
cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 1

CS310 : Automata Theory 2019

Lecture 41: Efficiency in computation
Classifying problems by their complexity

Instructor: S. Akshay

IITB, India

16-04-2019

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 2

Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 2

Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 2

Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 2

Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 3

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 3

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 3

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is

NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 3

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 3

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 4

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.

2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 5

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:

ϕcell =
∧

1≤i ,j≤nk [
∨

s∈C xi ,j ,s ∧
∨

s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:

ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .
3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau

ϕacc =
∨

1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N

ϕmove =
∧

1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 6

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Ex: Give 3 examples of legal windows and 3 illegal windows, given
δ(q, a) = {q, b,R}, δ(q, b) = {(q′, c , L), (q′, a,R)}

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

ϕmove =
∧

1≤i ,j<nk

((i , j)− window is legal)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

ϕmove encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2× 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

ϕmove =
∧

1≤i ,j<nk

((i , j)− window is legal)

Encode this as a disjunct
∨

a1...a6is legal(xi ,j−1,a1) ∧ xi ,j ,a2 ∧ ...)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.

I Size of formula is O(n2k) and can be constructed in polynomial time
(from w).

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.
I Size of formula is O(n2k) and can be constructed in polynomial time

(from w).

1. No. of cells is (nk)2 = n2k , no. of cells in top row is nk .

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.
I Size of formula is O(n2k) and can be constructed in polynomial time

(from w).

1. No. of cells is (nk)2 = n2k , no. of cells in top row is nk .
2. ϕstart is O(nk) (why?)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.
I Size of formula is O(n2k) and can be constructed in polynomial time

(from w).

1. No. of cells is (nk)2 = n2k , no. of cells in top row is nk .
2. ϕstart is O(nk) (why?)
3. All others are fixed size for each cell = O(n2k)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.
I Size of formula is O(n2k) and can be constructed in polynomial time

(from w).

1. No. of cells is (nk)2 = n2k , no. of cells in top row is nk .
2. ϕstart is O(nk) (why?)
3. All others are fixed size for each cell = O(n2k)
4. Can be constructed in polynomial time from N,w , i.e., polytime reduction

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

Cook-Levin Theorem (Completed!)

Completing the proof

I N has an acc computation on w iff ϕ is SAT.
I Size of formula is O(n2k) and can be constructed in polynomial time

(from w).

1. No. of cells is (nk)2 = n2k , no. of cells in top row is nk .
2. ϕstart is O(nk) (why?)
3. All others are fixed size for each cell = O(n2k)
4. Can be constructed in polynomial time from N,w , i.e., polytime reduction

Thus, we have a PTime reduction from any NP problem to SAT, i.e., SAT is
NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 9

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/


cbna CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

3. Parametrize.

4. Quantize!

5. average/amortized/smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

