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ABSTRACT 

Structure theory asks whether a relationship can be found between the behaviour of a marked 
net and the structure of the underlying unmarked net. From the rich body of structure theoret- 
ical results that exists in Petri net theory, this paper selects a few examples which are deemed 
to be typical. The class of free choice nets, whose structure theory is particularly agreeable, is 
studied in some detail. 

1 I n t r o d u c t i o n  

By the 'structure' of a P/T-system we mean marking-independent properties depending on the 
way in which the places and the transitions of the underlying net are interconnected by the flow 
relation. By the 'behaviour' of a P/T-system we denote marking-dependent properties relating 
to the token flow effected by the transition rule, depending on the set of processes, the set of 
reachable markings, the reachability graph, and so on. 

The behaviour of a marked net is, in general, less easily analysable than its structure. But it 
is the behavioural properties that are of foremost interest in the analysis of systems. They in- 
clude, for example, the property of deadlock-freeness, the existence of invariant assertions, safeness 
properties, the validity of intermediate assertions, and others. 

Structure theory asks whether a relationship can be found between the behaviour of a marked net 
and the structure of the underlying unmarked net. It asks questions such as: Can one deduce, from 
certain 'nice' structural properties of a net, that its behaviour will also be 'nice' ? Or, conversely: 
Does certain 'bad'  behaviour preordain some 'bad'  structure? In any case one may hope that the 
(behavioural) properties which are of interest may be reduced to easier-to-investigate (structural) 
properties. 

A rich body of structure theoretical results exists in net theory. From this body, we shall select 
some typical examples, neither too many in order not to let the paper grow out of size, nor too 
few let the reader get an idea of the kind of reasoning employed in structure theory (hopefully). 

There is a class of nets which has an interesting motivation and allows for a very satisfactory 
structure theory. This class is called free choice nets. While being a non-trivial class of nets, 
their theory is so nice that it has sometimes jokingly been said that every conjecture is true for 
free choice nets and false for other nets. Although we will exhibit some 'counterexamples' to this 
statement, a good part of these notes will be dedicated to the study of free choice nets. 

These notes are organised as follows. In section 2 we introduce and explain almost all notions 
we need, but we will rely on I39] for some definitions and explanations. We introduce some basic 
behavioural properties (liveness and safeness), and we show that they have an impact in terms of 
the connectedness of a system. Sometimes it is necessary to compare nets with each other and to 
state that one is 'similar' to another one. In section 3 we define a notion of simulation to capture 
this idea. In sections 4-6 we introduce various subclasses of nets (free choice nets, amongst others) 
and we investigate some basic properties of these classes. In sections 7 and 8 we deal almost 
exclusively with free choice nets, listing and explaining some more advanced results about their 
structure and behaviour. 
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Most of the results reported in this paper are drawn from published literature, and appropriate 
references will always be given. However, some proofs are not easily accessible and some belong to 
the 'folklore'. Because of the size of the material we have done a selection of the proofs. We give 
in detail only those proofs that cannot be retrieved easily from the literature. All other proofs 
will be given by outline only, or will even be omitted, and a reference will be supplied instead. 

2 Basic definitions and general results 

Our object of study are P/T-systems in the sense of [39]. However, we will restrict ourselves to 
P/T-systems without capacity constraints (that is, we will assume all capacities to be infinite) 
and with a trivial weight function (i.e. the weight equals 1 on every F-arrow). For the sake of 
simplicity and brevity, we will change the sixtuple notation of [39](1.5) into a fourtuple notation; 
thus, ~ = i S, T; F, M0) will henceforth denote a P/T-system (with infinite capacities and trivial 
weight function). As usual, S, T, F and M0 are the set of places, the set of transitions, the flow 
relation and the initial marking, respectively. We mention that the relation F _C_ (S • T) u (T x S) 
could equivalently be viewed as a function 

F:  (S •  U ( T •  --* {0,1} 

such that (x, y) r F or (x, y) E f (in the relational view) iff f ( x ,  y) = 0 or F(x ,  y) : l, respectively 
(in the functional view). We will sometimes make use of the functional view in order to shorten 
formulae. 

