# CS310 : Automata Theory 2019 

Lecture 26: Turing Machines and Decidability

Instructor: S. Akshay

IITB, India

11-03-2019

## Recap: Turing machines and their variants

Turing machines

- Finite state automata with infinite tape


## Recap: Turing machines and their variants

Turing machines

- Finite state automata with infinite tape
- Formal definition as a 7 tuple.


## Recap: Turing machines and their variants

Turing machines

- Finite state automata with infinite tape
- Formal definition as a 7 tuple.
- Configurations and computations of a TM


## Recap: Turing machines and their variants

Turing machines

- Finite state automata with infinite tape
- Formal definition as a 7 tuple.
- Configurations and computations of a TM
- Turing recognizable and decidable languages


## Recap: Turing machines and their variants

Turing machines

- Finite state automata with infinite tape
- Formal definition as a 7 tuple.
- Configurations and computations of a TM
- Turing recognizable and decidable languages

Variants of a Turing machine

- Single vs Multiple heads
- Single vs Multiple tapes
- Deterministic vs Non-deterministic TM


## Decidable languages

- A TM accepts language $L$ if it has an accepting run on each word in $L$.
- A TM decides language $L$ if it accepts $L$ and halts on all inputs.


## Decidable and Turing recognizable languages

- A language $L$ is decidable (recursive) if there exists a Turing machine $M$ which decides $L$ (i.e., $M$ halts on all inputs and $M$ accepts $L$ ).
- A language $L$ is Turing recognizable (recursively enumerable) if there exists a Turing machine $M$ which accepts $L$.


## Algorithms and Decidability

## Algorithms $\Longleftrightarrow$ Decidable (i.e, TM decides it)

- A decision problem $P$ is said to be decidable (i.e., have an algorithm) if the language $L$ of all yes instances to $P$ is decidable.
- A decision problem $P$ is said to be semi-decidable (i.e., have a semi-algorithm) if the language $L$ of all yes instances to $P$ is r.e.
- A decision problem $P$ is said to be undecidable if the language $L$ of all yes instances to $P$ is not decidable.


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$

But how do we encode $<B>$ ? In general a TM?

## Encoding Turing machines as strings

Every Turing machine can be encoded as a string in $\{0,1\}^{*}$

## Encoding Turing machines as strings

Every Turing machine can be encoded as a string in $\{0,1\}^{*}$ Just encode the description of the machine (in binary)!

## Encoding Turing machines as strings

Every Turing machine can be encoded as a string in $\{0,1\}^{*}$ Just encode the description of the machine (in binary)!

Every string in $\{0,1\}^{*}$ is a TM

## Encoding Turing machines as strings

Every Turing machine can be encoded as a string in $\{0,1\}^{*}$ Just encode the description of the machine (in binary)!

Every string in $\{0,1\}^{*}$ is a TM
Of course, some strings don't represent a valid encoding, then we can map them to a TM that does nothing.

## Encoding Turing machines as strings

Every Turing machine can be encoded as a string in $\{0,1\}^{*}$ Just encode the description of the machine (in binary)!

Every string in $\{0,1\}^{*}$ is a TM
Of course, some strings don't represent a valid encoding, then we can map them to a TM that does nothing.

## Notation

- $M \rightarrow<M>$, a string representation of $M$.
- $\alpha \rightarrow M_{\alpha}$, a TM representation of a string.


## How many Turing machines are there?

Countable set
A set is countable if there is an injective map from the set to $\mathbb{N}$.

## How many Turing machines are there?

Countable set
A set is countable if there is an injective map from the set to $\mathbb{N}$.
The set $\{0,1\}^{*}$ is countable

## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- $L_{D F A}^{\emptyset}=\{\langle B\rangle \mid B$ is a DFA, $L(B)=\emptyset\}$
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- $L_{D F A}^{\emptyset}=\{\langle B\rangle \mid B$ is a DFA, $L(B)=\emptyset\}$
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?
- $L_{D F A}^{E Q}=\{<A, B>\mid A, B$ are DFAs, $L(A)=L(B)\}$


## Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{<B, w\rangle \mid B$ is a DFA that accepts input word $\left.w\right\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- $L_{D F A}^{\emptyset}=\{\langle B\rangle \mid B$ is a DFA, $L(B)=\emptyset\}$
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?
- $L_{D F A}^{E Q}=\{<A, B\rangle \mid A, B$ are DFAs, $\left.L(A)=L(B)\right\}$
- What about NFAs, regular expressions


## Relationship among languages

Regular $\subsetneq$ Decidable $\frac{\subseteq}{?}$ Turing recognizable $\underset{?}{\subsetneq}$ All languages

## Relationship among languages

Regular $\subsetneq$ Decidable $\underset{?}{\subseteq}$ Turing recognizable $\underset{?}{\subseteq}$ All languages

DFA/NFA $<$ Algorithms/Halting TM $\underset{?}{<}$ Semi-algorithms/TM

## Relationship among languages

Regular $\subsetneq$ Decidable $\frac{\subseteq}{?}$ Turing recognizable $\frac{\subseteq}{?}$ All languages

DFA/NFA $<$ Algorithms/Halting TM $\underset{?}{<}$ Semi-algorithms/TM

## Languages outside R.E.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?


## Languages outside R.E.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set $S$ of all words over a finite alphabet $\Sigma$ is countably infinite.


## Languages outside R.E.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set $S$ of all words over a finite alphabet $\Sigma$ is countably infinite.
- Set of all languages over $\Sigma$ is the set of subsets of $S$ and is therefore uncountable Why?


## Languages outside R.E.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set $S$ of all words over a finite alphabet $\Sigma$ is countably infinite.
- Set of all languages over $\Sigma$ is the set of subsets of $S$ and is therefore uncountable Why? - recall Cantor from Discrete Structure's course.


## Languages outside R.E.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set $S$ of all words over a finite alphabet $\Sigma$ is countably infinite.
- Set of all languages over $\Sigma$ is the set of subsets of $S$ and is therefore uncountable Why? - recall Cantor from Discrete Structure's course.
- So for some such language, there must be no accepting TM.

Diagonalization

