CS310 : Automata Theory 2019

Lecture 25: Turing Machines and Computability

Instructor: S. Akshay

IITB, India

07-04-2019

Turing Machines

Definition

A Turing Machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$ where

1. Q is a finite set of states,
2. Σ is a finite input alphabet,
3. Γ is a finite tape alphabet where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. q_{0} is the start state,
5. $q_{\text {acc }}$ is the accept state,
6. $q_{r e j}$ is the reject state,
7. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function.

Turing Machines

Definition

A Turing Machine is a 7 -tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$ where

1. Q is a finite set of states,
2. Σ is a finite input alphabet,
3. Γ is a finite tape alphabet where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
4. q_{0} is the start state,
5. $q_{\text {acc }}$ is the accept state,
6. $q_{r e j}$ is the reject state,
7. $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is the transition function.

Configurations

A configuration is a snapshot of the system during computation. Described by:

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.
Notation: $C=u q v$
where, $u v$ is the tape content, current state is q and head is at start of v

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.
Notation: $C=u q v$
where, $u v$ is the tape content, current state is q and head is at start of v We define C_{1} yields C_{2} if the TM can move from C_{1} to C_{2} in one step:

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.
Notation: $C=u q v$
where, $u v$ is the tape content, current state is q and head is at start of v
We define C_{1} yields C_{2} if the TM can move from C_{1} to C_{2} in one step:

- left move: u a $q_{i} b v$ yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
- right move: u a $q_{i} b v$ yields u a $c q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.
Notation: $C=u q v$
where, $u v$ is the tape content, current state is q and head is at start of v
We define C_{1} yields C_{2} if the TM can move from C_{1} to C_{2} in one step:

- left move: u a $q_{i} b v$ yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
- right move: u a $q_{i} b v$ yields u a $c q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$
- right-end: assume that u a q_{i} is the same as u a $q_{i} \sqcup$ as tape has blanks to the right.

Configurations

A configuration is a snapshot of the system during computation. Described by: current state, tape contents and current head location.
Notation: $C=u q v$
where, $u v$ is the tape content, current state is q and head is at start of v
We define C_{1} yields C_{2} if the TM can move from C_{1} to C_{2} in one step:

- left move: u a $q_{i} b v$ yields $u q_{j} a c v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, L\right)$
- right move: u a $q_{i} b v$ yields u a $c q_{j} v$ if $\delta\left(q_{i}, b\right)=\left(q_{j}, c, R\right)$
- right-end: assume that u a q_{i} is the same as u a $q_{i} \sqcup$ as tape has blanks to the right.
- left-end (for single side infinite tape): $q_{i} b v$ yields (1) $q_{j} c v$ if transition is left moving or (2) $c q_{j} v$ if it is right moving

Computation of a Turing Machine

- We define start $\left(q_{0}, w\right)$, accepting $\left(* q_{a c c} *\right)$, rejecting $\left(* q_{r e j} *\right)$ and halting configurations.

Computation of a Turing Machine

- We define start $\left(q_{0}, w\right)$, accepting $\left(* q_{a c c} *\right)$, rejecting $\left(* q_{r e j} *\right)$ and halting configurations.
- A Turing Machine computation on a given input may not halt!

Computation of a Turing Machine

- We define start $\left(q_{0}, w\right)$, accepting $\left(* q_{a c c} *\right)$, rejecting ($\left.* q_{r e j} *\right)$ and halting configurations.
- A Turing Machine computation on a given input may not halt!
- A TM M accepts input word w if there exists a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ (called a run) such that
- C_{1} is the start configuration
- each C_{i} yields C_{i+1}
- C_{k} is an accepting configuration

Computation of a Turing Machine

- We define start $\left(q_{0}, w\right)$, accepting $\left(* q_{a c c} *\right)$, rejecting $\left(* q_{r e j} *\right)$ and halting configurations.
- A Turing Machine computation on a given input may not halt!
- A TM M accepts input word w if there exists a sequence of configurations $C_{1}, C_{2}, \ldots, C_{k}$ (called a run) such that
- C_{1} is the start configuration
- each C_{i} yields C_{i+1}
- C_{k} is an accepting configuration
- Language of TM M, denoted $L(M)$, is the set of strings accepted by it.