Without repeating their definitions, we shall use the following concepts: the transition rule 
[39](1.7a-d), the set of occurrence sequences of E [39](1.11a,b), the set of transition sequences 
of E [39](1.11c), the set [M0) of forward reachable markings of E [39] (1.7e), the coverability graph 
(sometimes also called the reachability graph) of E [39](2.4), and the notion of a side condition 
being a place s E S with ~ N s ~ # ~ (called a 'loop' in [39](1.17)). As usual, ~ denotes the set of 
F-predecessors of x E X and x ~ denotes the set of F-successors of x 6 X. The reader may also 
consult [6] for the various formal definitions. 

We will now introduce two restrictions, the purpose of which is to focus our scope of concern on 
such P/T-systems as are of primary interest. 

Res t r i c t i on  2.1 Finiteness o] ~, 

From now on, we will always assume Z to be finite, that is, S U T to be a finite set. "2.1 

The reason for restricting ourselves to finite systems is simply a pragmatic one: they are the main 
cases of practical interest. Besides, a theory of infinite systems exists only in rudimentary form. 

A (finite) system ]E may consist of two or more parts which are unconnected with each other in the 
sense that no (undirected) F-path leads from one part to the other. To all intents and purposes, 
it is then sufficient to study the two (or more) parts in isolation. The next definition and the 
restriction following it are intended to capture this property. 

Def in i t ion  2.2 Weak conneetedness 

= (S ,T ;F ,  Mo) is weakly connected i f f  all x , y  C S U T are in the relation iF  U F - l )  *. 
�9 2.2 
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x y 

Figure 1: A system which is weakly connected but not strongly connected 

R e s t r i c t i o n  2.3 

From now on, we will always assume E to be weakly connected. m 2.3 

Weak connectedness means that one can always travel from x to y along some F-arcs, be it in 
forward or in backward direction. It does not mean that there is always a directed path from x to 
y. Consider the simple system shown in Figure 1. It is weakly connected and there is a directed 
F-path from x to y but not from y to  x. The existence of directed, paths is captured by the next 
definition. 

Def in i t ion  2.4 Strong connectedness 

E = (S, T; F, M0) is strongly connected iff all x, y e S U T are in the relation F*. ram2.4 

Weak connectedness is a much weaker property that strong connectedness. We will not require 
the latter universally because there are interesting non-strongly connected nets and because it is 
not easily possible to split such nets into strongly connected components without disrupting their 
behaviour. 

The terms 'weak connectedness' and 'strong connectedness' are generally agreed upon in graph 
theory. The above definitions are applications of this general terminology. We will sometimes use 
the definitions in a more general sense, for example applying to the teachability graph which is 
(by definition) always weakly connected. 

We will often be interested in the set [M0) of forward reachable markings and its properties. After 
all, this set models the set of states the P/T-system E may be in. We assume the usual definition 
of IM0) (as given in [6], for instance) which works, essentially, using occurrence sequences. 

It is well known that in order to represent concurrency directly, one should replace occurrence 
sequences by processes I35,18,5]. It is possible to define the set [M0) using processes instead of 
occurrence sequences. However, it is also known [5] that for finite P/T-systems, the two definitions 
coincide, so that the definition of [M0) using occurrence sequences is sufficient. 

On the other hand, we will then have to investigate concurrency indirectly via the notion of two 
transitions being concurrently enabled by some marking. We repeat this definition from [6], in a 
simplified form implied by the fact that all capacities are infinite. 

Def in i t ion  2.5 Concurrent enabling 

For E = (S,T;F, Mo), let M E [M0) be a marking and tl,t2 e T two transitions. 
t, and t2 are concurrently enabled by M iff V8 E S: f ( s , t l )  + F(s,t2) < M(s). 
(Here F is viewed as a function to (0, 1}, as explained above.) mm 2.5 

For concurrently enabled transitions, the following simple fact is true: 
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Figure 2: A conflict 

Fact  2.6 Exchanging concurrently enabled transitions in an occurrence sequence 

If tl and t2 are concurrently enabled by M then both MtlM~tzM" and Mt: f / i t lM" are 
occurrence sequences starting with M and ending with M" (but not necessarily M f = J~l). 

