CS310 : Automata Theory 2019

Lecture 30: Rice theorem

Instructor: S. Akshay

IITB, India

19-03-2019

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization

• A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

6. Reductions: a powerful way to show undecidability.

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization

• A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

6. Reductions: a powerful way to show undecidability.

Regular \subsetneq Decidable \subsetneq Recursively Enumerable \subsetneq All languages DFA/NFA < Algorithms/Halting TM < Semi-algorithms/TM

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization

• A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

- 6. Reductions: a powerful way to show undecidability.
- 7. Today: Rice's theorem

 $\begin{aligned} \text{Regular} \subsetneq \text{Decidable} \subsetneq \text{Recursively Enumerable} \subsetneq \text{All languages} \\ \text{DFA/NFA} < \text{Algorithms/Halting TM} < \text{Semi-algorithms/TM} \end{aligned}$

- Rice's theorem (1953)
- Any non-trivial property of R.E languages is undecidable!

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

• Property $P \equiv$ set of languages satisfying P

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages satisfying P
- Property of r.e languages: membership of M in P depends only on the language of M. If L(M) = L(M'), then ⟨M⟩ ∈ P iff ⟨M'⟩ ∈ P.

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages satisfying P
- Property of r.e languages: membership of M in P depends only on the language of M. If L(M) = L(M'), then ⟨M⟩ ∈ P iff ⟨M'⟩ ∈ P.
- Non-trivial: It holds for some but not all TMs.

Property of r.e. languages

Just a subset of r.e. languages. Thus, L satisfies a property P iff $L \in P$.

Property of r.e. languages

Just a subset of r.e. languages. Thus, *L* satisfies a property *P* iff $L \in P$. Examples:

- Set of regular languages
- Set of context-free languages

Property of r.e. languages

Just a subset of r.e. languages. Thus, *L* satisfies a property *P* iff $L \in P$. Examples:

- Set of regular languages
- Set of context-free languages
- Set of all languages

Property of r.e. languages

Just a subset of r.e. languages. Thus, *L* satisfies a property *P* iff $L \in P$. Examples:

- Set of regular languages
- Set of context-free languages
- Set of all languages
- ► {Ø}
- ► Ø

Property of r.e. languages

Just a subset of r.e. languages. Thus, *L* satisfies a property *P* iff $L \in P$. Examples:

- Set of regular languages
- Set of context-free languages
- Set of all languages
- ► {Ø}
- ►Ø

Given a property *P*, denote $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$

So decidability of property P is decidability of language \mathcal{L}_P .

Non-trivial property

For a property P, $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}.$

A property P of r.e. languages is called *non-trivial* if

- ▶ $\mathcal{L}_P \neq \emptyset$, i.e., there exists TM *M*, $L(M) \in P$.
- ▶ $\mathcal{L}_P \neq \text{all r.e. languages, i.e., there exists TM M, <math>L(M) \notin P$.

Non-trivial property

For a property P, $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}.$

A property P of r.e. languages is called *non-trivial* if

•
$$\mathcal{L}_P \neq \emptyset$$
, i.e., there exists TM *M*, $L(M) \in P$.

▶ $\mathcal{L}_P \neq$ all r.e. languages, i.e., there exists TM *M*, $L(M) \notin P$.

Examples

$$\blacktriangleright \{ \langle M \rangle \mid L(M) \text{ is regular } \}$$

$$\blacktriangleright \mathcal{L}_P = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

Rice's Theorem Let *P* be a non-trivial property of r.e. languages. Then $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.

Remark: (when not to apply Rice's theorem)

1. Property is is about TMs and not their languages: e.g., TM has at least 10 states.

- Rice's Theorem
- Let ${\it P}$ be a non-trivial property of r.e. languages. Then
- $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.
- Remark: (when not to apply Rice's theorem)
 - 1. Property is is about TMs and not their languages: e.g., TM has at least 10 states.
 - 2. Cannot show non- Turing recognizability, only undecidability.

Can you apply Rice's theorem?

For the following, answer if Rice's theorem is applicable

- 1. $\{\langle M \rangle \mid M \text{ runs for 5 steps on word 010}\}.$
- 2. $\{\langle M \rangle \mid L(M) \text{ is recognized by a TM with at least 25 states.}\}$.
- 3. $\{\langle M \rangle \mid L(M) \text{ is recognized by a TM with at most 25 states.}\}$.
- 4. $\{\langle M \rangle \mid M \text{ has at most } 25 \text{ states.}\}.$
- 5. $\{\langle M \rangle \mid L(M) \text{ is finite.}\}.$
- 6. $\{\langle M \rangle \mid M \text{ with alphabet } \{0, 1, \sqcup\} \text{ ever prints three consecutive } 1's \text{ on the tape}\}.$

Can you apply Rice's theorem?

For the following, answer if Rice's theorem is applicable

- 1. $\{\langle M \rangle \mid M \text{ runs for 5 steps on word 010}\}$. No. Property of TMs.
- 2. $\{\langle M \rangle \mid L(M) \text{ is recognized by a TM with at least 25 states.}\}$. No. Trivial property.
- 3. { $\langle M \rangle \mid L(M)$ is recognized by a TM with at most 25 states.}. Yes, if tape alphabet is fixed, else no!
- 4. $\{\langle M \rangle \mid M \text{ has at most 25 states.}\}$. No. Property of TMs.
- 5. $\{\langle M \rangle \mid L(M) \text{ is finite.}\}$. Yes.
- {⟨M⟩ | M with alphabet {0,1, ⊔} ever prints three consecutive 1's on the tape}. No. Property of TMs.
- For each of No answers above, is the language decidable?
- What do you do when Rice's theorem does not apply? Fall back on reductions!

Rice's Theorem Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.

Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P

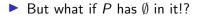
- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- ▶ If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - Take $\langle M, w \rangle$ as i/p, and o/p $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - Take $\langle M, w \rangle$ as i/p, and o/p $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - ► *M*′ is the foll:
 - 1. ignore i/p x, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - Take $\langle M, w \rangle$ as i/p, and o/p $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - M' is the foll:
 - 1. ignore i/p x, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.
 - Thus M' either acc Ø or L depending on if M acc w.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Assume \mathcal{L}_P is decidable, we will show that A_{TM} is decidable.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - Take $\langle M, w \rangle$ as i/p, and o/p $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - M' is the foll:
 - 1. ignore i/p x, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.
 - Thus M' either acc \emptyset or L depending on if M acc w.
- This gives an algo for A_{TM} so completes the proof.



- ► But what if P has Ø in it!?
- ► Take P.
- ► Now $\emptyset \notin \overline{P}$.

- ▶ But what if P has Ø in it!?
- ► Take <u>P</u>.
- ▶ Now $\emptyset \notin \overline{P}$.
- Apply proof to get undecidability of $\mathcal{L}_{\overline{P}}$.
- Conclude undecidability of \mathcal{L}_P .