Turing recognizable and decidable languages

Turing recognizable or Recursively enumerable (r.e)
A language is Turing recognizable or r.e if there is a Turing machine accepting it.

Turing recognizable and decidable languages

Turing recognizable or Recursively enumerable (r.e)
A language is Turing recognizable or r.e if there is a Turing machine accepting it.

Turing decidable or recursive
A language is decidable (or recursive) if there is a Turing machine accepting it, which has the additional property that it halts on all possible inputs.

Turing recognizable and decidable languages

Turing recognizable or Recursively enumerable (r.e)
A language is Turing recognizable or r.e if there is a Turing machine accepting it.

Turing decidable or recursive
A language is decidable (or recursive) if there is a Turing machine accepting it, which has the additional property that it halts on all possible inputs.

Every decidable language is Turing recognizable, but is the converse true?

Variants of a Turing Machine

- Multi-tape TMs.
- Non-deterministic TMs
- Multi-head TMs
- Single sided vs double sided infinite tape TMs

What are the relative expressive powers? Do we get something strictly more powerful than standard TMs?

Multi-tape to single-tape TM

Definition

A multitape TM is a TM with several tapes, each having its own head for reading and writing. Input is on first tape and others are blank. Formally,

Multi-tape to single-tape TM

Definition

A multitape TM is a TM with several tapes, each having its own head for reading and writing. Input is on first tape and others are blank. Formally, $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$, where k is the number of tapes.

Multi-tape to single-tape TM

Definition

A multitape TM is a TM with several tapes, each having its own head for reading and writing. Input is on first tape and others are blank. Formally, $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$, where k is the number of tapes.

$$
\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)
$$

Multi-tape to single-tape TM

Definition

A multitape TM is a TM with several tapes, each having its own head for reading and writing. Input is on first tape and others are blank.
Formally, $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$, where k is the number of tapes.

$$
\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)
$$

Theorem

Every multi-tape TM has an "equivalent" single-tape TM.

Multi-tape to single-tape TM

Definition

A multitape TM is a TM with several tapes, each having its own head for reading and writing. Input is on first tape and others are blank.
Formally, $\delta: Q \times \Gamma^{k} \rightarrow Q \times \Gamma^{k} \times\{L, R\}^{k}$, where k is the number of tapes.

$$
\delta\left(q_{i}, a_{1}, \ldots, a_{k}\right)=\left(q_{j}, b_{1}, \ldots, b_{k}, L, R, \ldots, L\right)
$$

Theorem

Every multi-tape TM has an "equivalent" single-tape TM.
Proof idea:

- Keep a special marker \# to separate tapes
- Keep copy of alphabet to have different heads
- When you encounter \# during simulation, shift cells to make space.

Non-deterministic TMs

Non-deterministic TMs
At any point in the computation, the TM may proceed according to several possibilities. Thus the transition function has the form:

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

Non-deterministic TMs

Non-deterministic TMs

At any point in the computation, the TM may proceed according to several possibilities. Thus the transition function has the form:

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

Theorem
Every non-deterministic TM is equivalent to a deterministic TM.

Non-deterministic TMs

Non-deterministic TMs

At any point in the computation, the TM may proceed according to several possibilities. Thus the transition function has the form:

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

Theorem

Every non-deterministic TM is equivalent to a deterministic TM.
Proof idea:

1. View NTM N's computation as a tree.

Non-deterministic TMs

Non-deterministic TMs

At any point in the computation, the TM may proceed according to several possibilities. Thus the transition function has the form:

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

Theorem

Every non-deterministic TM is equivalent to a deterministic TM.
Proof idea:

1. View NTM N's computation as a tree.
2. explore tree

Non-deterministic TMs

Non-deterministic TMs

At any point in the computation, the TM may proceed according to several possibilities. Thus the transition function has the form:

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

Theorem

Every non-deterministic TM is equivalent to a deterministic TM.
Proof idea:

1. View NTM N's computation as a tree.
2. explore tree using bfs and for each node (i.e., config) encountered, check if it is accepting.
