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WSTS are very important for infinite-state models

counter machines with reset-transfer-affine-ω extensions
Lossy fifo systems and variants with time, data and priority
Parameterized broadcast protocols and other
CFG, graph rewriting
Systems with pointers, graph memory
Fragments of the π-calculus, depth bounded processes
...

2 / 25



Introduction
WSTS

The Ideal KM algorithm
From IKM to LTL

Conclusion

Motivation for WSTS
Coverability
More than coverability for WSTS
Plan

Coverability
For ordered transition systems, y is coverable from x if

∃x ′ | x ∗−→ x ′ ≥ y ( this is the definition !) iff

y ∈ ↓Post∗(x) ( this could be the definition !).

Theorem
Coverability is decidable for WSTS (will be defined...).

The proof can be made by a backward algorithm on upward closed
sets or by a recent forward algorithm of ideals (= directed
downward closed sets).
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Repeated coverability (repeated control-state reachability and
LTL) is undecidable for WSTS (ex: broadacast protocols,
LCS, reset/transfer PN, LCM)

But repeated control-state reachability is decidable for PN
[Esparza 94 using Valk-Jantzen 85] since they enjoy the
following properties :

Accelerations are computable (put an ω), limits as ideals are
effective (manipulate ω)
We cannot accelerate more than d times.
Karp-Miller trees are finite since strict-strong monotony of the
completion and Ideals(X ) has finitely many levels (new
definition)
PN are positive (new definition)
The existence of a positive sequence in a PN is decidable.
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Every infinite execution has infinitely many occurrences of s?

i.e. satisfies LTL formula �♦ s?
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WSTS
Erdös and Tarski Theorem
Completion of WSTS

Well structured transition system (F, ICALP’87)

S = (X , Σ−→,≤) where

X set,
Σ−→ ⊆X × Σ× X ,

monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x a−→ y

x ′ y ′ ∃
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I ⊆ X is an ideal if

downward closed: I = ↓ I,

directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.
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WSTS
Erdös and Tarski Theorem
Completion of WSTS

A very interesting but unknown theorem for the verification
community (recall WQO = FAC + WF).

Theorem (Erdös & Tarski’43, Bonnet’75, Fraïsse’86,...)

(X ,≤) has non infinite antichain (FAC) ⇐⇒ for all
D = ↓D ⊆ X , ∃I1, I2, . . . , In ∈ Ideals(X ) s.t. D = I1 ∪ I2 ∪ · · · ∪ In

Corollary
Every downward closed set decomposes canonically as the union of
its ⊆-maximal ideals. We note IdealDecomp(D) = {I1, I2, . . . , In}.
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Completion of WSTS

Definition
Let S = (X , Σ−→,≤) be a labeled WSTS. The completion of S is
the labeled transition system Ŝ = (Ideals(X ), Σ−→,⊆) s.t. I a−→ J if,
and only if,

J ∈ IdealDecomp(↓ PostS(I, a)).

Remark

Ŝ is finitely branching and strongly monotone.
Ŝ is a WSTS iff (Ideals(X ),⊆) is wqo
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We say that an infinite sequence of ideals I0, I1, . . . ∈ Ideals(X ) is
an acceleration candidate if I0 ⊂ I1 ⊂ · · · is strictly increasing.
Definition (also in F87 with another completion)

The nth level of Ideals(X ) is defined as

Accn(X ) =
{
Ideals(X ) if n = 0,
{⋃i∈N Ii : I0, I1, . . . ∈ Accn−1(X )} if n > 0.

where I0, I1, . . . ∈ Accn−1(X ) is an acceleration candidate

Ideals(Nd ) = Nd
ω.

Accn(Nd ) = {I ∈ Nd
ω : I has at least n occurrences of ω}.

Definition
Ideals(X ) has finitely many levels if there exists n ∈ N s.t.
Accn(X ) = ∅. For example, Accd+1(Nd ) = ∅.

11 / 25
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A characterization of acceleration levels

Let Z be a well-founded po.
For z ∈ Z , rk z def= sup{rk y + 1 : y < z}, where sup(∅) def= 0.
rkZ def= sup{rk z + 1 : z ∈ Z}.
rk {0, 1, 2, 3} = 4, rkNω = ω + 1, rkN2

ω = ω ∗ 2 + 1.

Theorem
Let X be a countable wqo s.t. (Ideals(X ),⊆) is a wqo. Then:
Ideals(X ) has finitely many levels if and only if rk Ideals(X ) < ω2.

Remark: rk Ideals(X ) < ω2 is equivalent to rk Ideals(X ) ≤ ω · n for
some n ∈ N.

12 / 25
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Accelerations in WSTS

Let S = (X , Σ−→,≤) be a WSTS s.t. Ŝ is deterministic.
Let w ∈ Σ+ and I ∈ Ideals(X ).
The acceleration of I under w is defined as:

w∞(I) def=
{⋃

k∈N wk(I) if I ⊂ w(I),
I otherwise.