Proof: From the transition rule and from M(s) >_ F(s, t l )  + F(s, t2) it follows immediately that 
M'(s, t2) > F(s, t :)  and f ' /(s , t l)  _> F(s, tl). �9 2.6 

If M enables both tl and t2 then it is by no means necessarily true that tl and tz are concurrently 
enabled by M; failing the latter, the situation is called a 'conflict' (see Figure 2). 

Defini t ion 2.7 Conflict at a marking 

For ~ = (S, T; F, M0), let M E [M0) be a marking and tl,t2 two transitions. 
Then tl and t2 are in conflict at M if f  M enables both tl and t2 but does not concurrently 
enable tl and t2. �9 2.7 

Fact  2.8 Characterisation of conflict 

t~ and tz are in conflict at M iff both are enabled at M and M(p) = 1 for some p E "tlf~'t2. 

Proof: Easy from the definitions. 
This result depends on the facts that  all capacities are infinite and that all arc weights 
equal 1; otherwise it becomes false. �9 2.8 

If tl and t: do not share an input place then their combined enabling implies their concurrent 
enabling, as shown by the next simple fact, 

Fact  2.9 Sufficient conditions/or concurrent enabling 

(a) If "tl A "t2 = qJ and M enables both tl,t2 then M concurrently enables tx and tz. 

(b) I] t~ ~ ' t2  = O and MtlM' t2M" is an occurrence sequence then M concurrently enables 
tl and t2. 

P r o o f :  (a) M enables both tl and t2 implies M(s) > F(s, tl) and M(s) > F(s,tu) (for all s ~ S). 
But 

F ( s , t l ) r  ~ F ( s , t 2 ) = 0  } s i n c e ' t l • ' t z = 0 .  
F(s,tz) • 0 =~ F(s,t l)  --- 0 

hence M(s) _> FCs,t~) + F(s,t~). 
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~ s 

Figure 3: An unsafe system 

(b) We have Vs e S:M'(s) >_ f(s,t2) and M'(s) = M(s) - F(S , t l )  + F(tl,s). 
Hence M(s) > F(s, t2) - F(tl,s) + F(S,tl). But 

F(s, t2)~O ~ F(tl,s) = 0  } s i n c e t ~ A ' t ~ = O .  
F( t l , s )~O ~ F(s, t2)=O 

Hence M(s)  > F(s, t2) + F(S,tl). 

�9 2 . 9  

Definition 2.5 and facts 2.6-2.9 provide a means of rearranging occurrence sequences. The typical 
a rgument  is the following: if er is an occurrence sequence in which some marking concurrently 
enables the two next transitions, then the latter can be switched around to give another occurrence 
sequence which agrees with er except in the order of the two transit ions and the marking between 
them. 

We will now define two simple but  impor tant  behavioural  propert ies of E. One of them (safeness) 
is concerned with the places of E while the other (liveness) is concerned with the transitions of ~2. 

On a given place s of S (in ~),  more than one token may assemble in the course of a behaviour 
of ~2; indeed, s may have (finitely many but)  more than one token already in the initial marking. 
There  may not even be a bound on how many tokens may assemble on s. For example, in the 
system shown in Figure 3, for any given natural  number  n C N ,  s may receive more than n tokens; 
however, sl  and s2 may always carry at most one token each. Safeness introduced in the next 
definition, measures the amount  of tokens that  can assemble on a given place; in the literature, 
safeness is often also called 'boundedness ' .  

D e f i n i t i o n  2 .10 Safeness 

Let E = (S, T; F, M0) be a p lace/ t rans i t ion system. 

(a) s E S i s n - s a f e ( n e N )  iff VM e[Mo):M(s) <n. 
(b) ~, is n-safe (n �9 N) iff Vs �9 S: s is n-safe. 

�9 2.10 

The case that  n = 1, that  is 1-safeness, plays a part icular  r61e. Every place can then contain at 
most  one token. A 1-safe place can be interpreted as a condit ion which either 'holds '  (if M(s) = 1) 
or 'does not  hold '  (if M(s)  : 0). 1-safeness is a very impor tant  property which holds in many 
practical  si tuations (e.g.: a variable always has exactly one value; in a sequential program, control 
is always at exactly one location). We will focus our at tent ion on 1-safe systems (and we will 
sometimes write 'safe'  instead of ' l -safe ' ,  but  only when the ' r  is unimpor tant ,  i.e. could be 
replaced by 'n ' ) .  

