Matching hospitals and residents.
- Matching dancing partners.
- Matching students with jobs.
Stable matchings

Definition

Given a matching M in a graph with preference lists of nodes.

- **Unstable pair**: Two vertices x, y such that x prefers y to its assigned vertex and vice versa.
- x, y would be happier by eloping.
- Qn: Find a perfect matching with no unstable pairs. Such a matching is called a **Stable Matching**.
Roommates Problem

- $A : BCD$
- $B : CAD$
- $C : ABD$
- $D : ABC$

▶ What can you observe from this?
Roommates Problem

- $A: BCD$
- $B: CAD$
- $C: ABD$
- $D: ABC$

What can you observe from this?

- Everybody hates D.

Diagram:

A \rightarrow B \rightarrow C \rightarrow A

D
Roommates Problem

- $A : BCD$
- $B : CAD$
- $C : ABD$
- $D : ABC$

What can you observe from this?
- Stable matchings don’t always exist.
Roommates Problem

- $A : BCD$
- $B : CAD$
- $C : ABD$
- $D : ABC$

- What can you observe from this?
- Stable matchings don’t always exist.
- So, do they exist for bipartite graphs and how can we prove this?
The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
The proposal algorithm

Given: bipartite graph, preference list for \(n \) men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says “maybe” to the man she likes best among the proposals, and says “never” to all others!
The proposal algorithm

Given: bipartite graph, preference list for \(n \) men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says “maybe” to the man she likes best among the proposals, and says “never” to all others!
- 10pm: Each rejected suitor crosses off woman from his list.
The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says “maybe” to the man she likes best among the proposals, and says “never” to all others!
- 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more rejected suitors. On that day, the women says “yes” to her “maybe” guy!
The proposal algorithm

Given: bipartite graph, preference list for n men/women

- 8am: Every man goes to first woman on his list not yet crossed off, and proposes to her!
- 6pm: Every woman says “maybe” to the man she likes best among the proposals, and says “never” to all others!
- 10pm: Each rejected suitor crosses off woman from his list.

The above loop is repeated every day until there are no more rejected suitors. On that day, the women says “yes” to her “maybe” guy!

- Does this algorithm terminate?
- If yes, does it produce a stable matching when it terminates?
Termination and Correctness of the proposal algo

- Try out the algo on the example.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
 ▶ The algo terminates within n^2 days.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
 - The algo terminates within n^2 days.
 - For each day (except last), at least one woman is crossed off some man’s list.
 - As there are n men and each has list of size n, algo must terminate in n^2 days.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.

2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.

3. The algo terminates with a perfect matching.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If (M, W) is pair in current matching, s.t., M prefers W'.

Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If \(W \) says maybe to \(M \) on \(k^{th} \) day, then on every subsequent day she says maybe to someone whom she likes at least as much as \(M \).
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If \((M, W)\) is pair in current matching, s.t., \(M \) prefers \(W' \).
- We will show that \(W' \) prefers some other \(M' \) and hence no unstable pair.
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If (M, W) is pair in current matching, s.t., M prefers W'.
- We will show that W' prefers some other M' and hence no unstable pair.
 - Since $W' > W$ for M, he must have proposed to W' before proposing to W.

Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If (M, W) is pair in current matching, s.t., M prefers W'.
- We will show that W' prefers some other M' and hence no unstable pair.
 - Since $W' > W$ for M, he must have proposed to W' before proposing to W.
 - W' rejected him only because she preferred some M'' to M.?
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If \(W \) says maybe to \(M \) on \(k^{th} \) day, then on every subsequent day she says maybe to someone whom she likes at least as much as \(M \).
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If \((M, W)\) is pair in current matching, s.t., \(M \) prefers \(W' \).
- We will show that \(W' \) prefers some other \(M' \) and hence no unstable pair.
 - Since \(W' > W \) for \(M \), he must have proposed to \(W' \) before proposing to \(W \).
 - \(W' \) rejected him only because she preferred some \(M'' \) to \(M \).
 - By Lemma 2, she likes her final partner at least as much as \(M'' \), so better than \(M \).
Termination and Correctness of the proposal algo

Lemmas

1. The algo terminates.
2. If W says maybe to M on k^{th} day, then on every subsequent day she says maybe to someone whom she likes at least as much as M.
3. The algo terminates with a perfect matching.

