CS310 : Automata Theory 2019

Lecture 41: Efficiency in computation
Classifying problems by their complexity

Instructor: S. Akshay
IITB, India

16-04-2019

OO

CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/
http://www.cse.iitb.ac.in/~akshayss/

Recap
Turing machines and computability

1. Turing machines
(i) Definition & variants
(i) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Recap
Turing machines and computability

1. Turing machines
(i) Definition & variants
(i) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(i) Via reductions
(iii) Rice's theorem

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Recap

Turing machines and computability

1. Turing machines
(i) Definition & variants
(i) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(i) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem

(i) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Recap
Turing machines and computability

1. Turing machines
(i) Definition & variants
(i) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(i) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(i) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata
4. Efficiency in computation: run-time complexity.
(i) Running time complexity: polynomial and exponential time
(i) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness

Definition
A language B is NP-complete if two conditions hold:
1. Bisin NP,

2. every A in NP is polynomial time reducible to B

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness

Definition
A language B is NP-complete if two conditions hold:
1. Bisin NP,
2. every A in NP is polynomial time reducible to B
If only condition 2 holds B is said to be NP-hard.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. Bisin NP,

2. every A in NP is polynomial time reducible to B
If only condition 2 holds B is said to be NP-hard.
Exercises:

» If B is NP-complete, and B € P, then P = NP.

» If B is NP-complete, and B <p C, then C is

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness

Definition
A language B is NP-complete if two conditions hold:
1. Bisin NP,
2. every A in NP is polynomial time reducible to B
If only condition 2 holds B is said to be NP-hard.
Exercises:
» If B is NP-complete, and B € P, then P = NP.
» If B is NP-complete, and B <p C, then C is NP-hard.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness

Definition
A language B is NP-complete if two conditions hold:
1. Bisin NP,
2. every A in NP is polynomial time reducible to B
If only condition 2 holds B is said to be NP-hard.
Exercises:
» If B is NP-complete, and B € P, then P = NP.
» If B is NP-complete, and B <p C, then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

> SAT € NP.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

> SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.
» SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.

» Reduction via computation histories!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

» SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.
» Reduction via computation histories!

Sketch: Step 1 - language to tableau
1. Spse N is NTM decides A in n* time.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

> SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.

» Reduction via computation histories!

Sketch: Step 1 - language to tableau
1. Spse N is NTM decides A in n* time.

2. Write n% x n¥ tableau for each computation of N on w, rows are config.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.
» SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.

» Reduction via computation histories!

Sketch: Step 1 - language to tableau
1. Spse N is NTM decides A in n* time.

2. Write n% x n¥ tableau for each computation of N on w, rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

> SAT € NP.
» Take any language A € NP and show it is polytime reducible to SAT.

» Reduction via computation histories!

Sketch: Step 1 - language to tableau
1. Spse N is NTM decides A in n* time.

2. Write n% x n¥ tableau for each computation of N on w, rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w.

4. Thus, N acc w iff there exists an accepting tableau for N on w.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

|qo |wy “"2[cee Iw,J u I ces } u | # | start configuration
| second configuration
#
window
] —
nk =

| n*th configuration
w - mE =

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

A | #|qg|wy U‘ZI e |H“,,l u | - J u | # | start configuration
| second configuration
"
window
nk = 2
v # # | n¥th configuration

nk

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula ¢:

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

4 | #|qg|wy “'ZI e IH‘,,I u | - J u | # | start configuration
| second configuration
"
window
nk -
v # # | n¥th configuration

nk

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula ¢:
1. Variable x; j s for each 1 </, j < nK,seC=QUTU {#}.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

4 | #|qg|wy lt'zl e IH",,; u | - J u | # | start configuration
| second configuration
"
window
nk =
v # # | n¥th configuration

nk

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula ¢:
1. Variable x; j s for each 1 </, j < nK,seC=QUTU {#}.
2. ldea: cellli,j] = s iff x;js = 1.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

4 | #|qg|wy lt'zl e IH",, u | - J u | # | start configuration
| second configuration
"
window
nk =
v # # | n¥th configuration

nk

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula ¢:
1. Variable x; j s for each 1 </, j < nK,seC=QUTU {#}.
2. ldea: cellli,j] = s iff x;js = 1.

