CS310 : Automata Theory 2019

Lecture 29: Reductions contd.

Instructor: S. Akshay

IITB, India

18-03-2019

Pop-Quiz

Which is easier: Emptiness or non-emptiness?

►
$$L_e = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

► $L_{ne} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization
 - A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization
 - A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

 $\begin{aligned} & \mathsf{Regular} \subsetneq \mathsf{Decidable} \subsetneq \mathsf{Recursively} \ \mathsf{Enumerable} \subsetneq \mathsf{All} \ \mathsf{languages} \\ & \mathsf{DFA}/\mathsf{NFA} < \mathsf{Algorithms}/\mathsf{Halting} \ \mathsf{TM} < \mathsf{Semi-algorithms}/\mathsf{TM} \end{aligned}$

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization
 - A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- 6. Reductions.

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization

• A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

- 6. Reductions.
- 7. Today: Reductions and moar undecidability!

(Many-to-one) Reduction

- An algorithm (halting TM!) to convert instances of a problem P₁ to another P₂ such that,
 - answer is yes for P_1 iff answer is yes for P_2
 - answer is no for P_1 iff answer is no for P_2

Note that every instance of P_2 need not be covered!

(Many-to-one) Reduction

- An algorithm (halting TM!) to convert instances of a problem P₁ to another P₂ such that,
 - answer is yes for P_1 iff answer is yes for P_2
 - answer is no for P_1 iff answer is no for P_2

Note that every instance of P_2 need not be covered!

```
Theorem: If there is a reduction from P_1 to P_2, (then P_2 is at least as hard as P_1, i.e.,)
```


(Many-to-one) Reduction

- An algorithm (halting TM!) to convert instances of a problem P₁ to another P₂ such that,
 - answer is yes for P_1 iff answer is yes for P_2
 - answer is no for P_1 iff answer is no for P_2

Note that every instance of P_2 need not be covered!

Theorem: If there is a reduction from P_1 to P_2 , (then P_2 is at least as hard as P_1 , i.e.,)

• if P_1 is undecidable, then so is P_2

(Many-to-one) Reduction

- An algorithm (halting TM!) to convert instances of a problem P₁ to another P₂ such that,
 - answer is yes for P_1 iff answer is yes for P_2
 - answer is no for P_1 iff answer is no for P_2

Note that every instance of P_2 need not be covered!

Theorem: If there is a reduction from P_1 to P_2 , (then P_2 is at least as hard as P_1 , i.e.,)

- if P_1 is undecidable, then so is P_2
- if P_1 is not r.e., then so is P_2 .

The halting problem

The halting problem for Turing Machines is undecidable Does a given Turing machine halt on a given input?

► $L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

• $L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Proof: Suppose there exists TM *H* deciding L_{TM}^{HALT} , then construct a TM *D* s.t., on input $\langle M, w \rangle$:

- ▶ runs TM *H* on input $\langle M, w \rangle$
- ▶ if *H* rejects then reject.
- if H accepts, then simulate M on w until it halts.
- ▶ if at halting *M* has accepted *w*, accept, else reject.

But D decides L_{TM}^A which is undecidable. A contradiction.

The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

• $L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Proof: Suppose there exists TM *H* deciding L_{TM}^{HALT} , then construct a TM *D* s.t., on input $\langle M, w \rangle$:

- ▶ runs TM *H* on input $\langle M, w \rangle$
- ▶ if *H* rejects then reject.
- if H accepts, then simulate M on w until it halts.
- ▶ if at halting *M* has accepted *w*, accept, else reject.

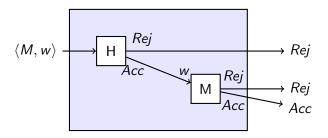
But D decides L_{TM}^A which is undecidable. A contradiction.

This proof strategy is called a reduction.

Reduction from the acceptance problem

The halting problem for Turing Machines is undecidable Does a given Turing machine halt on a given input?

• $L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$



The emptiness problem for TMs

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

The emptiness problem for TMs is undecidable Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

► For contradiction, assume its decidable, say by TM *R*.

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

- For contradiction, assume its decidable, say by TM R.
- Define M_1 which on input x,
 - if $x \neq w$, it rejects
 - ▶ if x = w, run M on w and accept if M accepts.

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

For contradiction, assume its decidable, say by TM R.

• Define M_1 which on input x,

• if $x \neq w$, it rejects

• if x = w, run M on w and accept if M accepts.

• Construct *S* which decides A_{TM} : Given input $\langle M, w \rangle$,

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

► For contradiction, assume its decidable, say by TM *R*.

• Define M_1 which on input x,

• if $x \neq w$, it rejects

- Construct *S* which decides A_{TM} : Given input $\langle M, w \rangle$,
 - Construct M_1 on tape from M and w,

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

For contradiction, assume its decidable, say by TM R.

• Define M_1 which on input x,

• if $x \neq w$, it rejects

- Construct *S* which decides A_{TM} : Given input $\langle M, w \rangle$,
 - Construct M_1 on tape from M and w,
 - Run *R* on input $\langle M_1 \rangle$.

