CS310 : Automata Theory 2019

Lecture 33: PCP and its application to CFLs

Instructor: S. Akshay
IITB, India

28-03-2019

OO

CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/
http://www.cse.iitb.ac.in/~akshayss/

Recap

Turing machines and computability

Definition of Turing machines: high level and low-level descriptions
Variants of Turing machines

Decidable and Turing recognizable languages

Church-Turing Hypothesis

Undecidability and a proof technique by diagonalization
Reductions: a powerful way to show undecidability.

Rice's theorem, its proof and its applications.

© N o G kw =

Post’s Correspondance Problem, its proof and its applications.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Post's correspondance problem

Theorem
The Post's correspondance problem is undecidable.

Proof Idea:

» Encode TM computation histories!

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Post's correspondance problem

Theorem
The Post's correspondance problem is undecidable.

Proof ldea:
» Encode TM computation histories!

» Each transition as a domino!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Post's correspondance problem

Theorem
The Post's correspondance problem is undecidable.

Proof Idea:
» Encode TM computation histories!
» Each transition as a domino!

» Simulate the run using the dominos.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:1

Simplifying assumptions

» Assume that the tape of TM is one-way infinite and never attempts to
move left off its left-end.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:1

Simplifying assumptions

» Assume that the tape of TM is one-way infinite and never attempts to
move left off its left-end.

» If w = ¢, then use LI instead of w.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:1

Simplifying assumptions
» Assume that the tape of TM is one-way infinite and never attempts to
move left off its left-end.
» If w = ¢, then use LI instead of w.

» Modify PCP so that match must start with a given domino, say the first
one. Call this MPCP.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:2

We define a reduction from Aty to (M)PCP. Let an instance of Ay be

> M= (Q7Z7 r767 qOanC67qrej)
> w=w,...w,.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:2

We define a reduction from Aty to (M)PCP. Let an instance of Ay be
> M= (Q7 Z? ra 67 qo, Gacc; Qrej)
> w=wi,... W,

We build instance P’ of MPCP in several steps:

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:2

We define a reduction from Aty to (M)PCP. Let an instance of Ay be

> M= (Q7 Z? ra 67 4o, Gacc» Qrej)
> w=w,...w,.
We build instance P’ of MPCP in several steps:

Step 1: fix first domino in P’

[Tt
#qows - - wa#

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:2

We define a reduction from Aty to (M)PCP. Let an instance of Ay be
> M= (Q7 Z? ra 57 4o, Gacc» Qrej)

> w=wi,... W,

We build instance P’ of MPCP in several steps:
Step 1: fix first domino in P’

[Tt
#qows - - wa#

Because we are reducing to MPCP, the match must start with this
domino!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:2

We define a reduction from Aty to (M)PCP. Let an instance of Ay be
> M= (Q7 Z? ra 57 4o, Gacc» Qrej)

> w=wi,... W,

We build instance P’ of MPCP in several steps:
Step 1: fix first domino in P’

[Tt
#qows - - wa#

Because we are reducing to MPCP, the match must start with this
domino!How do we proceed?

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:3

Step 2: encode transitions of TM into dominos!

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:3

Step 2: encode transitions of TM into dominos!
For every a,b,c € [and every q,q4' € Q, q # Grej,
» if 6(q,a) = (¢’, b, R) then add domino to P":

]

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:3

Step 2: encode transitions of TM into dominos!
For every a,b,c € [and every q,q4' € Q, q # qrej,
» if 6(q,a) = (¢’, b, R) then add domino to P":

]

» if 6(q,a) = (¢’, b, L) then add domino to P":

cqa
q'cb

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:3

Step 2: encode transitions of TM into dominos!
For every a,b,c € [and every q,q4' € Q, q # Grej,
» if 6(q,a) = (¢, b, R) then add domino to P":

]

» if 6(q,a) = (¢’, b, L) then add domino to P":

cqa
q’cb
> add all dominos (i.e, for all a € T U {#}) to P

H

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:3

Step 2: encode transitions of TM into dominos!
For every a,b,c € [and every q,q4' € Q, q # qrej,
» if 6(q,a) = (¢’, b, R) then add domino to P":

]

» if 6(q,a) = (¢’, b, L) then add domino to P’

cqa
q’cb

> add all dominos (i.e, for all a € T U {#}) to P

HERA

to model adding new blanks on right, when needed

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos
For every a € I, we add foll dominos to P’:

|:qacca:| [aqacc]
Gacc || Gace

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos
For every a € I', we add foll dominos to P’:

|: qacc3:| |: aGacc :|
Gace | | Gace

Exercise: What happens in the previous example if we reach:

F |
#2111 Gacc 02 #

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos
For every a € ', we add foll dominos to P’:

l: qacca:| |: d(acc :|
Qacc , Gacc

Step 4: complete the match

Add:
[qacc##]