3. Design ¢ s.t., SAT assignment corresponds to acc tableau for N on w.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

4 | #|qg|wy “'ZI e IH",, u | - J u | # | start configuration
| second configuration
"
window
nk =
v # # | n¥th configuration

Sketch: Step 2 - language to tableau to SAT
Given N and w, produce formula ¢:
1. Variable x; j s for each 1 </, j < nK,seC=QUTU {#}.
2. ldea: cellli,j] = s iff x;js = 1.
3. Design ¢ s.t., SAT assignment corresponds to acc tableau for N on w.

4. © = Yeell N\ Pstart N\ Pmove N Pacc

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
© = Peell \ Pstart N\ Pmove N Pacc Where,

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
© = Qeell N\ Pstart N\ Pmove \ Pacc where,

1. for each cell one variable is “on”, and only one is:

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

© = Pcell N\ Pstart \ Pmove N\ Pacc where,
1. for each cell one variable is “on”, and only one is:
Peell = /\1§i,j§n’< [Vsec Xij,s A Vs;ﬁteC(Xi,LS V Xije)]

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
© = Peell N Pstart /\ Pmove N Pacc Where,
1. for each cell one variable is “on”, and only one is:
Peell = /\1§i,j§nk [\/sec Xij,s N Vs;ﬁtec(m N XTt)]
2. start encodes that first row is starting config:

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
© = Qecell N\ Pstart \ Pmove N\ Pacc Where,
1. for each cell one variable is “on”, and only one is:
Peell = Na<ijenVsec Xijis N Vszeec(Xijs V Xijit)]
2. start encodes that first row is starting config:
Pstart = X114 N X120 N\ - - -

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

© = Qeell N\ Pstart N\ Pmove \ Pacc where,
1. for each cell one variable is “on”, and only one is:
Peell = /\1§i,j§nk [\/SEC Xij,s \ \/s#ec(ﬁ,s N Xlijt)]
2. start encodes that first row is starting config:
Pstart = X114 N X120 N\ - - -
3. accept says that accepting config should occur somewhere in tableau

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula
© = Qecell N\ Pstart \ Pmove N\ Pacc Where,
1. for each cell one variable is “on”, and only one is:
Pcell = Ni<ijent[Vsec Xigs N Vszrec(Xijs V Xije)]
2. start encodes that first row is starting config:
Pstart = X114 N X120 N\ - - -
3. accept says that accepting config should occur somewhere in tableau

Pacc = \/1§i,j§nk Xij,qacc

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

© = Peell \ Pstart N\ Pmove N Pacc Where,

1. for each cell one variable is “on”, and only one is:
Peell = /\1§i,j§nk [\/SEC Xij,s \ \/s;étec(rlj,s N Tjt)]

2. start encodes that first row is starting config:
Pstart = X114 N X120 N\ - - -

3. accept says that accepting config should occur somewhere in tableau
Pacc = \/1§i,j§nk Xij,qace

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

© = Peell \ Pstart N\ Pmove N Pacc Where,

1. for each cell one variable is “on”, and only one is:
Pcell = /\1gi,j§nk [VsEC Xij,s N VSyﬁtGC(Tva N Xlijt)]

2. start encodes that first row is starting config:
Pstart = X114 N X120 N\ - - -

3. accept says that accepting config should occur somewhere in tableau
Pacc = \/1§i,j§nk Xij,qace

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N

Pmove = /\1,§,-J<,,k (the (/,j)-window is legal)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

©move €ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

Ymove e€ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

Ymove €ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like" the dominos that we used in PCP!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

Ymove €ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

. Ex: Give 3 examples of legal windows and 3 illegal windows, given
5(q7 a) = {q? b7 R}’ 6(q7 b) = {(q,’ C? L)? (q/? a? R)}

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

Ymove €ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

©move encodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!
3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

©move = /\ ((7,j) — window is legal)
1<i,j<nk

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Contd.)

Step 3 - Encoding NTM as SAT

Ymove €ncodes that each row corresponds to config that “legally” follows
preceding row acc to N

1. enough to ensure that each 2 x 3 window of cells is legal, i.e., does not
violate the transition function of N.

2. legal windows are “like” the dominos that we used in PCP!

