CS310 : Automata Theory 2019

Lecture 41: Efficiency in computation Classifying problems by their complexity

Instructor: S. Akshay

IITB, India

16-04-2019

Turing machines and computability

1. Turing machines

- (i) Definition & variants
- (ii) Decidable and Turing recognizable languages
- (iii) Church-Turing Hypothesis

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem

3. Applications: showing (un)decidability of other problems

- (i) A string matching problem: Post's Correspondance Problem
- (ii) A problem for compilers: Unambiguity of Context-free languages
- (iii) Between TM and PDA: Linear Bounded Automata

Turing machines and computability

- 1. Turing machines
 - (i) Definition & variants
 - (ii) Decidable and Turing recognizable languages
 - (iii) Church-Turing Hypothesis
- 2. Undecidability
 - (i) A proof technique by diagonalization
 - (ii) Via reductions
 - (iii) Rice's theorem
- 3. Applications: showing (un)decidability of other problems
 - (i) A string matching problem: Post's Correspondance Problem
 - (ii) A problem for compilers: Unambiguity of Context-free languages
 - (iii) Between TM and PDA: Linear Bounded Automata
- 4. Efficiency in computation: run-time complexity.
 - (i) Running time complexity: polynomial and exponential time
 - (ii) Nondeterministic polynomial time, and the P vs NP problem.
 - (iii) NP-completeness, the Cook-Levin Theorem.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B If only condition 2 holds B is said to be NP-hard.
- Exercises:
 - ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
 - ▶ If B is NP-complete, and $B \leq_P C$, then C is

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
- ▶ If B is NP-complete, and $B \leq_P C$, then C is NP-hard.

Definition

A language B is NP-complete if two conditions hold:

- 1. B is in NP,
- 2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

- ▶ If *B* is NP-complete, and $B \in P$, then P = NP.
- ▶ If B is NP-complete, and $B \leq_P C$, then C is NP-hard.

The Cook-Levin Theorem *SAT* is *NP*-complete.

► $SAT \in NP$.

• Take any language $A \in NP$ and show it is polytime reducible to SAT.

- ► $SAT \in NP$.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

The Cook-Levin Theorem *SAT* is *NP*-complete.

- ► $SAT \in NP$.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in n^k time.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.
- 3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.

The Cook-Levin Theorem *SAT* is *NP*-complete.

- SAT \in NP.
- Take any language $A \in NP$ and show it is polytime reducible to SAT.
- Reduction via computation histories!

Sketch: Step 1 - language to tableau

- 1. Spse N is NTM decides A in n^k time.
- 2. Write $n^k \times n^k$ tableau for each computation of N on w, rows are config.
- 3. Every accepting tableau (some config is acc) is an accepting computation branch of N on w.
- 4. Thus, N acc w iff there exists an accepting tableau for N on w.

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.

Sketch: Step 2 - language to tableau to SAT Given *N* and *w*, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i, j] = s iff $x_{i,j,s} = 1$.

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i,j] = s iff $x_{i,j,s} = 1$.
- 3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.

Sketch: Step 2 - language to tableau to SAT

Given N and w, produce formula φ :

- 1. Variable $x_{i,j,s}$ for each $1 \le i,j \le n^k$, $s \in C = Q \cup \Gamma \cup \{\#\}$.
- 2. Idea: cell[i,j] = s iff $x_{i,j,s} = 1$.
- 3. Design φ s.t., SAT assignment corresponds to acc tableau for N on w.

4.
$$\varphi = \varphi_{cell} \land \varphi_{start} \land \varphi_{move} \land \varphi_{acc}$$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

Sketch: Step 3 - SAT formula

- $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,
 - 1. for each cell one variable is "on", and only one is:

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

1. for each cell one variable is "on", and only one is:

 $\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

- 1. for each cell one variable is "on", and only one is: $\varphi_{cell} = \bigwedge_{1 \le i, j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$
- 2. start encodes that first row is starting config:

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

- 1. for each cell one variable is "on", and only one is: $\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \neq t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$
- 2. start encodes that first row is starting config:

 $\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

 $\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$

3. accept says that accepting config should occur somewhere in tableau

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} [\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}})]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

- 3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$
- 4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to ${\it N}$

Sketch: Step 3 - SAT formula

 $\varphi = \varphi_{\mathit{cell}} \land \varphi_{\mathit{start}} \land \varphi_{\mathit{move}} \land \varphi_{\mathit{acc}}$ where,

 $1. \ \mbox{for each cell one variable is "on", and only one is:$

$$\varphi_{cell} = \bigwedge_{1 \le i,j \le n^k} \left[\bigvee_{s \in C} x_{i,j,s} \land \bigvee_{s \ne t \in C} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right]$$

2. start encodes that first row is starting config:

$$\varphi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \dots$$

- 3. accept says that accepting config should occur somewhere in tableau $\varphi_{acc} = \bigvee_{1 \le i,j \le n^k} x_{i,j,q_{acc}}$
- 4. move encodes that each row correponds to config that "legally" follows the preceding row config acc to N $\varphi_{move} = \bigwedge_{1, \leq i, j < n^k}$ (the (i, j)-window is legal)

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of *N*.

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

- 1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of *N*.
- 2. legal windows are "like" the dominos that we used in PCP!