A given transi t ion t of T (in E) may be repeated infinitely often, or there may be bounds on the 
number  of t imes it can be repeated (inc'luding zero, in which case it is called 'dead') .  It may even 
be the case tha t  a system has the choice of entering a state in which t is 'dead '  or entering a 
s t a t e  in which t can be repeated over and over again, never becoming 'dead' .  Liveness measures 
whether  or not  it is possible to 'kill '  a transition. 
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D e f i n i t i o n  2 .11  Liveness 

Let E = (S, T; F, Mo) be a p l a c e / t r a n s i t i o n  system. 

(a) t E T is live i f f  for all M E [M0) there  is some M '  E [M) such t h a t  M '  enables t. 

(b) E is live i f f  Vt E T: t is live. 

�9 2.11 

N o t a t i o n  2 .12  LS systems 

If E is live and  1-safe then  we shal l  call E an  LS system, for short .  �9 2 . 1 2  

The  next  resul t  re lates  th ree  in teres t ing  not ions  in t roduced  so far, i.e. safeness, liveness and  s t rong  
connectedness ,  to  each other .  We in tend  to show t h a t  a net  which is no t  s t rongly  connected  c a n n o t  
be  live and  1-safe at  the  same t ime,  i.e. t h a t  the  (s t ruc tura l )  p roper ty  of s t rong connectedness  

is necessary for the  existence of a live and  1-safe marking .  The  previous  examples  show t h a t  a 
sys tem could be e i ther  live or 1-safe and  non-s t rongly  connected:  The  systems shown in Figures  
1 and  2 are no t  s t rongly  connected  b u t  1-safe (but  they are not  live), while the  sys tem shown in 
F igure  3 is no t  s t rongly  connected  bu t  live (but  it is not  safe). 

T h e o r e m  2 . 1 3  Liveness and safeness implies strong conneetedness 

Let ~ = (S ,T;F,  Mo) be a (finite, weakly connected} p/IT-system which is live and 1-safe. 
Then ~ is strongly connected. 

Proof: For any  a rb i t ra r i ly  chosen x, y E S U T we have to prove t h a t  (x, y) E F*, i.e. t h a t  

there  is a di rected F - cha i n  f rom x to y. Weak connectedness  implies only t h a t  there  is a 
( F  U F - 1 ) - c h a i n  f rom x to y, i.e. t he re  is a sequence 

x 0 , . . . , x , ~  (m > 0, x~ E S u T) 

such t h a t  x = x0, xm = y and  (xl,xi+l) E ( F U F  -1) for 0 < i < m. Let us now t ry  
to cons t ruc t  an  F - cha i n  f rom x to y. We s t a r t  wi th  x : x0. If (xo, xl) E F t h e n  we 

may  pass  on to x~i if (xl,x2) E F, we may then  pass on to x2, and  so on. The  bad  case 
is t h a t  (xl,x~+~) C F -1 ( r a the r  t h a n  E F)  for some 0 < i < m. Bu t  if we t hen  have 
(xi, xi+l) E F*,  we may  still pass  f rom xl to Xi+l along an F-cha in .  So the  really bad  case 
is t h a t  (xl ,xi+l)  E F -1, bu t  no F - c h a i n  leads f rom xi to  xi+l. 

So, we assume now t h a t  we have  (x,, x,+l)E F -1, bu t  (xi, xi+l) f[ F*; the  proof  is done if we 
can derive a con t rad ic t ion  f rom th i s  assumpt ion .  Because we will be  concerned exclusively 
wi th  der iv ing this  cont rad ic t ion ,  we may  drop the  index i f rom now on and  re-use the  
le t ters  x and  y. 
There  are two cases: 

Case 1: (x,y) E F n (S • T) and  (y,x) r F* (see Figure  4(i)); 

Case 2: (y,x) E F M ( r  • S) a n d  (x,y) f[ F* (see Figure  4(ii)). 

If we succeed in ob ta in ing  a con t r ad i c t ion  in b o t h  cases t hen  the  t heo rem is proved. 

