CS 207: Discrete Structures

Instructor : S. Akshay

Aug 2, 2016
Lecture 08 – Basic mathematical structures
Equivalence relations and partitions
Recap: Relations

Definition: Relation

- A relation R from A to B is a subset of $A \times B$. If $(a, b) \in R$, we also write this as $a R b$.

We write $R(A, B)$ for a relation from A to B and just $R(A)$ if $A = B$. Also if A is clear from context, we just write R.

- All functions are relations.
- Relational databases are practical examples.
Recap: Relations

Definition: Relation

- A relation R from A to B is a subset of $A \times B$. If $(a, b) \in R$, we also write this as $a \; R \; b$.

We write $R(A, B)$ for a relation from A to B and just $R(A)$ if $A = B$. Also if A is clear from context, we just write R.

- All functions are relations.
- Relational databases are practical examples.
- A relation R_1 (set of students, set of courses), defined by aR_1b if student a takes course b.
Recap: Relations

Definition: Relation

- A relation \(R \) from \(A \) to \(B \) is a subset of \(A \times B \). If \((a, b) \in R \), we also write this as \(a R b \).

We write \(R(A, B) \) for a relation from \(A \) to \(B \) and just \(R(A) \) if \(A = B \). Also if \(A \) is clear from context, we just write \(R \).

- All functions are relations.
- Relational databases are practical examples.
- A relation \(R_1 \) (set of students, set of courses), defined by \(aR_1b \) if student \(a \) takes course \(b \).
- A relation \(R_2 \) (set \(S \) of students), defined by \(aR_2b \) if \(a \) and \(b \) take the same set of courses.
Recap: Relations

Definition: Relation

- A relation R from A to B is a subset of $A \times B$. If $(a, b) \in R$, we also write this as $a R b$.

We write $R(A, B)$ for a relation from A to B and just $R(A)$ if $A = B$. Also if A is clear from context, we just write R.

- All functions are relations.
- Relational databases are practical examples.
- A relation R_1 (set of students, set of courses), defined by $aR_1 b$ if student a takes course b.
- A relation R_2 (set S of students), defined by $aR_2 b$ if a and b take the same set of courses.

Representations of a relation from A to B.

- As a set of ordered pairs of elements, i.e., subset of $A \times B$, as a directed graph, as a (database) table.
Some special types of relations

Let us fix a set S.

- A relation $R(S)$ is called reflexive if for all $a \in S$, aRa.
 Example: relation R_2.
Some special types of relations

Let us fix a set S.

- A relation $R(S)$ is called **reflexive** if for all $a \in S$, aRa.
 Example: relation R_2.

- A relation $R(S)$ is called **symmetric** if for all $a, b \in S$, we have aRb implies bRa.
 Example: relation R_2.

Definition
An relation which satisfies all these three properties is called an **equivalence relation**.

Example: relation R_2.
Some special types of relations

Let us fix a set \(S \).

- A relation \(R(S) \) is called reflexive if for all \(a \in S \), \(aRa \).
 Example: relation \(R_2 \).

- A relation \(R(S) \) is called symmetric if for all \(a, b \in S \), we have \(aRb \) implies \(bRa \).
 Example: relation \(R_2 \).

- A relation \(R(S) \) called transitive if for all \(a, b, c \in S \), we have \(aRb \) and \(b Rc \) implies \(a Rc \).
 Example: relation \(R_2 \).
Some special types of relations

Let us fix a set \(S \).

- A relation \(R(S) \) is called reflexive if for all \(a \in S \), \(aRa \).
 Example: relation \(R_2 \).

- A relation \(R(S) \) is called symmetric if for all \(a, b \in S \), we have \(aRb \) implies \(bRa \).
 Example: relation \(R_2 \).

- A relation \(R(S) \) called transitive if for all \(a, b, c \in S \), we have \(aRb \) and \(bRc \) implies \(aRc \).
 Example: relation \(R_2 \).

Definition

A relation which satisfies all these three properties is called an equivalence relation.
Some special types of relations

Let us fix a set S.

- A relation $R(S)$ is called reflexive if for all $a \in S$, aRa.
 Example: relation R_2.

- A relation $R(S)$ is called symmetric if for all $a, b \in S$, we have aRb implies bRa.
 Example: relation R_2.

- A relation $R(S)$ called transitive if for all $a, b, c \in S$, we have aRb and bRc implies aRc.
 Example: relation R_2.

Definition

A relation which satisfies all these three properties is called an equivalence relation.

