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Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity
(ii) Polynomial and exponential time complexity
(iii) Nondeterministic polynomial time, and the P vs NP problem.
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The P vs NP problem

I P: class of problems solvable in polynomial time

I NP: class of problems verifiable in polynomial time

= class of problems solvable in polynomial time in a non-determistic TM.

I EXP: class of problems solvable in exponential time.

I Co − C: class of problems whose complement is solvable in C.
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The class NEXP

Definition
NEXP is the class of languages that are decidable in exponential time on a
non-deterministic single-tape Turing machine, i.e.,

NP =
⋃
k

NTIME (2n
k
)

Verifier
for language A is an algorithm V s.t. w ∈ A iff V accepts 〈w , c〉 for some
witness or proof string c .

Exercises

I Define an EXP-time verifier.

I Prove or disprove: a language is in NEXP iff it has a exp-time verifier
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NP completeness

The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and
operations, does it have a satisfying assignment?

SAT = {〈φ〉 | φ is a satisfiable Boolean formula.}

Example: φ = (x ∧ y ∧ z) ∨ (x ∧ z)

Theorem
SAT ∈ P iff P = NP

SAT = {〈φ〉 | φ is a satisfiable 3-cnf-formula.}
where 3-cnf-formula is a formula in special form:

I conjunction of “clauses”

I each clause has literals, i.e., variables or their negations, separated by
disjunction

I each clause has 3 literals
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Polynomial time reductions

Ptime computable functions

f : Σ∗ → Σ∗ is Ptime computable if there is a polytime TM M, which started
on any input w halts with just f (w) on its tape.

Polynomial time reduction

Language A polynomtial time reducible to B, denoted A ≤P B if there is a
Ptime computable function f s.t.

w ∈ A⇔ f (w) ∈ B

Such a function is called a Ptime reduction of A to B.

Theorem
If A ≤p B and B ∈ P, then A ∈ P

(Note: if there is a “halting TM” reduction from A to B, then A undecidable
implied B undecidable!)
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Exercise (H.W)

I Show that 3SAT is polytime reducible to CLIQUE.

I Show that 3SAT is polytime reducible to SUBSETSUM.
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