CS310: Automata Theory 2019

Lecture 41: Efficiency in computation Classifying problems by their complexity

Instructor: S. Akshay

IITB, India
16-04-2019

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata
4. Efficiency in computation: run-time complexity.
(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs $N P$ problem.
(iii) NP-completeness, the Cook-Levin Theorem.

NP-completeness

Definition

A language B is NP-complete if two conditions hold:

1. B is in NP,
2. every A in NP is polynomial time reducible to B

NP-completeness

Definition

A language B is NP-complete if two conditions hold:

1. B is in NP,
2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

NP-completeness

Definition

A language B is NP-complete if two conditions hold:

1. B is in NP,
2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- If B is NP-complete, and $B \in P$, then $P=N P$.
- If B is NP-complete, and $B \leq_{P} C$, then C is

NP-completeness

Definition

A language B is NP-complete if two conditions hold:

1. B is in NP,
2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- If B is NP-complete, and $B \in P$, then $P=N P$.
- If B is NP-complete, and $B \leq_{P} C$, then C is $N P$-hard.

NP-completeness

Definition

A language B is NP-complete if two conditions hold:

1. B is in NP,
2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.
Exercises:

- If B is NP-complete, and $B \in P$, then $P=N P$.
- If B is NP-complete, and $B \leq_{P} C$, then C is $N P$-hard.

The Cook-Levin Theorem
SAT is NP-complete.

Cook-Levin Theorem

The Cook-Levin Theorem SAT is NP-complete.

Cook-Levin Theorem

The Cook-Levin Theorem SAT is NP-complete.

- $S A T \in N P$.

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^{k} time.

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^{k} time.
2. Write $n^{k} \times n^{k}$ tableau for each computation of N on w, rows are config.

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^{k} time.
2. Write $n^{k} \times n^{k}$ tableau for each computation of N on w, rows are config.
3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

- $S A T \in N P$.
- Take any language $A \in N P$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^{k} time.
2. Write $n^{k} \times n^{k}$ tableau for each computation of N on w, rows are config.
3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.
4. Thus, N acc w iff there exists an accepting tableau for N on w.

Cook-Levin Theorem (Contd.)

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula φ :

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula φ :

1. Variable $x_{i, j, s}$ for each $1 \leq i, j \leq n^{k}, s \in C=Q \cup \Gamma \cup\{\#\}$.

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula φ :

1. Variable $x_{i, j, s}$ for each $1 \leq i, j \leq n^{k}, s \in C=Q \cup \Gamma \cup\{\#\}$.
2. Idea: cell $[i, j]=s$ iff $x_{i, j, s}=1$.

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula φ :

1. Variable $x_{i, j, s}$ for each $1 \leq i, j \leq n^{k}, s \in C=Q \cup \Gamma \cup\{\#\}$.
2. Idea: cell $[i, j]=s$ iff $x_{i, j, s}=1$.
3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.

Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula φ :

1. Variable $x_{i, j, s}$ for each $1 \leq i, j \leq n^{k}, s \in C=Q \cup \Gamma \cup\{\#\}$.
2. Idea: cell $[i, j]=s$ iff $x_{i, j, s}=1$.
3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.
4. $\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\Lambda_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:

$$
\varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \ldots
$$

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:
$\varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \ldots$
3. accept says that accepting config should occur somewhere in tableau

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:

$$
\varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \ldots
$$

3. accept says that accepting config should occur somewhere in tableau $\varphi_{a c c}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{a c c}}$

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:
$\varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \ldots$
3. accept says that accepting config should occur somewhere in tableau $\varphi_{a c c}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{a c c}}$
4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to N

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
$\varphi=\varphi_{\text {cell }} \wedge \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {acc }}$ where,

1. for each cell one variable is "on", and only one is:
$\varphi_{\text {cell }}=\bigwedge_{1 \leq i, j \leq n^{k}}\left[\bigvee_{s \in C} x_{i, j, s} \wedge \bigvee_{s \neq t \in C}\left(\overline{x_{i, j, s}} \vee \overline{x_{i, j, t}}\right)\right]$
2. start encodes that first row is starting config:
$\varphi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \ldots$
3. accept says that accepting config should occur somewhere in tableau $\varphi_{a c c}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{a c c}}$
4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to N
$\varphi_{\text {move }}=\bigwedge_{1, \leq i, j<n^{k}}($ the (i, j)-window is legal $)$

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
2. legal windows are "like" the dominos that we used in PCP!