Let  us consider  Case 1 first. T h a t  is, we assume (x, y) E F M (S • T) ,  bu t  no di rected 
F - p a t h  leads f rom y to x. We consider  the  set of places and  the  set of t rans i t ions  f rom 
which  a directed p a t h  leads to  x, cal l ing t h e m  $1 and  7"1, respectively:  

S~ = {s E S l (s,x) E f*} ,  T, : {t E r l (t,x) C F*}. 
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x Y y x 

and no directed path from y to x and no directed path  from x to y 

Case 1 Case 2 

Figure 4: Il lustrating the case distinction in the proof 

M0[...) [ ) 5  
enables  y < M I  on $1 enables  y 

Figure 5: Illustrating Case 1: M1, Ms, M3 

By this definition we have: 

x E  $1 
~ I'1 (since (y, x) r F*) 

y ' A S I = 0  and 
"T1 C_ S~. 

By the liveness of E, a reachable marking M1 can be found which enables y, i.e.: 

3M1 E [M0):MI enables y. 

Let us fix such a marking Mt and let us consider the successor marking M2 under y, i.e. 
M I b ) M 2 .  
Because y" A $1 -- 0, the token load on $1 cannot be increased by the occurrence of y, that  

is: 
w c Sl:M~(~) _> Ms(~). 

Furthermore,  we have 
1 = Ml(x)  > Ms(x) = O, 

that  is, there is a token on x under MI but  not under M2; abbreviat ing this, we may say 

that  MI is 's tr ict ly bigger '  than  Ms on S1. 
Again by the liveness o f  Z, there is a successor marking Ms of M2 which enables y; let r 
be the transi t ion sequence which leads from M2 to M3 (see Figure 5). 

The sequence T may contain transitions from T1 and transit ions from T \T 1 .  We claim, 
however, that  it is possible to rearrange the transitions in r in such a way that  all transit ions 
in T1 come first. To this end, assume that  r has the following form: 

r = . . . t t ' . . .  

with t C T\T~,  t' E I'1. We plan to show tha t  t ~ N ~ ~ = 0; then facts 2.9(b) and 2.6 can be 
applied to show that  t and t w can be exchanged in r. But suppose that  s E t ~ N ~ Then 
there is a directed path  (of length 2) from t to t', and hence also from t f to x, contradict ing 

the assumption that  t '  C T\T1 .  
Hence t ~ [3 ~ ~ = 0 and t and t ~ may be exchanged in r. 
By repeat ing such exchanges exhaustively, r can be rearranged into a transi t ion sequence 
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M0[...) ~ [y) M~ Iv1) M' [~) Ms 
enables y no token on z token on z enables y 

Figure 6: I l lustrating Case 1:~1 and v2 

M0[ .  �9 ,) ~ [r l)  M "  

enables y 2 tokens on z! 

Figure 7: I l lustrating Case 1: M"  

r '  which also transforms M2 into M3 and which can be split as r '  = rlr2 where 71 contains 
only transit ions from T1 while ~2 contains only transitions from T\TI (see Figure 6; it could 
happen tha t  T2 is empty).  

Now we consider the intermediate  marking M '  reached from M2 after rl; is there a token 
on x in this marking or not? There  is surely a token on x in Ms because Ms enables y; this 
token can have come there only through a transition in "x, i.e. in T1, but  since between M '  
and Ms no such transition occurs, the token must have been on x already in M' .  Hence 
M'(x)  = 1. 
On the other  hand, the transit ions in T1 (between M2 and M ' )  need only tokens from $1, 
since ~ _ $1. But  because MI is bigger than  M2 on $1, this implies that  vl is also a 
t ransi t ion sequence from M1 rather  than M2; let M "  denote the marking reached from M1 
after rl (see Figure 7). 

Let us now count the number  of tokens on x in the marking M ' .  In M1, there is one token 
on x because M1 enables y. But  this token is not  needed in the course of ~1 because rl is 
enabled in M2 and we have M2(x) = 0; hence we may consider it to  remain unmoved on 
x during the sequence M~[rl)M'.  On the other hand, we have just  seen that  M'(x)  = 1, 
hence rl creates another token on x. Together, we have 2 tokens on x in M".  This 
contradicts  1-safeness. Hence the  assumptions made in Case 1 are wrong, and we have 
(x,y) e F N ( S •  =~ (y,x) e f * .  
It remains to consider Case 2. Tha t  is, we assume (y, x) C F N (T • S) and (x, y) r F* (as 
in Figure 4(ii)). 
It is tempt ing  to think that  this case can be reduced to Case 1, but  this is not easy. 
However, the reasoning is quite similar and we therefore give a shortened account 1. We 
define: 

$2 = { s e S [  (x,s)  e f * }  and T1 = { t e T I  (t ,y) ~ F * } .  