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos
For every a € I, we add foll dominos to P’:

|: qacca:| [aQacc :|
Gacc ’ Gacc

Step 4: complete the match

Add:
[Qacc##]

#

This completes the reduction
» i.e., map from instance of A1y to instance of MPCP s.t.,
» M acc w iff P’ gives a solution to MPCP problem.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:4

Step 3: acceptance into eating dominos
For every a € ', we add foll dominos to P':

|: qacc3:| [dqacc :|
Qacc ’ Gacc

Step 4: complete the match

Add:
[qacc##]

7

This completes the reduction
» i.e., map from instance of A1y to instance of MPCP s.t.,
» M acc w iff P’ gives a solution to MPCP problem.

Does this also give a reduction to PCP?

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:5

Reduction from MPCP to PCP!

. _ | a1...ar /
For every domino d = o of P

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:5

Reduction from MPCP to PCP!

For every domino d = | 232 | of P/
by...bs

» for every d in P’, we add in P

*d1 k% az...*ap
b1 * by ... % bsx

This completes the reduction and the proof!

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:5

Reduction from MPCP to PCP!

For every domino d = {ﬁ of P/

» for every d in P’, we add in P

*d1 *kaz...*ay
bl*bg...*bs*

» if d is the first one, we additionally add in P,

%31 % ay... % a,
b1 % by ... % bsx

This completes the reduction and the proof!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Proof of undecidability of PCP:5

Reduction from MPCP to PCP!

For every domino d = [ﬁ of P/

» for every d in P’, we add in P

*d1 *kaz...*xap
bl*bg...*bs*

» if d is the first one, we additionally add in P,

*d1 kaz...*ay
b1 * by ... % bsx

Also to finish the match, add in P,

This completes the reduction and the proof!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Another simple problem

Thus, the string matching problem (PCP) is undecidable!

Given two lists A = {s1,...s,} and B = {t1,...,t,}, over the same
alphabet,
» does there exist a finite sequence 1 < i1,...,in < n such that
Siy« - Sipy, = til"'tim

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Another simple problem

Thus, the string matching problem (PCP) is undecidable!

Given two lists A = {s1,...s,} and B = {t1,...,t,}, over the same
alphabet,
» does there exist a finite sequence 1 < i1,...,in < n such that
Siy« - Sipy, = til"'tim

A completely different yet natural problem

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Another simple problem

Thus, the string matching problem (PCP) is undecidable!

Given two lists A = {s1,...s,} and B = {t1,...,t,}, over the same
alphabet,
» does there exist a finite sequence 1 < i1,...,in < n such that
Siy« - Sipy, = til"'tim

A completely different yet natural problem
Is a context-free grammar (CFG) ambiguous?

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

» Reduction from PCP to this problem

» Then, if there is an algorithm for this problem, it will give an algorithm
to decide PCP, a contradiction!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

» Reduction from PCP to this problem

» Then, if there is an algorithm for this problem, it will give an algorithm
to decide PCP, a contradiction!

Given list A= {sy,...s,} construct CFG Gp, with single variable A and
terminals: ¥, set of distinct index symbols ay, ..., a,

A— siAar | ssAa | ... | spAap | s1a1 | ... | shan

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

» Reduction from PCP to this problem

» Then, if there is an algorithm for this problem, it will give an algorithm
to decide PCP, a contradiction!

Given list A= {sy,...s,} construct CFG Gp, with single variable A and
terminals: ¥, set of distinct index symbols ay, ..., a,

A— siAar | ssAa | ... | spAap | s1a1 | ... | shan

» What are the terminal strings of Ga?

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

» Reduction from PCP to this problem

» Then, if there is an algorithm for this problem, it will give an algorithm
to decide PCP, a contradiction!

Given list A= {sy,...s,} construct CFG Gp, with single variable A and
terminals: X, set of distinct index symbols ay, ..., a,

A— siAar | ssAa | ... | spAap | s1a1 | ... | shan

» What are the terminal strings of Ga?

» Is G4 ambiguous? That is, for any terminal string, how many
derivations does it have?

» The index symbol at the end of string determines (uniquely) which
production was used at a step.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Given list B = {t,...,t,} construct CFG Gg, with single variable B
and terminals: ¥, set of distinct index symbols ay, ..., a,

B — t;Ba; | tr Bas | | t,Ba, | t1a1 | | than

Same properties hold for Gg (as for Gp)

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Given list B = {t1,...,t,} construct CFG Gg, with single variable B
and terminals: ¥, set of distinct index symbols ay, ..., a,

B — t;Ba; | tr Bas | | t,Ba, ’ t1a1 | | than

Same properties hold for Gg (as for Gp)

Now, given an instance of PCP, i.e., A= {s;,...,s,} and
B ={t1,...,t,}, construct CFG Gup