3. Claim: If top row is start, every window is legal, then each row is config
that follows prev one.

©move = /\ ((7,j) — window is legal)
1<ij<nk

Encode this as a disjunct Val...aeis Iegal(x,-L,-,Lé,l) A Xijap N ...)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 7

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff is SAT.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff is SAT.

» Size of formula is O(n?) and can be constructed in polynomial time
(from w).

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff ¢ is SAT.
» Size of formula is O(n?¥) and can be constructed in polynomial time
(from w).

1. No. of cells is (nk)? = n?k k

= n“*, no. of cells in top row is n*.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff ¢ is SAT.
» Size of formula is O(n?¥) and can be constructed in polynomial time

(from w).
1. No. of cells is (n*)? = n?*, no. of cells in top row is n*.

2. Qstart is O(n%) (why?)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff ¢ is SAT.
» Size of formula is O(n?) and can be constructed in polynomial time

(from w).
1. No. of cells is (n*)?> = n?*, no. of cells in top row is n*.

2. @start is O(n*) (why?)
3. All others are fixed size for each cell = O(n?)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff ¢ is SAT.
» Size of formula is O(n?) and can be constructed in polynomial time

(from w).
1. No. of cells is (n*)? = n?*, no. of cells in top row is n*.
2. Qstart is O(n¥) (why?)
3. All others are fixed size for each cell = O(n?)
4. Can be constructed in polynomial time from N, w, i.e., polytime reduction

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Cook-Levin Theorem (Completed!)

Completing the proof

» N has an acc computation on w iff ¢ is SAT.
» Size of formula is O(n?¥) and can be constructed in polynomial time
(from w).
1. No. of cells is (n*)? = n?*, no. of cells in top row is n*.
2. Pstart is O(nk) (why?)
3. All others are fixed size for each cell = O(n?)
4. Can be constructed in polynomial time from N, w, i.e., polytime reduction

Thus, we have a PTime reduction from any NP problem to SAT, i.e., SAT is
NP-hard.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

1. 3SAT is NP-complete. (why?)

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

1. 3SAT is NP-complete. (why?)
2. CLIQUE is NP-complete.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

1. 3SAT is NP-complete. (why?)
2. CLIQUE is NP-complete.
3. SUBSETSUM is NP-complete.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

1. 3SAT is NP-complete. (why?)
2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.
4

. Vertex cover is NP-complete.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

3SAT is NP-complete. (why?)
CLIQUE is NP-complete.
SUBSETSUM is NP-complete.

Vertex cover is NP-complete.

ok =

A whole growing book of NP-complete problems! (Garey-Johnson)

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

1. 3SAT is NP-complete. (why?)

2. CLIQUE is NP-complete.

3. SUBSETSUM is NP-complete.

4. Vertex cover is NP-complete.

5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

NP-completeness examples

3SAT is NP-complete. (why?)
CLIQUE is NP-complete.
SUBSETSUM is NP-complete.

Vertex cover is NP-complete.

ok =

A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

Well, there are some natural problems that are not known to be in P, but
that are in NP and not known to be NP-hard.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!

2. Randomize.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness
Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!
2. Randomize.

3. Parametrize.

OO CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

1. Approximate!
2. Randomize.

3. Parametrize.
4

. Quantize!

OO CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

Approximate!
Randomize.
Parametrize.

Quantize!

ok N =

average/amortized /smoothed complexity.

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

Approximate!
Randomize.
Parametrize.

Quantize!

ok N =

average/amortized /smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay

IITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?

An algorithmician’s answer:

Approximate!
Randomize.
Parametrize.

Quantize!

ok N =

average/amortized /smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay IITB, India 10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

Getting around NP-hardness

Many problems are NP-complete. So what do people do?
An algorithmician’s answer:

Approximate!

Randomize.

Parametrize.

Quantize!

ok N =

average/amortized /smoothed complexity.

A practitioner’s answer

1. What hardness? SAT is easy (almost always)!

2. The advent of SAT-solvers. Can solve SAT queries on millions of
variables in seconds!

3. Goal nowadays: develop efficient encoding into SAT!

@O0 CS310 : Automata Theory 2019 Instructor: S. Akshay 1ITB, India

10

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cse.iitb.ac.in/~akshayss/

