CS310 : Automata Theory 2019

Lecture 31: Rice's theorem and other undecidable problems

Instructor: S. Akshay

IITB, India
25-03-2019

Recap

Turing machines and computability

1. Definition of Turing machines: high level and low-level descriptions
2. Variants of Turing machines
3. Decidable and Turing recognizable languages
4. Church-Turing Hypothesis
5. Undecidability and a proof technique by diagonalization

- A universal TM lang $L_{T M}^{A}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$

6. Reductions: a powerful way to show undecidability.
7. Rice's theorem

Rice's Theorem

Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

Rice's Theorem

Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

For the following, is Rice's theorem applicable?

1. $\{\langle M\rangle \mid M$ runs for 5 steps on word 010\}. No. Property of TMs.
2. $\{\langle M\rangle \mid M$ has at most 25 states. $\}$. No. Property of TMs.
3. $\{\langle M\rangle \mid L(M)$ is recognized by a TM with at least 25 states. $\}$. No. Trivial property.
4. $\{\langle M\rangle \mid L(M)$ is recognized by a TM with at most 25 states and tape alphabet at most 10.\}. Yes.
5. $\{\langle M\rangle \mid L(M)$ is infinite. $\}$. Yes.
6. $\left\{\langle M\rangle \mid M\right.$ with alphabet $\{0,1, \sqcup\}$ ever prints three consecutive $1^{\prime} s$ on the tape\}. No. Property of TMs, but undecidable!

Rice's Theorem

Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

For the following, is Rice's theorem applicable?

1. $\{\langle M\rangle \mid M$ runs for 5 steps on word 010$\}$. No. Property of TMs.
2. $\{\langle M\rangle \mid M$ has at most 25 states. $\}$. No. Property of TMs.
3. $\{\langle M\rangle \mid L(M)$ is recognized by a TM with at least 25 states. $\}$. No. Trivial property.
4. $\{\langle M\rangle \mid L(M)$ is recognized by a TM with at most 25 states and tape alphabet at most 10.\}. Yes.
5. $\{\langle M\rangle \mid L(M)$ is infinite. $\}$. Yes.
6. $\left\{\langle M\rangle \mid M\right.$ with alphabet $\{0,1, \sqcup\}$ ever prints three consecutive $1^{\prime} s$ on the tape $\}$. No. Property of TMs, but undecidable!

- For No answers, language can still be decidable or undecidable.
- If Rice's theorem does not apply, fall back on reductions!

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P
- We combine M_{L} and M_{P} to get algo for $A_{T M}$.

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P
- We combine M_{L} and M_{P} to get algo for $A_{T M}$.
- For $\langle M, w\rangle \mathrm{i} / \mathrm{p}$, design $\left\langle M^{\prime}\right\rangle$, s.t $L\left(M^{\prime}\right) \in P$ iff M acc w.

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P
- We combine M_{L} and M_{P} to get algo for $A_{T M}$.
- For $\langle M, w\rangle \mathrm{i} / \mathrm{p}$, design $\left\langle M^{\prime}\right\rangle$, s.t $L\left(M^{\prime}\right) \in P$ iff M acc w.
- M^{\prime} is the foll:

1. ignore $\mathrm{i} / \mathrm{p} x$, simulate M on w. if reject, then rejects x.
2. if acc, then simulate M_{L} on x, acc iff M_{L} acc x.

Proof idea

Rice's Theorem
Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P
- We combine M_{L} and M_{P} to get algo for $A_{T M}$.
- For $\langle M, w\rangle \mathrm{i} / \mathrm{p}$, design $\left\langle M^{\prime}\right\rangle$, s.t $L\left(M^{\prime}\right) \in P$ iff M acc w.
- M^{\prime} is the foll:

1. ignore $\mathrm{i} / \mathrm{p} x$, simulate M on w. if reject, then rejects x.
2. if acc, then simulate M_{L} on x, acc iff M_{L} acc x.

- Thus M^{\prime} either acc \emptyset or L depending on if M acc w.

Proof idea

Rice's Theorem

Let P be a non-trivial property of r.e. languages. Then
$\mathcal{L}_{P}=\{\langle M\rangle \mid L(M) \in P\}$ is undecidable.

- Let P be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_{L}$ with property P.
- If P is decidable, there exists an algo M_{P} for deciding P
- We combine M_{L} and M_{P} to get algo for $A_{T M}$.
- For $\langle M, w\rangle \mathrm{i} / \mathrm{p}$, design $\left\langle M^{\prime}\right\rangle$, s.t $L\left(M^{\prime}\right) \in P$ iff M acc w.
- M^{\prime} is the foll:

1. ignore $\mathrm{i} / \mathrm{p} x$, simulate M on w. if reject, then rejects x.
2. if acc, then simulate M_{L} on x, acc iff M_{L} acc x.

- Thus M^{\prime} either acc \emptyset or L depending on if M acc w.
- Thus $\left\langle M^{\prime}\right\rangle \in \mathcal{L}_{P}$ iff $L\left(M^{\prime}\right) \in P$ iff $L\left(M^{\prime}\right)=L$ iff M acc w.
- This gives an algo for $A_{T M}$ so contradiction!

Proof idea

- But what if P has \emptyset in it!?

Proof idea

- But what if P has \emptyset in it!?
- Take \bar{P}.
- Now $\emptyset \notin \bar{P}$.

Proof idea

- But what if P has \emptyset in it!?
- Take \bar{P}.
- Now $\emptyset \notin \bar{P}$.
- Apply proof to get undecidability of $\mathcal{L}_{\bar{P}}$.
- Conclude undecidability of \mathcal{L}_{P}.

More "useful" undecidability?

Are only problems about Turing machines undecidable?

More "useful" undecidability?

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines

More "useful" undecidability?

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines But these are just Turing machines?

More "useful" undecidability?

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines
- Problems on CFLs: Given CFG G, is $L(G)=\Sigma^{*}$?
- Problems on Tiling

More "useful" undecidability?

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines
- Problems on CFLs: Given CFG G, is $L(G)=\Sigma^{*}$?
- Problems on Tiling
- Problems on String Matching

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

Consider the following lists

- $A=\{110,0011,0110\}$ and $B=\{110110,00,110\}$

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

Consider the following lists

$$
\text { - } A=\{110,0011,0110\} \text { and } B=\{110110,00,110\} 2,3,1 \text { ! }
$$

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

Consider the following lists

- $A=\{110,0011,0110\}$ and $B=\{110110,00,110\} 2,3,1$!
- $A=\{0011,11,1101\}$ and $B=\{101,011,110\}$

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

Consider the following lists

- $A=\{110,0011,0110\}$ and $B=\{110110,00,110\} 2,3,1$!
- $A=\{0011,11,1101\}$ and $B=\{101,011,110\}$
- $A=\{100,0,1\}$ and $B=\{1,100,0\}$

A simple programming exercise

A string matching problem
Given two lists $A=\left\{s_{1}, \ldots s_{n}\right\}$ and $B=\left\{t_{1}, \ldots, t_{n}\right\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

- Does there exist a finite sequence $1 \leq i_{1}, \ldots, i_{m} \leq n$ such that

$$
s_{i_{1}} \ldots s_{i_{m}}=t_{i_{1}} \ldots t_{i_{m}}
$$

Consider the following lists

- $A=\{110,0011,0110\}$ and $B=\{110110,00,110\} 2,3,1$!
- $A=\{0011,11,1101\}$ and $B=\{101,011,110\}$
- $A=\{100,0,1\}$ and $B=\{1,100,0\}$

Can you write an algorithm for solving this?