$2 is the set of places to which a directed path  leads from x; Tl is the set of transitions 
from which a directed path  leads to y. 
By liveness, we find M1 E [M0) such tha t  M1 enables y; define M2 such that  MI[y)M2. 
We have M~(s) _> Ml(s)  for all s E $2 and 1 = M~(x) > M~(x) = 0; that  is, M2 is strictly 
bigger than  M1 on $2. 
By liveness, again, there is a t ransi t ion sequence T transforming M2 into Ms such that  Ms 
enables y (see Figure 8). 

By an argument  which is similar to that  used above, r can be rearranged to a sequence Tlv2 

~Recently, Wolfgang Reisig has produced a modification of the proof in which the two cases are treated more 
analogously. 
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riMIr2 enables y 

Figure 8: Il lustrating Case 2: rl, r~ and M t 

such that  Vl contains only transitions from T1 and r2 contains only transitions from T\T1 
(see Figure 8). 
Let M t be the marking reached from M2 by rl. In M t, y must  be enabled because otherwise, 
y could not be enabled in M3. On the other hand, x carries a token in M '  because the 
transit ions in 7'1 cannot take away that  token. This contradicts  1-safeness, showing that 
Case 2 cannot  arise and completing the proof. �9 2.13 

By i terating the argument  in t he  proof, it is easy to see that  the premise of 1-safeness in theorem 
2.13 can be weakened to n-safeness (for any n). 

3 A n o t i o n  o f  s i m u l a t i o n  

The result 2.13 gives a necessary condition for liveness and safeness. It is general in the sense 
tha t  it applies to all (finite, weakly connected) systems. Such results are rare. In particular, 
non-tr ivial  sufficient conditions for liveness and safeness are not  known. Most known results are 
more specialised. One may ask, for instance: what  happens if we don ' t  allow conflict? Or: what 
happens if there is no concurrency? This means that  one focusses on part icular  classes of nets. In 
the main body of this paper  we will investigate a range of classes of nets. 

Quite  often when arguing about  net  classes, one is led to say that  a certain class of nets is 
'essentially the same '  as another  (maybe simpler) class. Usually, one can give a construction 
which translates every net in the first class into a 's imilar '  net  of the second (simpler) class. We 
will consider some such constructions. To accommodate  these constructions, we will define a 
general concept which captures the idea that  a P / T - s y s t e m  's imulates '  another P /T-sys tem.  If a 
system simulates another  one then we may say that  they are in some sense 'similar ' .  

In order to be able to state the definition of simulation we need have a preparatory look at functions 
on strings which are induced by functions on letters. Let f: A --* A' be an injective function from 
an alphabet  A into an alphabet  A t. Then f may be extended to a function f : A *  --* A t* in the 
canonical way 2, i.e. f(EA) = EA,, f(va) = f (v) f (a)  (v E A*, a E A). Furthermore,  f -1  is a relation 
in A ~ • A and can be extended to a function f - l :At* --~ A* in the following way: 

f-I(EA') ~- ~,A, f - l ( w a )  = { f - l (W) if a g f (A)  '* A' 
f - l ( w ) f - l ( a )  i f a c f ( a )  , w E  A , aE  

(The injectivity of f is used in the last clause of this definition.) We are now ready to state the 
definition of simulation; we shall explain the definition after giving it. 

D e f i n i t i o n  3.1 E t simulates 

Let ~ = (S, T; iv, M0) and Et = (St, Tt; F', M~) be two P /T-sys t ems  and f :  T --* T'  an 
injection. We shall say that  ~t simulates ~ (with respect to f)  i f f  there is a surjection 
~: IMP) --* [M0) such that  the following holds: 

(i) M0 = ~(M;) .  