» Variables are A, B, S, S is start symbol
» Production S — A | B
» All productions of Gy, Gg

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Given list B = {t1,...,t,} construct CFG Gg, with single variable B
and terminals: ¥, set of distinct index symbols ay, ..., a,

B — t;Ba; | tr Bas | | t,Ba, ’ t1a1 | | than

Same properties hold for Gg (as for Gp)

Now, given an instance of PCP, i.e., A= {s;,...,s,} and
B ={t1,...,t,}, construct CFG Gup

» Variables are A, B, S, S is start symbol
» Production S — A | B
» All productions of Ga, Gg

Claim: Gag is ambiguous iff instance (A, B) of PCP has a solution

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

11

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:
» Map instance of PCP to instance of this problem:

» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:
» Map instance of PCP to instance of this problem: (A, B) — Gag

» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag
» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gap is ambiguous.
» Proof: — Spse i1,...,In is a soln to PCP.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag
» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.
» Proof: = Spse i1,...,In is a soln to PCP.
» This implies s;, ...s; =t ...t .

'm

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag
» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.
» Proof: — Spse i1,...,In is a soln to PCP.
> This implies s, ...s; =ty ...t .
> Can you give a string which has two (distinct, leftmost) derivations in
Gag?

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag

» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.

» Proof: = Spse i1,...,In is a soln to PCP.

» This implies s, ...s; = tj, ...t .

> Can you give a string which has two (distinct, leftmost) derivations in
Gag?

» Thus, Gag is ambiguous.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag

» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.

» Proof: <= Spse Gap has two leftmost derivations.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:
» Map instance of PCP to instance of this problem: (A, B) — Gag
» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gap is ambiguous.

» Proof: <= Spse Gag has two leftmost derivations.
» One must begin with S = A and other with S —> B and derive same
string (why?)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag
» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.
» Proof: <= Spse Gap has two leftmost derivations.

» One must begin with S = A and other with S = B and derive same
string (why?)
» The tail of this string has some indices a; ...a; for some m > 1.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:

» Map instance of PCP to instance of this problem: (A, B) — Gag

» Show that this is a reduction, i.e., instance (A, B) of PCP has a solution
iff Gag is ambiguous.

>
>

>

Proof: <= Spse Gapg has two leftmost derivations.

One must begin with S = A and other with S = B and derive same
string (why?)

The tail of this string has some indices a;_ ... a;, for some m > 1.

This is a solution to PCP instance, since what precedes is both s; ...s;
and tiy ...t

im*

@O0

CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:
» Map instance of PCP to instance of this problem: (A, B) — Gag
» this is a reduction, i.e., instance (A, B) of PCP has a solution iff Gag is
ambiguous.
» Thus, undecidability of PCP implies undecidability of checking
ambiguity of CFG.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidability of Ambiguity for CFG's

Theorem: Checking if a CFG is ambiguous is undecidable

Proof:
» Map instance of PCP to instance of this problem: (A, B) — Gag

» this is a reduction, i.e., instance (A, B) of PCP has a solution iff Gap is
ambiguous.
» Thus, undecidability of PCP implies undecidability of checking
ambiguity of CFG.
» i.e., if we had an algorithm to decide unambiguity of CFG, we could apply
the reduction and obtain an algorithm to decide PCP.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India 12

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Ga) be the CFL accepting Ga.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Ga) be the CFL accepting Ga.

» What about L4? Language of strings over ¥ U {a1,...a,} that are not
in LA.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Gp) be the CFL accepting Ga.

» What about L4? Language of strings over ¥ U {ay, ..

in LA.

Theorem: L, is context-free.
Proof: Define a deterministic PDA.

.an} that are not

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Gp) be the CFL accepting Ga.

» What about L4? Language of strings over ¥ U {a1,...a,} that are not
in LA.

Theorem: L, is context-free.
Proof: Define a deterministic PDA. Home-work!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Ga) be the CFL accepting Ga.

» What about L4? Language of strings over ¥ U {a,
in LA.

Theorem: L, is context-free.
Proof: Define a deterministic PDA.

Let G;, G, be CFGs and R be a regular expression

> Is L(Gy) N L(Gy) # 07
> Is L(Gy) N L(Gy) = 07
> Is L(G) = L(R)?

...ap} that are not

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Undecidable properties about CFLs

» Let Ly = L(Ga) be the CFL accepting Ga.

» What about L4? Language of strings over ¥ U {a1,...a,} that are not
in LA.

Theorem: L, is context-free.
Proof: Define a deterministic PDA.

Let G;, G, be CFGs and R be a regular expression

> s L(Gl) N L(G2) 75 @7 Take L(Gl) = LA, L(G2) = LB
> Is L(G1) N L(Gy) = 07
> Is L(G) = L(R)?

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India

13

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