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

For contradiction, assume its decidable, say by TM R.

• Define M_1 which on input x,

• if $x \neq w$, it rejects

- Construct *S* which decides A_{TM} : Given input $\langle M, w \rangle$,
 - Construct M_1 on tape from M and w,
 - Run *R* on input $\langle M_1 \rangle$.
 - If R accepts,

The emptiness problem for TMs is undecidable

Does a given Turing machine accept any word?

• $L_{TM}^{\emptyset} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Proof:

- ► For contradiction, assume its decidable, say by TM *R*.
- **•** Define M_1 which on input x,

• if $x \neq w$, it rejects

- Construct *S* which decides A_{TM} : Given input $\langle M, w \rangle$,
 - Construct M_1 on tape from M and w,
 - Run *R* on input $\langle M_1 \rangle$.
 - ▶ If *R* accepts, *reject*; if *R* rejects then *accept*.

The regularity problem for TMs

Does a given Turing machine accept a regular language?

• $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$

The regularity problem for TMs

Does a given Turing machine accept a regular language?

• $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$

Proof: By contradiction, assume R decides Reg. We define S

The regularity problem for TMs

- $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$
- Proof: By contradiction, assume R decides Reg. We define S
 - $S = \text{On input } \langle M, w \rangle;$
 - construct TM M_2 as follows:

The regularity problem for TMs

- $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$
- Proof: By contradiction, assume R decides Reg. We define S
 - $S = \text{On input } \langle M, w \rangle;$
 - construct TM M₂ as follows: M₂ on input x does the foll:
 - if x has the form $0^n 1^n$, accept.
 - ▶ If not, run *M* on *w* and accept if *M* accepts *w*.

The regularity problem for TMs

- $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$
- Proof: By contradiction, assume R decides Reg. We define S
 - $S = \text{On input } \langle M, w \rangle;$
 - construct TM M₂ as follows: M₂ on input x does the foll:
 - if x has the form $0^n 1^n$, accept.
 - ▶ If not, run *M* on *w* and accept if *M* accepts *w*.
 - Run R on $\langle M_2 \rangle$.

The regularity problem for TMs

- $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$
- Proof: By contradiction, assume R decides Reg. We define S
 - $S = \text{On input } \langle M, w \rangle;$
 - construct TM M₂ as follows: M₂ on input x does the foll:
 - if x has the form $0^n 1^n$, accept.
 - ▶ If not, run *M* on *w* and accept if *M* accepts *w*.
 - Run R on $\langle M_2 \rangle$.
 - ▶ If *R* accepts, *accept*; if *R* rejects, *reject*.

The regularity problem for TMs

Does a given Turing machine accept a regular language?

• $L_{TM}^{EQ} = \{ \langle M_1, M_2 \rangle \mid M \text{ are TMs and } L(M_1) = L(M_2) \}.$

The regularity problem for TMs

Does a given Turing machine accept a regular language?

• $L_{TM}^{EQ} = \{ \langle M_1, M_2 \rangle \mid M \text{ are TMs and } L(M_1) = L(M_2) \}.$

Proof: Reduce to emptiness.

Which is easier: Emptiness or non-emptiness?

►
$$L_e = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

► $L_{ne} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$

1. $\{\langle M \rangle \mid L(M) = \emptyset\}$

1. $\{\langle M \rangle \mid L(M) = \emptyset\}$ 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free } \}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free }\}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free }\}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$
- 5. $\{\langle M \rangle \mid M \text{ has 5 states }\}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free }\}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$
- 5. $\{\langle M \rangle \mid M \text{ has 5 states }\}$
- 6. $\{\langle M \rangle \mid L(M) \text{ is a language }\}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free }\}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$
- 5. $\{\langle M \rangle \mid M \text{ has 5 states }\}$
- 6. $\{\langle M \rangle \mid L(M) \text{ is a language }\}$
- 7. $\{\langle M \rangle \mid M \text{ makes at least 5 moves on some input}\}$

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free } \}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$
- 5. $\{\langle M \rangle \mid M \text{ has 5 states }\}$
- 6. $\{\langle M \rangle \mid L(M) \text{ is a language }\}$
- 7. $\{\langle M \rangle \mid M \text{ makes at least 5 moves on some input}\}$
- Rice's Theorem

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$
- 2. $\{\langle M \rangle \mid L(M) \text{ is regular }\}$
- 3. $\{\langle M \rangle \mid L(M) \text{ is context-free } \}$
- 4. $\{\langle M \rangle \mid L(M) \text{ is finite }\}$
- 5. $\{\langle M \rangle \mid M \text{ has 5 states }\}$
- 6. $\{\langle M \rangle \mid L(M) \text{ is a language }\}$
- 7. $\{\langle M \rangle \mid M \text{ makes at least 5 moves on some input}\}$
- Rice's Theorem

Any "non-trivial" property of R.E languages is undecidable!

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages (i.e., their TM encodings) satisfying P
- Property of r.e languages: membership of M in P depends only on the language of M. If L(M) = L(M'), then ⟨M⟩ ∈ P iff ⟨M'⟩ ∈ P.
- Non-trivial: It holds for some but not all TMs.