Theorem

The algorithm produces a stable matching.

- If (M, W) is pair in current matching, s.t., M prefers W'.
- We will show that W' prefers some other M' and hence no unstable pair.
- Thus no man can be part of an unstable pair, implies stable matching.
The proposal algorithm: who does better?

<table>
<thead>
<tr>
<th>Features of this proposal algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Who is happier with the result? Men or women?</td>
</tr>
</tbody>
</table>

Theorem (H.W.: Prove this!)
The male-proposal algorithm is male-optimal (and "woman-pessimal").

Conclusion: Propose first!
The proposal algorithm: who does better?

Features of this proposal algorithm

- Who is happier with the result? Men or women?
- Can men do any better?
The proposal algorithm: who does better?

Features of this proposal algorithm

- Who is happier with the result? Men or women?
- Can men do any better?
- Can the women do any better?

Define an optimal woman for a man as the best he can get under any stable matching. A matching is male-optimal if every man is matched to his optimal woman.

Define an optimal man for a woman as the best she can get under any stable matching.

Theorem (H.W.: Prove this!)
The male-proposal algorithm is male-optimal (and "woman-pessimal").

Conclusion: Propose first!
The proposal algorithm: who does better?

Features of this proposal algorithm

- Who is happier with the result? Men or women?
- Can men do any better?
- Can the women do any better?
- Define an optimal woman for a man as the best he can get under any stable matching. A matching is male-optimal if every man is matched to his optimal woman.
The proposal algorithm: who does better?

<table>
<thead>
<tr>
<th>Features of this proposal algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Who is happier with the result? Men or women?</td>
</tr>
<tr>
<td>➤ Can men do any better?</td>
</tr>
<tr>
<td>➤ Can the women do any better?</td>
</tr>
<tr>
<td>➤ Define an optimal woman for a man as the best he can get under any stable matching. A matching is male-optimal if every man is matched to his optimal woman.</td>
</tr>
<tr>
<td>➤ Define an optimal man for a woman as the best she can get under any stable matching.</td>
</tr>
</tbody>
</table>
The proposal algorithm: who does better?

Features of this proposal algorithm

▶ Who is happier with the result? Men or women?
▶ Can men do any better?
▶ Can the women do any better?
▶ Define an optimal woman for a man as the best he can get under any stable matching. A matching is male-optimal if every man is matched to his optimal woman.
▶ Define an optimal man for a woman as the best she can get under any stable matching.

Theorem (H.W.: Prove this!)
The male-proposal algorithm is male-optimal (and "woman-pessimal").
The proposal algorithm: who does better?

Features of this proposal algorithm

- Who is happier with the result? Men or women?
- Can men do any better?
- Can the women do any better?
- Define an optimal woman for a man as the best he can get under any stable matching. A matching is male-optimal if every man is matched to his optimal woman.
- Define an optimal man for a woman as the best she can get under any stable matching.

Theorem (H.W.: Prove this!)

The male-proposal algorithm is male-optimal (and “woman-pessimal”).

Conclusion: Propose first!
Further reading

- Many questions, rich theory.
- How many stable marriages are possible?
- Can you do better by lying? Boys - no!, Girls - yes!
- What if there are brother-sisters (who should not be matched)?
Further reading

- Many questions, rich theory.
- How many stable marriages are possible?
- Can you do better by lying? Boys - no!, Girls - yes!
- What if there are brother-sisters (who should not be matched)?

The 2012 Nobel prize in Economics to Shapley and Roth: ”for the theory of stable allocations and the practice of market design”.