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Pop-Quiz

Which is easier: Emptiness or non-emptiness?

I Le = {〈M〉 | L(M) = ∅}
I Lne = {〈M〉 | L(M) 6= ∅}
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Recap

Turing machines and computability

1. Definition of Turing machines: high level and low-level descriptions

2. Variants of Turing machines

3. Decidable and Turing recognizable languages

4. Church-Turing Hypothesis
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Recap

Turing machines and computability

1. Definition of Turing machines: high level and low-level descriptions

2. Variants of Turing machines

3. Decidable and Turing recognizable languages

4. Church-Turing Hypothesis

5. Undecidability and a proof technique by diagonalization
I A universal TM lang LATM = {〈M,w〉 | M is a TM and M accepts w}

6. Reductions.

7. Today: Reductions and moar undecidability!
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The principle of reduction

(Many-to-one) Reduction

I An algorithm (halting TM!) to convert instances of a problem P1 to
another P2 such that,
I answer is yes for P1 iff answer is yes for P2

I answer is no for P1 iff answer is no for P2

Note that every instance of P2 need not be covered!

Theorem: If there is a reduction from P1 to P2,

(then P2 is at least as hard as P1, i.e.,)

I if P1 is undecidable, then so is P2

I if P1 is not r.e., then so is P2.
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The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

I LHALTTM = {〈M,w〉 | M is a TM and M halts on input w}.

Proof: Suppose there exists TM H deciding LHALT
TM , then construct a TM D

s.t., on input 〈M,w〉:
I runs TM H on input 〈M,w〉
I if H rejects then reject.

I if H accepts, then simulate M on w until it halts.

I if at halting M has accepted w , accept, else reject.

But D decides LATM which is undecidable. A contradiction.

This proof strategy is called a reduction.
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Reduction from the acceptance problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

I LHALTTM = {〈M,w〉 | M is a TM and M halts on input w}.

〈M,w〉 H

M

Acc w

Rej
Rej

Rej
Rej

AccAcc
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Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

I L∅TM = {〈M〉 | M is a TM and L(M) = ∅}.

Proof:

I For contradiction, assume its decidable, say by TM R.
I Define M1 which on input x ,

I if x 6= w , it rejects
I if x = w , run M on w and accept if M accepts.

I Construct S which decides ATM : Given input 〈M,w〉,
I Construct M1 on tape from M and w ,
I Run R on input 〈M1〉.
I If R accepts, reject; if R rejects then accept.
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Some more undecidable problems

The regularity problem for TMs

Does a given Turing machine accept a regular language?

I LREGTM = {〈M〉 | M is a TM and L(M) is a regular language }.

Proof: By contradiction, assume R decides Reg. We define S
I S = On input 〈M,w〉;

I construct TM M2 as follows:
M2 on input x does the foll:

I if x has the form 0n1n, accept.
I If not, run M on w and accept if M accepts w .

I Run R on 〈M2〉.
I If R accepts, accept; if R rejects, reject.
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Some more undecidable problems

The regularity problem for TMs

Does a given Turing machine accept a regular language?

I LEQTM = {〈M1,M2〉 | M are TMs and L(M1) = L(M2)}.

Proof: Reduce to emptiness.
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Which is easier: Emptiness or non-emptiness?

I Le = {〈M〉 | L(M) = ∅}
I Lne = {〈M〉 | L(M) 6= ∅}
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Is everything about Turing machines undecidable?

1. {〈M〉 | L(M) = ∅}

2. {〈M〉 | L(M) is regular }
3. {〈M〉 | L(M) is context-free }
4. {〈M〉 | L(M) is finite }
5. {〈M〉 | M has 5 states }
6. {〈M〉 | L(M) is a language }
7. {〈M〉 | M makes at least 5 moves on some input}

Rice’s Theorem
Any “non-trivial” property of R.E languages is undecidable!
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7. {〈M〉 | M makes at least 5 moves on some input}

Rice’s Theorem
Any “non-trivial” property of R.E languages is undecidable!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/
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Rice’s theorem

Rice’s theorem (1953)

Any non-trivial property of R.E languages is undecidable!

I Property P ≡ set of languages (i.e., their TM encodings) satisfying P

I Property of r.e languages: membership of M in P depends only on the
language of M. If L(M) = L(M ′), then 〈M〉 ∈ P iff 〈M ′〉 ∈ P.

I Non-trivial: It holds for some but not all TMs.
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