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
2. legal windows are "like" the dominos that we used in PCP!
3. Ex: Give 3 examples of legal windows and 3 illegal windows, given $\delta(q, a)=\{q, b, R\}, \delta(q, b)=\left\{\left(q^{\prime}, c, L\right),\left(q^{\prime}, a, R\right)\right\}$

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
2. legal windows are "like" the dominos that we used in PCP!
3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
2. legal windows are "like" the dominos that we used in PCP!
3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

$$
\varphi_{\text {move }}=\bigwedge_{1 \leq i, j<n^{k}}((i, j)-\text { window is legal })
$$

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

$\varphi_{\text {move }}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
2. legal windows are "like" the dominos that we used in PCP!
3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

$$
\varphi_{\text {move }}=\bigwedge_{1 \leq i, j<n^{k}}((i, j)-\text { window is legal })
$$

Encode this as a disjunct $\left.\bigvee_{a_{1} \ldots a_{6} \text { is legal }}\left(x_{i, j-1, a_{1}}\right) \wedge x_{i, j, a_{2}} \wedge \ldots\right)$

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

1. No. of cells is $\left(n^{k}\right)^{2}=n^{2 k}$, no. of cells in top row is n^{k}.

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

1. No. of cells is $\left(n^{k}\right)^{2}=n^{2 k}$, no. of cells in top row is n^{k}.
2. $\varphi_{\text {start }}$ is $O\left(n^{k}\right)$ (why?)

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

1. No. of cells is $\left(n^{k}\right)^{2}=n^{2 k}$, no. of cells in top row is n^{k}.
2. $\varphi_{\text {start }}$ is $O\left(n^{k}\right)$ (why?)
3. All others are fixed size for each cell $=O\left(n^{2 k}\right)$

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

1. No. of cells is $\left(n^{k}\right)^{2}=n^{2 k}$, no. of cells in top row is n^{k}.
2. $\varphi_{\text {start }}$ is $O\left(n^{k}\right)$ (why?)
3. All others are fixed size for each cell $=O\left(n^{2 k}\right)$
4. Can be constructed in polynomial time from N, w, i.e., polytime reduction

Cook-Levin Theorem (Completed!)

Completing the proof

- N has an acc computation on w iff φ is SAT.
- Size of formula is $O\left(n^{2 k}\right)$ and can be constructed in polynomial time (from w).

1. No. of cells is $\left(n^{k}\right)^{2}=n^{2 k}$, no. of cells in top row is n^{k}.
2. $\varphi_{\text {start }}$ is $O\left(n^{k}\right)$ (why?)
3. All others are fixed size for each cell $=O\left(n^{2 k}\right)$
4. Can be constructed in polynomial time from N, w, i.e., polytime reduction Thus, we have a PTime reduction from any NP problem to SAT, i.e., SAT is NP-hard.

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.
4. Vertex cover is NP-complete.

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.
4. Vertex cover is NP-complete.
5. A whole growing book of NP-complete problems! (Garey-Johnson)

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.
4. Vertex cover is NP-complete.
5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

NP-completeness examples

1. $3 S A T$ is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.
4. Vertex cover is NP-complete.
5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?
Well, there are some natural problems that are not known to be in P, but that are in $N P$ and not known to be $N P$-hard.

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.
4. Quantize!

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.
4. Quantize!
5. average/amortized/smoothed complexity.

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.
4. Quantize!
5. average/amortized/smoothed complexity.

A practitioner's answer

1. What hardness? SAT is easy (almost always)!

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.
4. Quantize!
5. average/amortized/smoothed complexity.

A practitioner's answer

1. What hardness? SAT is easy (almost always)!
2. The advent of SAT-solvers. Can solve SAT queries on millions of variables in seconds!

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician's answer:

1. Approximate!
2. Randomize.
3. Parametrize.
4. Quantize!
5. average/amortized/smoothed complexity.

A practitioner's answer

1. What hardness? SAT is easy (almost always)!
2. The advent of SAT-solvers. Can solve SAT queries on millions of variables in seconds!
3. Goal nowadays: develop efficient encoding into SAT!