Step 3 - Encoding NTM as SAT

 $\varphi_{\it move}$ encodes that each row corresponds to config that "legally" follows preceding row acc to N

- 1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of N.
- 2. legal windows are "like" the dominos that we used in PCP!
- 3. Ex: Give 3 examples of legal windows and 3 illegal windows, given $\delta(q, a) = \{q, b, R\}, \ \delta(q, b) = \{(q', c, L), (q', a, R)\}$

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

- 1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of *N*.
- 2. legal windows are "like" the dominos that we used in PCP!
- 3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

- 1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of *N*.
- 2. legal windows are "like" the dominos that we used in PCP!
- 3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

$$\varphi_{move} = \bigwedge_{1 \le i, j < n^k} ((i, j) - window \text{ is legal})$$

Step 3 - Encoding NTM as SAT

 φ_{move} encodes that each row corresponds to config that "legally" follows preceding row acc to N

- 1. enough to ensure that each 2×3 window of cells is legal, i.e., does not violate the transition function of *N*.
- 2. legal windows are "like" the dominos that we used in PCP!
- 3. Claim: If top row is start, every window is legal, then each row is config that follows prev one.

$$\varphi_{move} = \bigwedge_{1 \le i, j < n^k} ((i, j) - \text{window is legal})$$

Encode this as a disjunct $\bigvee_{a_1...a_6 \text{ is legal}} (x_{i,j-1,a_1}) \land x_{i,j,a_2} \land ...)$

Completing the proof

 \blacktriangleright *N* has an acc computation on *w* iff φ is SAT.

- N has an acc computation on w iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).

- *N* has an acc computation on *w* iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).
 - 1. No. of cells is $(n^k)^2 = n^{2k}$, no. of cells in top row is n^k .

- N has an acc computation on w iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).
 - 1. No. of cells is $(n^k)^2 = n^{2k}$, no. of cells in top row is n^k .
 - 2. φ_{start} is $O(n^k)$ (why?)

- N has an acc computation on w iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).
 - 1. No. of cells is $(n^k)^2 = n^{2k}$, no. of cells in top row is n^k .
 - 2. φ_{start} is $O(n^k)$ (why?)
 - 3. All others are fixed size for each cell = $O(n^{2k})$

- N has an acc computation on w iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).
 - 1. No. of cells is $(n^k)^2 = n^{2k}$, no. of cells in top row is n^k .
 - 2. φ_{start} is $O(n^k)$ (why?)
 - 3. All others are fixed size for each cell = $O(n^{2k})$
 - 4. Can be constructed in polynomial time from N, w, i.e., polytime reduction

- *N* has an acc computation on *w* iff φ is SAT.
- Size of formula is O(n^{2k}) and can be constructed in polynomial time (from w).
 - 1. No. of cells is $(n^k)^2 = n^{2k}$, no. of cells in top row is n^k .
 - 2. φ_{start} is $O(n^k)$ (why?)
 - 3. All others are fixed size for each cell = $O(n^{2k})$
 - 4. Can be constructed in polynomial time from N, w, i.e., polytime reduction
- Thus, we have a PTime reduction from any NP problem to SAT, i.e., SAT is NP-hard.

1. 3SAT is NP-complete. (why?)

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.
- 3. SUBSETSUM is NP-complete.

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.
- 3. SUBSETSUM is NP-complete.
- 4. Vertex cover is NP-complete.

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.
- 3. SUBSETSUM is NP-complete.
- 4. Vertex cover is NP-complete.
- 5. A whole growing book of NP-complete problems! (Garey-Johnson)

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.
- 3. SUBSETSUM is NP-complete.
- 4. Vertex cover is NP-complete.
- 5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete?

- 1. 3SAT is NP-complete. (why?)
- 2. CLIQUE is NP-complete.
- 3. SUBSETSUM is NP-complete.
- 4. Vertex cover is NP-complete.
- 5. A whole growing book of NP-complete problems! (Garey-Johnson)

So, why are so many natural problems either in P or NP-complete? Well, there are some natural problems that are not known to be in P, but that are in NP and not known to be NP-hard.

Many problems are NP-complete. So what do people do?

- An algorithmician's answer:
 - 1. Approximate!

Many problems are NP-complete. So what do people do?

- 1. Approximate!
- 2. Randomize.

Many problems are NP-complete. So what do people do?

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.

Many problems are NP-complete. So what do people do?

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.
- 4. Quantize!

Many problems are NP-complete. So what do people do?

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.
- 4. Quantize!
- 5. average/amortized/smoothed complexity.

Many problems are NP-complete. So what do people do?

An algorithmician's answer:

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.
- 4. Quantize!
- 5. average/amortized/smoothed complexity.

A practitioner's answer

1. What hardness? SAT is easy (almost always)!

Many problems are NP-complete. So what do people do?

An algorithmician's answer:

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.
- 4. Quantize!
- 5. average/amortized/smoothed complexity.

A practitioner's answer

- 1. What hardness? SAT is easy (almost always)!
- 2. The advent of SAT-solvers. Can solve SAT queries on millions of variables in seconds!

Many problems are NP-complete. So what do people do?

An algorithmician's answer:

- 1. Approximate!
- 2. Randomize.
- 3. Parametrize.
- 4. Quantize!
- 5. average/amortized/smoothed complexity.

A practitioner's answer

- 1. What hardness? SAT is easy (almost always)!
- 2. The advent of SAT-solvers. Can solve SAT queries on millions of variables in seconds!
- 3. Goal nowadays: develop efficient encoding into SAT!