Remark

w∞(I) is an ideal.
The sequence (wk(I))k is non decreasing (resp. strictly
increasing if moreover Ŝ is strict-strong monotone) .
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Computable accelerations in WSTS

PN, reset/transfer PN, post self-modifying nets, ω-PN
Non decreasing ω-recursive nets
cover-flattable ω2-WSTS.
trace-bounded ω2-WSTS (ex: flat machines)
Lossy fifo systems
ν-PN, unordered PN
Depth-bounded π-calculus
Open: Priority LCS ? Data PN ?
for non WSTS, accelerations could be computable (def ?)
from a configuration: counter machines (semi-linear sets),
PN+one zero-test, perfect fifo systems (CQDD), Turing
machines ?

14 / 25



M. Blondin and A. Finkel and J. Goubault-Larrecq 16:7

I Definition 7. A very-WSTS is a labeled WSTS S = (X, Σ−→,≤) such that:
S has strong monotonicity,
Ŝ is a deterministic WSTS with strong-strict monotonicity,
Idl(X) has finitely many levels.

The class of very-WSTS includes vector addition systems, Petri nets, ω-Petri nets [25],
post-self-modifying nets [41] and strongly increasing ω-recursive nets [21]. However, very-
WSTS do not include transfer Petri nets, since Ŝ does not have strict monotonicity, and
unordered data Petri nets, since Idl(X) has infinitely many levels. Note that Ŝ may be
deterministic (and finitely branching) even when S is not, and even when S is not finitely
branching, as the example of ω-Petri nets shows.

We present the Ideal Karp-Miller algorithm (IKM) for this class in Algorithm 4.1. The
algorithm starts from an ideal I0, successively computes its successors in Ŝ and performs
accelerations as in the classical Karp-Miller algorithm for VAS. Note that we do not allow
for nested accelerations. For every node c : 〈I, n〉 of the tree built by the algorithm, we write
ideal(c) for I, and num-accel(c) for n, which will be the number of accelerations made along
the branch from the root to c (inclusively). Let us first show that the algorithm terminates.

Algorithm 4.1: Ideal Karp-Miller algorithm.
1 initialize a tree T with root r : 〈I0, 0〉
2 while T contains an unmarked node c : 〈I, n〉 do
3 if c has an ancestor c′ : 〈I ′, n′〉 s.t. I ′ = I then mark c
4 else
5 if c has an ancestor c′ : 〈I ′, n′〉 s.t. I ′ ⊂ I
6 and n′ = n /* no acceleration occurred between c′ and c */ then
7 w ← sequence of labels from c′ to c
8 replace c : 〈I, n〉 by c : 〈w∞(I), n+ 1〉
9 for a ∈ Σ do

10 if a(I) is defined then
11 add arc labeled by a from c to a new child d : 〈a(I), n〉
12 mark c
13 return T

I Theorem 8. Algorithm 4.1 terminates for very-WSTS.

Proof. We note the following invariants: (1) for every node c : 〈I, n〉 of T , I is in Accn(X);
(2) at line 2, i.e., each time control returns to the beginning of the loop, all unmarked nodes
of T are leaves; (3) num-accel(c) is non-decreasing on each branch of T , that is: for every
branch c0 : 〈I0, n0〉, c1 : 〈I1, n1〉, . . . , ck : 〈Ik, nk〉 of T , we have n1 ≤ n2 ≤ · · · ≤ nk. (1) is
by Proposition 6, (2) is an easy induction on the number of times through the loop, and (3)
is also by induction, noticing that by (2) only nk can increase when line 8 is executed.

The rest of the argument is as for the classical Karp-Miller algorithm. Suppose the
algorithm does not terminate. Let Tn be the finite tree obtained after n iterations. The
infinite sequence T0, T1, . . . defines a unique infinite tree T∞ =

⋃
n∈N Tn. Since Ŝ is finitely

branching, T∞ is also finitely branching. Therefore, T∞ contains an infinite path c0 : 〈I0, n0〉,
c1 : 〈I1, n1〉, . . . , ck : 〈Ik, nk〉, . . . , by König’s lemma. By (1), and since Idl(X) has finitely
many levels, the numbers nk assume only finitely many values. Let N be the largest of those
values. Using (3), there is a k0 ∈ N such that nk = N for every k ≥ k0. Since Ŝ is a WSTS,
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Very WSTS

Definition
A very-WSTS is a labeled WSTS S = (X , Σ−→,≤) such that:

S has strong monotonicity
Ŝ is a deterministic WSTS with strong-strict monotonicity
rk Ideals(X ) < ω2 (i.e. Ideals(X ) has finitely many levels).

VAS, Petri nets, ω-Petri nets [GHPR15], post self-modifying nets
[Valk78] and strongly increasing ω-recursive nets [FMP05] are
very-WSTS.

