# CS310 : Automata Theory 2019

Lecture 39: Efficiency in computation Classifying problems by their complexity

Instructor: S. Akshay

IITB, India

11-04-2019



### Turing machines and computability

#### 1. Turing machines

- (i) Definition & variants
- (ii) Decidable and Turing recognizable languages
- (iii) Church-Turing Hypothesis



### Turing machines and computability

- 1. Turing machines
  - (i) Definition & variants
  - (ii) Decidable and Turing recognizable languages
  - (iii) Church-Turing Hypothesis
- 2. Undecidability
  - (i) A proof technique by diagonalization
  - (ii) Via reductions
  - (iii) Rice's theorem



### Turing machines and computability

- 1. Turing machines
  - (i) Definition & variants
  - (ii) Decidable and Turing recognizable languages
  - (iii) Church-Turing Hypothesis
- 2. Undecidability
  - (i) A proof technique by diagonalization
  - (ii) Via reductions
  - (iii) Rice's theorem

#### 3. Applications: showing (un)decidability of other problems

- (i) A string matching problem: Post's Correspondance Problem
- (ii) A problem for compilers: Unambiguity of Context-free languages
- (iii) Between TM and PDA: Linear Bounded Automata



### Turing machines and computability

- 1. Turing machines
  - (i) Definition & variants
  - (ii) Decidable and Turing recognizable languages
  - (iii) Church-Turing Hypothesis
- 2. Undecidability
  - (i) A proof technique by diagonalization
  - (ii) Via reductions
  - (iii) Rice's theorem
- 3. Applications: showing (un)decidability of other problems
  - (i) A string matching problem: Post's Correspondance Problem
  - (ii) A problem for compilers: Unambiguity of Context-free languages
  - (iii) Between TM and PDA: Linear Bounded Automata
- 4. Efficiency in computation: run-time complexity.
  - (i) Running time complexity
  - (ii) Polynomial and exponential time complexity
  - (iii) Nondeterministic polynomial time, and the P vs NP problem.



### The P vs NP problem

- P: class of problems solvable in polynomial time
- ▶ NP: class of problems verifiable in polynomial time



### The P vs NP problem

- P: class of problems solvable in polynomial time
- NP: class of problems verifiable in polynomial time
  = class of problems solvable in polynomial time in a non-determistic TM.
- EXP: class of problems solvable in exponential time.
- Co C: class of problems whose complement is solvable in C.



### The class NEXP

#### Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$NP = \bigcup_k NTIME(2^{n^k})$$



### The class NEXP

#### Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$NP = \bigcup_k NTIME(2^{n^k})$$

#### Verifier

for language A is an algorithm V s.t.  $w \in A$  iff V accepts  $\langle w, c \rangle$  for some witness or proof string c.



### The class NEXP

#### Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$NP = \bigcup_k NTIME(2^{n^k})$$

#### Verifier

for language A is an algorithm V s.t.  $w \in A$  iff V accepts  $\langle w, c \rangle$  for some witness or proof string c.

#### Exercises

- Define an EXP-time verifier.
- Prove or disprove: a language is in NEXP iff it has a exp-time verifier



### The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?



#### The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula.} \}$ 



#### The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula.} \}$ 

Example:  $\phi = (\overline{x} \land y \land z) \lor (x \land z)$ 



#### The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula.} \}$ 

Example:  $\phi = (\overline{x} \land y \land z) \lor (x \land z)$ 

Theorem  $SAT \in P$  iff P = NP



### The problem of satisfiability SAT

Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula.} \}$ 

$$\mathsf{Example:} \ \phi = (\overline{x} \land y \land z) \lor (x \land z)$$

Theorem  $SAT \in P$  iff P = NP

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3-cnf-formula.} \}$ 

where 3-cnf-formula is a formula in special form:

- conjunction of "clauses"
- each clause has literals, i.e., variables or their negations, separated by disjunction
- each clause has 3 literals



#### Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$  is Ptime computable if there is a polytime TM *M*, which started on any input *w* halts with just f(w) on its tape.



#### Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$  is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

#### Polynomial time reduction

Language A polynomtial time reducible to B, denoted  $A \leq_P B$  if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.



#### Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$  is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

#### Polynomial time reduction

Language A polynomtial time reducible to B, denoted  $A \leq_P B$  if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.

Theorem If  $A \leq_{p} B$  and  $B \in P$ , then  $A \in P$ 



#### Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$  is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

#### Polynomial time reduction

Language A polynomtial time reducible to B, denoted  $A \leq_P B$  if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.

#### Theorem

If  $A \leq_p B$  and  $B \in P$ , then  $A \in P$ 

(Note: if there is a "halting TM" reduction from A to B, then A undecidable implied B undecidable!)



### Exercise (H.W)

- Show that 3SAT is polytime reducible to CLIQUE.
- Show that 3*SAT* is polytime reducible to SUBSETSUM.

