CS310: Automata Theory 2019

Lecture 39: Efficiency in computation Classifying problems by their complexity

Instructor: S. Akshay

IITB, India
11-04-2019

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata
4. Efficiency in computation: run-time complexity.
(i) Running time complexity
(ii) Polynomial and exponential time complexity
(iii) Nondeterministic polynomial time, and the P vs NP problem.

The P vs $N P$ problem

- P : class of problems solvable in polynomial time
- NP: class of problems verifiable in polynomial time

The P vs NP problem

- P : class of problems solvable in polynomial time
- NP: class of problems verifiable in polynomial time
$=$ class of problems solvable in polynomial time in a non-determistic TM.
- EXP: class of problems solvable in exponential time.
- Co $-\mathcal{C}$: class of problems whose complement is solvable in \mathcal{C}.

The class NEXP

Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$
N P=\bigcup_{k} N \operatorname{TIME}\left(2^{n^{k}}\right)
$$

The class NEXP

Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$
N P=\bigcup_{k} N \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Verifier

for language A is an algorithm V s.t. $w \in A$ iff V accepts $\langle w, c\rangle$ for some witness or proof string c.

The class NEXP

Definition

NEXP is the class of languages that are decidable in exponential time on a non-deterministic single-tape Turing machine, i.e.,

$$
N P=\bigcup_{k} N \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Verifier

for language A is an algorithm V s.t. $w \in A$ iff V accepts $\langle w, c\rangle$ for some witness or proof string c.

Exercises

- Define an EXP-time verifier.
- Prove or disprove: a language is in NEXP iff it has a exp-time verifier

NP completeness

The problem of satisfiability SAT
Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

NP completeness

The problem of satisfiability SAT
Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

$$
\text { SAT }=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula. }\}
$$

NP completeness

The problem of satisfiability SAT
Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

$$
\text { SAT }=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula. }\}
$$

Example: $\phi=(\bar{x} \wedge y \wedge z) \vee(x \wedge z)$

NP completeness

The problem of satisfiability SAT
Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula. }\}
$$

Example: $\phi=(\bar{x} \wedge y \wedge z) \vee(x \wedge z)$
Theorem
$S A T \in P$ iff $P=N P$

NP completeness

The problem of satisfiability SAT
Given a Boolean formula, i.e., an expression with Boolean variables and operations, does it have a satisfying assignment?

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula. }\}
$$

Example: $\phi=(\bar{x} \wedge y \wedge z) \vee(x \wedge z)$
Theorem
$S A T \in P$ iff $P=N P$
$S A T=\{\langle\phi\rangle \mid \phi$ is a satisfiable 3-cnf-formula. $\}$
where 3-cnf-formula is a formula in special form:

- conjunction of "clauses"
- each clause has literals, i.e., variables or their negations, separated by disjunction
- each clause has 3 literals

Polynomial time reductions

Ptime computable functions

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just $f(w)$ on its tape.

Polynomial time reductions

Ptime computable functions

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just $f(w)$ on its tape.

Polynomial time reduction
Language A polynomtial time reducible to B, denoted $A \leq_{P} B$ if there is a Ptime computable function f s.t.

$$
w \in A \Leftrightarrow f(w) \in B
$$

Such a function is called a Ptime reduction of A to B.

Polynomial time reductions

Ptime computable functions

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just $f(w)$ on its tape.

Polynomial time reduction

Language A polynomtial time reducible to B, denoted $A \leq_{P} B$ if there is a Ptime computable function f s.t.

$$
w \in A \Leftrightarrow f(w) \in B
$$

Such a function is called a Ptime reduction of A to B.

Theorem

If $A \leq_{p} B$ and $B \in P$, then $A \in P$

Polynomial time reductions

Ptime computable functions

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just $f(w)$ on its tape.

Polynomial time reduction

Language A polynomtial time reducible to B, denoted $A \leq_{P} B$ if there is a Ptime computable function f s.t.

$$
w \in A \Leftrightarrow f(w) \in B
$$

Such a function is called a Ptime reduction of A to B.

Theorem

If $A \leq_{p} B$ and $B \in P$, then $A \in P$
(Note: if there is a "halting TM" reduction from A to B, then A undecidable implied B undecidable!)

Exercise (H.W)

- Show that 3SAT is polytime reducible to CLIQUE.
- Show that $3 S A T$ is polytime reducible to SUBSETSUM.