Theorem
Ideal Karp-Miller algorithm terminates for very-WSTS.
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(1) at line 2, all unmarked nodes of T are leaves.
(2) numaccel(c) is non-decreasing on each branch of T .

Suppose there is an infinite path
c0 :< I0, n0 >, c1 :< I1, n1 >, . . . , ck :< Ik , nk >, . . . ,
Since Ideals(X ) has finitely many levels, the numbers nk assume
only finitely many values. Let N be the largest of those values.
Using (2), there is a k0 ∈ N such that nk = N for every k ≥ k0.
Since Ŝ is a WSTS, there are two indices i , j with k0 ≤ i < j and
s.t. Ii ⊆ Ij .
If Ii = Ij , then line 3 would have stopped the path.
Hence Ii ⊂ Ij , but then line 8 would have replaced
numaccel(cj) = N by N + 1, contradiction.
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(Finite) Karp-Miller tree in WSTS

PN, VASS, double PN, reset/transfer PN, post self-modifying
nets, self-modifying nets, ω-PN
strongly increasing ω-recursive nets (includes post
self-modifying nets)
cover-flattable ω2-WSTS.
trace-bounded ω2-WSTS (ex: flat machines)
Lossy fifo systems
ν-PN, unordered PN
Depth-bounded π-calculus
BVASS
name-bounded π-calculus processes
PN+one zero-test. Remark: they are not WSTS.
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Decidability of LTL

Theorem
Let S = (X , Σ−→,≤) be a positive very-WSTS, and let x , y ∈ X.
Let A↓ x be the IKM automaton.
State y is repeatedly coverable from x iff there is a circuit c w−→ c
in the IKM automaton A↓ x with w ∈ Σ+ s.t. w is positive and
y ∈ Ideal(c).
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Positivity

Let S = (X , Σ−→,≤) be a WSTS and let x ∈ X .
w ∈ Σ∗ is positive for x if ∃y ∈ X s.t. x w−→ y and x ≤ y .

w ∈ Σ∗ is positive if w is positive for every x ∈ X s.t.
Post(x ,w) 6= ∅.
A WSTS S = (X , Σ−→≤) is positive if for every w ∈ Σ∗, w is
positive for some x ∈ X if and only if w is positive.

Remark: PN and ω-PN are positive.
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Positive WSTS and decidability

Which WSTS models below are positive ?
Given a positive WSTS S and a FA A, does there exist a
positive sequence in L(S) ∩ L(A) ?

YES: PN, ω-PN (new)
OPEN

strongly increasing ω-recursive nets ?
cover-flattable ω2-WSTS ?
trace-bounded ω2-WSTS (ex: flat machines) ?
BVASS ?
double PN, post self-modifying nets ?
unordered PN ?
PN+one zero-test ?
Priority LCS ?
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s t u

Every infinite execution has infinitely many occurrences of s?

i.e. satisfies LTL formula �♦ s?
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s t u

(1, 0, 0)

(0, 1, 0)

(1, 0, ω)

(0, 1, ω) (1, ω, ω)

(1, 0, ω) (0, ω, ω)

(1, ω, ω) (0, ω, ω)

(0, ω, ω) (ω, ω, ω) (1, ω, ω)

(ω, ω, ω)

Executable since
∆(tu) = (1, 0, 0) ≥ (0, 0, 0)

s

t

s u

t u

t u

s
t u

s t u
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Part I to III

Forward Analysis for WSTS, Part I: completions of wqo sets.

Forward Analysis for WSTS, Part II: completions of WSTS
Forward Analysis for WSTS, Part III: Karp-Miller Trees

Go to Ideal Karp-Miller algorithm
Go to model checking LTL

Forward Analysis for WSTS, Part IV: I don’t know...
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Further work

All the previous questions in the previous slides...
Can we extend very-WSTS to capture unordered PN ?
Can we extend very-WSTS to capture trace-bounded
ω2-WSTS ?
Are recursive PN very-WSTS ?
Are BVASS very-WSTS ?
Are name bounded processes very-WSTS ?
Do we really need to avoid nested accelerations ? NO :)
Explore downward closed (sets and languages) for very-WSTS.
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Completion of WSTS

Proposition (Blondin, F., McKenzie ICALP’14)

For every WSTS S = (X , Σ−→,≤):

1 For all x , y ∈ X and w ∈ Σ∗, if x w−→ y, then for every ideal
I ⊇↓ x, there exists an ideal J ⊇↓ y such that I w−→ J.

2 For all I, J ∈ Ideals(X ) and w ∈ Σ∗, if I w−→ J, then for every
y ∈ J, there exist x ∈ I, y ′ ∈ X and w ′ ∈ Σ∗ s.t. x w ′−→ y ′ and
y ′ ≥ y.
If S has strong monotonicity, then w ′ = w.
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