CS310 : Automata Theory 2019

Lecture 31: Rice's theorem and other undecidable problems

Instructor: S. Akshay

IITB, India

25-03-2019

Recap

Turing machines and computability

- 1. Definition of Turing machines: high level and low-level descriptions
- 2. Variants of Turing machines
- 3. Decidable and Turing recognizable languages
- 4. Church-Turing Hypothesis
- 5. Undecidability and a proof technique by diagonalization
 - A universal TM lang $L_{TM}^A = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$
- 6. Reductions: a powerful way to show undecidability.
- 7. Rice's theorem

Rice's Theorem

Rice's Theorem

Let *P* be a non-trivial property of r.e. languages. Then $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.

For the following, is Rice's theorem applicable?

- 1. $\{\langle M \rangle \mid M \text{ runs for 5 steps on word 010}\}$. No. Property of TMs.
- 2. $\{\langle M \rangle \mid M \text{ has at most 25 states.}\}$. No. Property of TMs.
- 3. { $\langle M \rangle \mid L(M)$ is recognized by a TM with at least 25 states.}. No. Trivial property.
- 4. $\{\langle M \rangle \mid L(M) \text{ is recognized by a TM with at most 25 states and tape alphabet at most 10.}\}$. Yes.
- 5. $\{\langle M \rangle \mid L(M) \text{ is infinite.}\}$. Yes.
- {⟨M⟩ | M with alphabet {0,1, ⊔} ever prints three consecutive 1's on the tape}. No. Property of TMs, but undecidable!

Rice's Theorem

Let *P* be a non-trivial property of r.e. languages. Then $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.

For the following, is Rice's theorem applicable?

- 1. $\{\langle M \rangle \mid M \text{ runs for 5 steps on word 010}\}$. No. Property of TMs.
- 2. $\{\langle M \rangle \mid M \text{ has at most 25 states.}\}$. No. Property of TMs.
- 3. { $\langle M \rangle \mid L(M)$ is recognized by a TM with at least 25 states.}. No. Trivial property.
- 4. $\{\langle M \rangle \mid L(M) \text{ is recognized by a TM with at most 25 states and tape alphabet at most 10.}\}$. Yes.
- 5. $\{\langle M \rangle \mid L(M) \text{ is infinite.}\}$. Yes.
- {⟨M⟩ | M with alphabet {0,1, ⊔} ever prints three consecutive 1's on the tape}. No. Property of TMs, but undecidable!
- ▶ For No answers, language can still be decidable or undecidable.
- ► If Rice's theorem does not apply, fall back on reductions!

Rice's Theorem Let P be a non-trivial property of r.e. languages. Then $\mathcal{L}_P = \{ \langle M \rangle \mid L(M) \in P \}$ is undecidable.

Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P

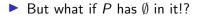
- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - For $\langle M, w \rangle$ i/p, design $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- ▶ If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - For $\langle M, w \rangle$ i/p, design $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - M' is the foll:
 - 1. ignore i/p x, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- ▶ If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - For $\langle M, w \rangle$ i/p, design $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - M' is the foll:
 - 1. ignore $i/p \times i$, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.
 - Thus M' either acc \emptyset or L depending on if M acc w.

- Let *P* be a non-trivial property of r.e, such that $\emptyset \notin P$.
- Since P is non-trivial, $\exists L, M_L$ with property P.
- ▶ If P is decidable, there exists an algo M_P for deciding P
- We combine M_L and M_P to get algo for A_{TM} .
 - For $\langle M, w \rangle$ i/p, design $\langle M' \rangle$, s.t $L(M') \in P$ iff M acc w.
 - M' is the foll:
 - 1. ignore i/p x, simulate M on w. if reject, then rejects x.
 - 2. if acc, then simulate M_L on x, acc iff M_L acc x.
 - Thus M' either acc \emptyset or L depending on if M acc w.
- ▶ Thus $\langle M' \rangle \in \mathcal{L}_P$ iff $L(M') \in P$ iff L(M') = L iff M acc w.
- This gives an algo for A_{TM} so contradiction!



- ► But what if P has Ø in it!?
- ► Take P.
- ► Now $\emptyset \notin \overline{P}$.

- ▶ But what if P has Ø in it!?
- ► Take <u>P</u>.
- ▶ Now $\emptyset \notin \overline{P}$.
- Apply proof to get undecidability of $\mathcal{L}_{\overline{P}}$.
- Conclude undecidability of \mathcal{L}_P .

Are only problems about Turing machines undecidable?

Are only problems about Turing machines undecidable?

Computers, C-programs, counter machines

Are only problems about Turing machines undecidable?

Computers, C-programs, counter machines But these are just Turing machines?

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines
- Problems on CFLs: Given CFG G, is $L(G) = \Sigma^*$?
- Problems on Tiling

Are only problems about Turing machines undecidable?

- Computers, C-programs, counter machines
- ▶ Problems on CFLs: Given CFG *G*, is $L(G) = \Sigma^*$?
- Problems on Tiling
- Problems on String Matching

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

Consider the following lists

•
$$A = \{110, 0011, 0110\}$$
 and $B = \{110110, 00, 110\}$

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

Consider the following lists

• $A = \{110, 0011, 0110\}$ and $B = \{110110, 00, 110\}$ 2, 3, 1!

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

Consider the following lists

- $A = \{110, 0011, 0110\}$ and $B = \{110110, 00, 110\}$ 2, 3, 1!
- $A = \{0011, 11, 1101\}$ and $B = \{101, 011, 110\}$

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

Consider the following lists

• $A = \{110, 0011, 0110\}$ and $B = \{110110, 00, 110\}$ 2, 3, 1!

•
$$A = \{0011, 11, 1101\}$$
 and $B = \{101, 011, 110\}$

•
$$A = \{100, 0, 1\}$$
 and $B = \{1, 100, 0\}$

A string matching problem

Given two lists $A = \{s_1, \ldots, s_n\}$ and $B = \{t_1, \ldots, t_n\}$, over the same alphabet, is there a sequence of combining elements that produces the same string in both lists?

▶ Does there exist a finite sequence $1 \le i_1, \ldots, i_m \le n$ such that

$$s_{i_1}\ldots s_{i_m}=t_{i_1}\ldots t_{i_m}$$

Consider the following lists

- $A = \{110, 0011, 0110\}$ and $B = \{110110, 00, 110\}$ 2, 3, 1!
- $A = \{0011, 11, 1101\}$ and $B = \{101, 011, 110\}$

•
$$A = \{100, 0, 1\}$$
 and $B = \{1, 100, 0\}$

Can you write an algorithm for solving this?