Example: relation R_2.
Examples

- **Reflexive:** $\forall a \in S, aRa$.
- **Symmetric:** $\forall a, b \in S, aRb$ implies bRa.
- **Transitive:** $\forall a, b, c \in S, aRb, bRc$ implies aRc.
- **Equivalence:** Reflexive, Symmetric and Transitive.
Examples

- **Reflexive**: $\forall a \in S, aRa$.
- **Symmetric**: $\forall a, b \in S, aRb \text{ implies } bRa$.
- **Transitive**: $\forall a, b, c \in S, aRb, bRc \text{ implies } aRc$.
- **Equivalence**: Reflexive, Symmetric and Transitive.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aR_2b if students a and b take same set of courses</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>aR_1b if student a takes course b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${(a, b) \mid a, b \in \mathbb{Z}, (a - b) \text{ mod } 2 = 0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${(a, b) \mid a, b \in \mathbb{Z}, a \leq b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${(a, b) \mid a, b \in \mathbb{Z}, a < b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${(a, b) \mid a, b \in \mathbb{Z}, a \mid b}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>${(a, b) \mid a, b \in \mathbb{R},</td>
<td>a - b</td>
<td>< 1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>${((a, b), (c, d)) \mid (a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} \setminus {0}), (ad = bc)}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Partitions of a set – grouping “like” elements

Definition

A partition of a set \(S \) is a set \(P \) of its subsets such that

- if \(S' \in P \), then \(S' \neq \emptyset \).
- \(\bigcup_{S' \in P} S' = S \): its union covers entire set \(S \).
- If \(S_1, S_2 \in P \), then \(S_1 \cap S_2 = \emptyset \): sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem

Every partition of set \(S \) gives rise to a canonical equivalence relation \(R \) on \(S \), namely,

- \(aRb \) if \(a \) and \(b \) belong to the same set in the partition of \(S \).
Partitions of a set – grouping “like” elements

Definition
A partition of a set \(S \) is a set \(P \) of its subsets such that

- if \(S' \in P \), then \(S' \neq \emptyset \).
- \(\bigcup_{S' \in P} S' = S \): its union covers entire set \(S \).
- If \(S_1, S_2 \in P \), then \(S_1 \cap S_2 = \emptyset \): sets are disjoint.

Example: natural numbers partitioned into even and odd...

Theorem
Every partition of set \(S \) gives rise to a canonical equivalence relation \(R \) on \(S \), namely,

- \(aRb \) if \(a \) and \(b \) belong to the same set in the partition of \(S \).

Is the converse true? Can we generate a partition from every equivalence relation?
Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the **equivalence class** of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a] = \{ b \in S \mid (a, b) \in R \}$.
Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are $[0]$, $[1]$?
Equivalence classes

Definition
- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a] = \{ b \in S \mid (a, b) \in R \}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0 \}$, what are $[0]$, $[1]$?

Lemma
Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

1. aRb
2. $[a] = [b]$
3. $[a] \cap [b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Do the proof formally.)
Equivalence classes

Definition

- Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted $[a]$, is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are $[0]$, $[1]$?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

1. aRb
2. $[a] = [b]$
3. $[a] \cap [b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Do the proof formally.)
From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.

(H.W.): Write the formal proofs of (1) and (2).
From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.

(H.W.): Write the formal proofs of (1) and (2).
More “applications” of equivalence relations

Defining new objects using equivalence relations

Consider

\[R = \{ ((a, b), (c, d)) \mid (a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}. \]

- Then the equivalence classes of \(R \) define the rational numbers.
- e.g., \([\frac{1}{2}] = [\frac{2}{4}] \) are two names for the same rational number.
- Indeed, when we write \(\frac{p}{q} \) we implicitly mean \(\left[\frac{p}{q} \right] \).
More “applications” of equivalence relations

Defining new objects using equivalence relations

Consider
\[R = \{((a, b), (c, d)) \mid (a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc)\}. \]

- Then the equivalence classes of \(R \) define the rational numbers.
- e.g., \([\frac{1}{2}] = [\frac{2}{4}]\) are two names for the same rational number.
- Indeed, when we write \(\frac{p}{q} \) we implicitly mean \(\left[\frac{p}{q} \right] \).
- With this definition, why are addition and multiplication “well-defined”?
More “applications” of equivalence relations

Defining new objects using equivalence relations

Consider

\[R = \{ ((a, b), (c, d)) \mid (a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}. \]

- Then the equivalence classes of \(R \) define the rational numbers.
- e.g., \([\frac{1}{2}] = [\frac{2}{4}]\) are two names for the same rational number.
- Indeed, when we write \(\frac{p}{q} \) we implicitly mean \([\frac{p}{q}] \).
- With this definition, why are addition and multiplication “well-defined”?

Can we define integers and real numbers starting from naturals by using equivalence classes?