CS310 : Automata Theory 2019

Lecture 40: Efficiency in computation Classifying problems by their complexity

Instructor: S. Akshay

IITB, India

15-04-2019

Turing machines and computability

1. Turing machines

- (i) Definition & variants
- (ii) Decidable and Turing recognizable languages
- (iii) Church-Turing Hypothesis

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem

3. Applications: showing (un)decidability of other problems

- (i) A string matching problem: Post's Correspondance Problem
- (ii) A problem for compilers: Unambiguity of Context-free languages
- (iii) Between TM and PDA: Linear Bounded Automata

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem
- 3. Applications: showing (un)decidability of other problems
 - (i) A string matching problem: Post's Correspondance Problem
 - (ii) A problem for compilers: Unambiguity of Context-free languages
 - (iii) Between TM and PDA: Linear Bounded Automata
- 4. Efficiency in computation: run-time complexity.
 - (i) Running time complexity: polynomial and exponential time
 - (ii) Nondeterministic polynomial time, and the P vs NP problem.
 - (iii) NP-completeness, the Cook-Levin Theorem.

- P: class of problems solvable in polynomial time
- ▶ NP: class of problems verifiable in polynomial time

- P: class of problems solvable in polynomial time
- NP: class of problems verifiable in polynomial time
 = class of problems solvable in polynomial time in a non-determistic TM.
- EXP: class of problems solvable in exponential time.
- NEXP: class of problems solvable in exponential time by a non-det TM.
- Co C: class of problems whose complement is solvable in C.

Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$ is Ptime computable if there is a polytime TM *M*, which started on any input *w* halts with just f(w) on its tape.

Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

Polynomial time reduction

Language A polynomial time reducible to B, denoted $A \leq_P B$ if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.

Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

Polynomial time reduction

Language A polynomial time reducible to B, denoted $A \leq_P B$ if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.

Theorem If $A \leq_p B$ and $B \in P$, then $A \in P$

Ptime computable functions

 $f: \Sigma^* \to \Sigma^*$ is Ptime computable if there is a polytime TM M, which started on any input w halts with just f(w) on its tape.

Polynomial time reduction

Language A polynomial time reducible to B, denoted $A \leq_P B$ if there is a Ptime computable function f s.t.

$$w \in A \Leftrightarrow f(w) \in B$$

Such a function is called a Ptime reduction of A to B.

Theorem

If $A \leq_p B$ and $B \in P$, then $A \in P$

(Note: if there is a "halting TM" reduction from A to B, then A undecidable implied B undecidable!)

Exercise (H.W)

- Show that 3SAT is polytime reducible to CLIQUE.
- Show that 3*SAT* is polytime reducible to SUBSETSUM.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B If only condition 2 holds B is said to be NP-hard.
- Exercises:
 - ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
 - ▶ If B is NP-complete, and $B \leq_P C$, then C is

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
- ▶ If B is NP-complete, and $B \leq_P C$, then C is NP-hard.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
- ▶ If B is NP-complete, and $B \leq_P C$, then C is NP-hard.

The Cook-Levin Theorem *SAT* is *NP*-complete.

► $SAT \in NP$.

• Take any language $A \in NP$ and show it is polytime reducible to SAT.

- ► $SAT \in NP$.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

The Cook-Levin Theorem *SAT* is *NP*-complete.

- ► $SAT \in NP$.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^k time.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.
- 3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.
- 3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.
- 4. Thus, N acc w iff there exists an accepting tableau for N on w.

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i,j] = s iff $x_{i,j,s} = 1$.

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i,j] = s iff $x_{i,j,s} = 1$.
- 3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i,j] = s iff $x_{i,j,s} = 1$.
- 3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.

4.
$$\varphi = \varphi_{cell} \land \varphi_{start} \land \varphi_{move} \land \varphi_{acc}$$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

Sketch: Step 3 - SAT formula

- $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,
 - 1. for each cell one variable is "on", and only one is:

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

1. for each cell one variable is "on", and only one is:

 $\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

- 1. for each cell one variable is "on", and only one is: $\varphi_{cell} = \bigwedge_{1 \le i, j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$
- 2. start encodes that first row is starting config:

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

- 1. for each cell one variable is "on", and only one is: $\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$
- 2. start encodes that first row is starting config:

 $\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

 $\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$

3. accept says that accepting config should occur somewhere in tableau

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

- 3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$
- 4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to ${\it N}$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

- 3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$
- 4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to N $\varphi_{move} = \bigwedge_{1, \leq i, j < n^k}$ (the (i, j)-window is legal)

