CS310 : Automata Theory 2019

Lecture 34: Linear Bounded Automata

Instructor: S. Akshay

IITB, India

01-04-2019

Recap

Turing machines and computability

- 1. Turing machines
 - (i) Definition
 - (ii) Variants
 - (iii) Decidable and Turing recognizable languages
 - (iv) Church-Turing Hypothesis

Recap

Turing machines and computability

- 1. Turing machines
 - (i) Definition
 - (ii) Variants
 - (iii) Decidable and Turing recognizable languages
 - (iv) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem

Recap

Turing machines and computability

- 1. Turing machines
 - (i) Definition
 - (ii) Variants
 - (iii) Decidable and Turing recognizable languages
 - (iv) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem
- 3. Applications: showing (un)decidability of other problems
 - (i) A string matching problem: Post's Correspondance Problem
 - (ii) A problem for compilers: Unambiguity of Context-free languages

Definition

Definition

- Thus, a limited amount of memory.
- But we can use larger tape alphabet!

Definition

- Thus, a limited amount of memory.
- But we can use larger tape alphabet! Does this help?

Definition

- ► Thus, a limited amount of memory.
- But we can use larger tape alphabet! increases memory only by a constant factor.

Definition

- Thus, a limited amount of memory.
- But we can use larger tape alphabet! increases memory only by a constant factor.
- given input of length n, memory available is a linear fn of n

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Chocolate problem: Give an example of a language which is decidable, but not accepted by any LBA.

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Chocolate problem: Give an example of a language which is decidable, but not accepted by any LBA.

What about the acceptance and emptiness problems?

•
$$A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \}.$$

•
$$E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA with } L(M) = \emptyset \}.$$

Are they decidable?

How powerful are LBA?

A_{LBA} = {⟨M, w⟩ | M is an LBA that accepts string w}.
E_{LBA} = {⟨M⟩ | M is an LBA with L(M) = ∅}.

How powerful are LBA?

- $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \}.$
- $E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA with } L(M) = \emptyset \}.$

Pop Quiz

- 1. Let *M* be an LBA with |Q| = m, $|\Gamma| = r$, with input length *n*. How many distinct configurations *D* of *M* are possible?
- 2. Can you simulate an LBA with a halting TM, i.e., is A_{LBA} decidable?
- 3. Can you describe a reduction from A_{TM} to E_{LBA} , i.e., is E_{LBA} undecidable?

- Simulate LBA *M* on *w* for *D* steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- ▶ If run does not stop in *D* steps, declare reject (loop detected)!

- Simulate LBA *M* on *w* for *D* steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- ▶ If run does not stop in *D* steps, declare reject (loop detected)!
- Claim: A_{LBA} accepts w iff it accepts w in at most D steps.
 - One direction trivial.

- Simulate LBA *M* on *w* for *D* steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- ▶ If run does not stop in *D* steps, declare reject (loop detected)!
- Claim: A_{LBA} accepts w iff it accepts w in at most D steps.
 - One direction trivial.
 - For the other, if M on w didn't stop in D steps, by PHP there must be a config visited twice, i.e., a loop. hence M cannot accept w.

Decidability of A_{LBA}

- Simulate LBA *M* on *w* for *D* steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- ▶ If run does not stop in *D* steps, declare reject (loop detected)!
- Claim: A_{LBA} accepts w iff it accepts w in at most D steps.
 - One direction trivial.
 - For the other, if M on w didn't stop in D steps, by PHP there must be a config visited twice, i.e., a loop. hence M cannot accept w.

- Decidability of ALBA
- Undecidability of ELBA
 - Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø

Decidability of ALBA

- Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.

Decidability of ALBA

- Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into #C₁#C₂...#C_n#, and check if C₁ is start, C_n is acc and each transition is valid (how?).

Decidability of ALBA

- Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into #C₁#C₂...#C_n#, and check if C₁ is start, C_n is acc and each transition is valid (how?).
- ▶ i.e., C_i and C_{i+1} are same on all except positions near the head. And they are correctly updated acc transition of M. Use markers to keep track of positions.

Decidability of ALBA

- Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- ▶ Break x into #C₁#C₂...#C_n#, and check if C₁ is start, C_n is acc and each transition is valid (how?).
- ▶ Now, show that $w \in L(M)$ iff $L(B) \neq \emptyset$

Decidability of ALBA

- Reduction from A_{TM}: define map from TM (M, w) to LBA B, s.t., w ∈ L(M) iff L(B) ≠ Ø
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- ▶ Break x into #C₁#C₂...#C_n#, and check if C₁ is start, C_n is acc and each transition is valid (how?).
- ▶ Now, show that $w \in L(M)$ iff $L(B) \neq \emptyset$
- Thus, non-emptiness is undecidable. What about emptiness?

