CS310 : Automata Theory 2019

Lecture 34: Linear Bounded Automata

Instructor: S. Akshay

IITB, India
01-04-2019

Recap

Turing machines and computability

1. Turing machines
(i) Definition
(ii) Variants
(iii) Decidable and Turing recognizable languages
(iv) Church-Turing Hypothesis

Recap

Turing machines and computability

1. Turing machines
(i) Definition
(ii) Variants
(iii) Decidable and Turing recognizable languages
(iv) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem

Recap

Turing machines and computability

1. Turing machines
(i) Definition
(ii) Variants
(iii) Decidable and Turing recognizable languages
(iv) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages

Another restriction of Turing machines

Definition

A linear bounded automaton (LBA) is a TM where the tape head cannot move off the portion of the tape containing the input.

Another restriction of Turing machines

Definition

A linear bounded automaton (LBA) is a TM where the tape head cannot move off the portion of the tape containing the input.

- Thus, a limited amount of memory.
- But we can use larger tape alphabet!

Another restriction of Turing machines

Definition

A linear bounded automaton (LBA) is a TM where the tape head cannot move off the portion of the tape containing the input.

- Thus, a limited amount of memory.
- But we can use larger tape alphabet! Does this help?

Another restriction of Turing machines

Definition

A linear bounded automaton (LBA) is a TM where the tape head cannot move off the portion of the tape containing the input.

- Thus, a limited amount of memory.
- But we can use larger tape alphabet! increases memory only by a constant factor.

Another restriction of Turing machines

Definition

A linear bounded automaton (LBA) is a TM where the tape head cannot move off the portion of the tape containing the input.

- Thus, a limited amount of memory.
- But we can use larger tape alphabet! increases memory only by a constant factor.
- given input of length n, memory available is a linear fn of n

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Chocolate problem: Give an example of a language which is decidable, but not accepted by any LBA.

Linear bounded automata (LBA)

How powerful are LBA? What do they capture?

- regular languages?
- context free languages?
- decidable languages?
- All languages?

Chocolate problem: Give an example of a language which is decidable, but not accepted by any LBA.

What about the acceptance and emptiness problems?

- $A_{L B A}=\{\langle M, w\rangle \mid M$ is an LBA that accepts string $w\}$.
- $E_{L B A}=\{\langle M\rangle \mid M$ is an LBA with $L(M)=\emptyset\}$.

Are they decidable?

How powerful are LBA?

- $A_{L B A}=\{\langle M, w\rangle \mid M$ is an LBA that accepts string $w\}$.
- $E_{L B A}=\{\langle M\rangle \mid M$ is an LBA with $L(M)=\emptyset\}$.

How powerful are LBA?

- $A_{L B A}=\{\langle M, w\rangle \mid M$ is an LBA that accepts string $w\}$.
- $E_{L B A}=\{\langle M\rangle \mid M$ is an LBA with $L(M)=\emptyset\}$.

Pop Quiz

1. Let M be an LBA with $|Q|=m,|\Gamma|=r$, with input length n. How many distinct configurations D of M are possible?
2. Can you simulate an LBA with a halting TM, i.e., is $A_{L B A}$ decidable?
3. Can you describe a reduction from $A_{T M}$ to $E_{L B A}$, i.e., is $E_{L B A}$ undecidable?

Two more proofs

Decidability of $A_{L B A}$

Two more proofs

Decidability of $A_{L B A}$

- Simulate LBA M on w for D steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- If run does not stop in D steps, declare reject (loop detected)!

Two more proofs

Decidability of $A_{L B A}$

- Simulate LBA M on w for D steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- If run does not stop in D steps, declare reject (loop detected)! Claim: $A_{L B A}$ accepts w iff it accepts w in at most D steps.
- One direction trivial.

Two more proofs

Decidability of $A_{L B A}$

- Simulate LBA M on w for D steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- If run does not stop in D steps, declare reject (loop detected)!

Claim: $A_{L B A}$ accepts w iff it accepts w in at most D steps.

- One direction trivial.
- For the other, if M on w didn't stop in D steps, by PHP there must be a config visited twice, i.e., a loop. hence M cannot accept w.

Two more proofs

Decidability of $A_{L B A}$

- Simulate LBA M on w for D steps (unless it halts earlier).
- If it accepts or rejects, do the same.
- If run does not stop in D steps, declare reject (loop detected)!

Claim: $A_{L B A}$ accepts w iff it accepts w in at most D steps.

- One direction trivial.
- For the other, if M on w didn't stop in D steps, by PHP there must be a config visited twice, i.e., a loop. hence M cannot accept w.

Undecidability of $E_{L B A}$

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from $\mathrm{TM}(M, w)$ to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from TM (M, w) to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from TM (M, w) to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into $\# C_{1} \# C_{2} \ldots \# C_{n} \#$, and check if C_{1} is start, C_{n} is acc and each transition is valid (how?).

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from TM (M, w) to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into $\# C_{1} \# C_{2} \ldots \# C_{n} \#$, and check if C_{1} is start, C_{n} is acc and each transition is valid (how?).
- i.e., C_{i} and C_{i+1} are same on all except positions near the head. And they are correctly updated acc transition of M. Use markers to keep track of positions.

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from TM (M, w) to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into $\# C_{1} \# C_{2} \ldots \# C_{n} \#$, and check if C_{1} is start, C_{n} is acc and each transition is valid (how?).
- Now, show that $w \in L(M)$ iff $L(B) \neq \emptyset$

Two more proofs

Decidability of $A_{L B A}$

Undecidability of $E_{L B A}$

- Reduction from $A_{T M}$: define map from TM (M, w) to LBA B, s.t., $w \in L(M)$ iff $L(B) \neq \emptyset$
- Idea: B accepts ip x iff x is a string describing sequence of accepting computations of M on w.
- Break x into $\# C_{1} \# C_{2} \ldots \# C_{n} \#$, and check if C_{1} is start, C_{n} is acc and each transition is valid (how?).
- Now, show that $w \in L(M)$ iff $L(B) \neq \emptyset$
- Thus, non-emptiness is undecidable. What about emptiness?

