CS310 : Automata Theory 2019

Lecture 27: Turing Machines and undecidability

Instructor: S. Akshay

IITB, India

12-03-2019

Relationship among languages

$\mathsf{Regular} \subsetneq \mathsf{Decidable} \sqsubseteq ? \mathsf{Turing recognizable} \sqsubseteq ? \mathsf{All languages}$

Relationship among languages

$\mathsf{Regular} \subsetneq \mathsf{Decidable} \sqsubseteq ? \mathsf{Turing recognizable} \sqsubseteq ? \mathsf{All languages}$

$\mathsf{DFA}/\mathsf{NFA} < \mathsf{Algorithms}/\mathsf{Halting}\ \mathsf{TM} \leq \frac{2}{?} \mathsf{Semi-algorithms}/\mathsf{TM}$

Relationship among languages

Regular \subsetneq Decidable \subseteq Turing recognizable \subseteq All languages

$\mathsf{DFA}/\mathsf{NFA} < \mathsf{Algorithms}/\mathsf{Halting}\ \mathsf{TM} \leq \frac{2}{?} \mathsf{Semi-algorithms}/\mathsf{TM}$

Thm: There exist languages that are not R.E

Number of R.E languages is countable. Why?

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set S of all words over a finite alphabet Σ is countably infinite.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set S of all words over a finite alphabet Σ is countably infinite.
- Set of all languages over Σ is the set of subsets of S and is therefore uncountable Why?

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set S of all words over a finite alphabet Σ is countably infinite.
- Set of all languages over Σ is the set of subsets of S and is therefore uncountable Why? - recall Cantor from Discrete Structure's course.

Thm: There exist languages that are not R.E

- Number of R.E languages is countable. Why?
- Set S of all words over a finite alphabet Σ is countably infinite.
- Set of all languages over Σ is the set of subsets of S and is therefore uncountable Why? - recall Cantor from Discrete Structure's course.
- ▶ So for some such language, there must be no accepting TM.

Diagonalization

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N$.

- Proving existence just needs one to exhibit a function
- But how do we prove non-existence?

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- Proving existence just needs one to exhibit a function
- But how do we prove non-existence? *Try contradiction*.

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	
f(0)	\checkmark	×	×	×	
f(0) f(1) f(2) f(3)	\checkmark	\times	\checkmark	\checkmark	
f(2)	×	×	\times	\times	
f(3)	×	\checkmark	×	\checkmark	

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N$.

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

Consider the set S ⊆ N obtained by switching the diagonal elements, i.e., S = {i ∈ N | i ∉ f(i)}.

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

Consider the set S ⊆ N obtained by switching the diagonal elements, i.e., S = {i ∈ N | i ∉ f(i)}.

► As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

Consider the set S ⊆ N obtained by switching the diagonal elements, i.e., S = {i ∈ N | i ∉ f(i)}.

- As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- S and f(j) differ at position j, for any j.

Theorem (Cantor, 1891)

There is no bijection between $\mathbb N$ and the set of all subsets of $\mathbb N.$

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

Consider the set S ⊆ N obtained by switching the diagonal elements, i.e., S = {i ∈ N | i ∉ f(i)}.

- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- S and f(j) differ at position j, for any j.

► Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction!

The acceptance problem for Turing Machines

Given a TM, does it accept a given input word? $L^{A}_{TM} = \{ < M, w > | M \text{ is a TM and } M \text{ accepts } w \}$

The acceptance problem for Turing Machines

- Given a TM, does it accept a given input word? $L_{TM}^{A} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
 - L^A_{TM} is Turing recognizable: consider TM U which on input < M, w > simulates M on w and accepts if M accepts and rejects if M rejects.

The acceptance problem for Turing Machines

- Given a TM, does it accept a given input word? $L_{TM}^{A} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$
 - L^A_{TM} is Turing recognizable: consider TM U which on input < M, w > simulates M on w and accepts if M accepts and rejects if M rejects.

Theorem L^A_{TM} is undecidable.

Suppose $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ was decidable. 1. Let H be the deciding TM: on input $\langle M, w \rangle$,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

Suppose $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ was decidable. 1. Let H be the deciding TM: on input $\langle M, w \rangle$,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Construct TM D which on input $\langle M \rangle$, runs H on input $\langle M, \langle M \rangle \rangle$ and outputs opposite of H.

Suppose $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ was decidable. 1. Let H be the deciding TM: on input $\langle M, w \rangle$,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Construct TM D which on input $\langle M \rangle$, runs H on input $\langle M, \langle M \rangle \rangle$ and outputs opposite of H.

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

Suppose $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ was decidable. 1. Let H be the deciding TM: on input $\langle M, w \rangle$,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Construct TM D which on input $\langle M \rangle$, runs H on input $\langle M, \langle M \rangle \rangle$ and outputs opposite of H.

$$D(\langle M \rangle) = egin{cases} accept & ext{if } M ext{ does not accept } \langle M
angle \ reject & ext{if } M ext{ accepts } \langle M
angle \end{cases}$$

3. Finally, run D with its own description $\langle D \rangle$ as input!

Suppose $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ was decidable. 1. Let H be the deciding TM: on input $\langle M, w \rangle$,

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

2. Construct TM D which on input $\langle M \rangle$, runs H on input $\langle M, \langle M \rangle \rangle$ and outputs opposite of H.

$$D(\langle M
angle) = egin{cases} extsf{accept} & extsf{if} \ M extsf{ does not accept} \ \langle M
angle \ extsf{reject} & extsf{if} \ M extsf{accepts} \ \langle M
angle \end{cases}$$

3. Finally, run D with its own description $\langle D \rangle$ as input!

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Diagonalization in the above argument

Enumerate Turing machines in the y-axis and their encodings in the x-axis.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	 $\langle D angle$	
M_1	accept	reject	accept	 accept	
M_2	accept	accept	accept	 accept	
M_3	reject	reject	reject	 reject	
:			-	-	
$D = M_i$	reject	reject	accept	 (??)	•••
÷			÷	÷	

- $\mathsf{Regular} \subsetneq \mathsf{Decidable} \subsetneq \mathsf{R}.\mathsf{E} \varsubsetneq \mathsf{All} \mathsf{ languages}$
- What about closure under complementation?


```
\mathsf{Regular} \subsetneq \mathsf{Decidable} \subsetneq \mathsf{R}.\mathsf{E} \varsubsetneq \mathsf{All} \ \mathsf{languages}
```

What about closure under complementation?

```
Theorem
```

```
If L is decidable, so is \overline{L}.
```



```
\mathsf{Regular} \subsetneq \mathsf{Decidable} \subsetneq \mathsf{R}.\mathsf{E} \varsubsetneq \mathsf{All} \mathsf{ languages}
```

What about closure under complementation?

```
Theorem If L is decidable, so is \overline{L}.
```

Theorem

```
L is decidable iff L is R.E and \overline{L} is also R.E.
```



```
\mathsf{Regular} \subsetneq \mathsf{Decidable} \subsetneq \mathsf{R}.\mathsf{E} \varsubsetneq \mathsf{All} \mathsf{ languages}
```

What about closure under complementation?

```
Theorem If L is decidable, so is \overline{L}.
```

Theorem

L is decidable iff L is R.E and \overline{L} is also R.E.

So, what about $\overline{L_{TM}^A}$?