2A* is the set of strings over the alphabet A, including the empty string eA 
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(ii) Suppose M1 : /~ (M~) ,  M~ E [M~) and M1 E [Mo); 

(a) whenever Mx[t)M2 with t E T,  M2 E [Ms) 
then 3M~ E/3-X(M2) 3w E T'*:M[[w)M~ A f - l ( w )  = t; 

(b) whenever M~[w)M~ with w e T'*, M~ E [M~) then Ml[f-l(w))fl(M~). 

(iii) VM E [M0): Ifl-l(M)[ < co. 
13 .1  

Because f is an injection, E I has at least as many transit ions as E. The extra transi t ions of E I (i.e. 
those in TIk f (T) )  should be thought of as 'silent internal actions'  of E'. The transit ions in f (T)  
simulate the t ransi t ions of E. A reachable marking M I of E t should be thought of as 'representing'  
the marking f l (M P) of E. There may be more than one marking of E I representing the same 
marking of E, bu t  every marking of E should be covered; hence the surjection requirement for/3. 

Requirement 3.1(i) means that the initial  marking of E I must  represent the initial marking of E. 
Requirement 3.1(iia) states that any occurrence of the t ransi t ion t in E must  be simulatable in Y? by 
a t ransi t ion sequence w which involves f(t) and (possibly) a few intermediate 'si lent '  occurrences. 
Moreover, the new marking M~ of Z' must  represent 5'/2 (the requirement M~ C fl-~(M2) is 
important) .  3.1(iib) requires that  every occurrence sequence in E' corresponds, via f - l ,  to an 
occurrence sequence in N which, moreover, respects the representation function 13. Requirement 
3.1(iii) simply implies that  n-safe systems can only be simulated by n-safe systems; it is a somewhat 
arbitrary requirement that  could be dropped if only n-safe systems are under consideration. Some 
examples are given by Figure 9. In the examples, we indicate the function f by labelling the 
transit ions in f (T )  with the names of their counterparts in T,  and the transit ions in T ' \ f ( T )  by 
a ' r ' ;  this terminology is borrowed from R.Milner 's  CCS [31]. 

We will now show that  the s imulat ion relation preserves n-safeness and,  essentially, also liveness. 

T h e o r e m  3 . 2  Simulation preserves n-safeness 

Suppose E = (S,T;F,  Mo), E' = (S' ,T';F' ,M~),  I : T  -~ T' injective and E' simulates E 
with respect to f .  
Then E is n-safe ~ E I is hi-safe. (n need not  be the same as n'.) 

Proof: E is n-safe 
[M0) is finite 

:~ UMcIM0> Z-~(M) is finite (with 3.1(iii)) 
IIM~)/ is finite (because [[M~)I -< EMeIMo> I~-X(M)I) �9 

Conversely, E I is hi-safe 
=*- [M~) is finite 

[M0) is finite (l[M0>l _< I[M~)I because fi is surjective). �9 3.2 

T h e o r e m  3.3 Simulation preserves liveness 

Suppose E - (S,T;F,  Mo), E I = (S',TI;F',M~), ] :T  - ,  T' injective and E' simulates E 
with respect to f .  
Then E is live ~ for all t P E f (T ) :  t I is live in E I. 

Proof: =>: Assume that  E is live. 
Let M~[w)MI, w E T'* and let t i c  f (T) ,  i.e. t '  = f ( t )  with t E T. 
By 3.1(i) and (iib), Mo[f- l(w))Mx,  where Mt = fl(M~). 
Because E is live, 3v E T* 3M2 E [Mo):M~[v)M2 and t occurs in v. 
By 3.1(iia) and because fl is a surjection, there are a sequence v' E T I* and a marking 
M~ E [M~) such that  M~ [v')M~ and t '  occurs in v I. 
Hence all t I E f (T)  are live in E I. 
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],, ,~[] 
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Z '~ -~'2 5 '3 

(i) E~ does not  s imulate  ~: no/3 can be found which satisfies the  requirements;  however, ]~ 
and ]E~ simulate ~,. 

.y .~' 

(ii) Z '  s imulates Z; a fl can be found which is even a bijection. 

2 

(iii) }3' does not  s imulate  ~ (only 3.1(iii) is violated).  

Figure 9: I l lust ra t ing the notion of s imulat ion 
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r Assume that  all t '  C f(T) are live in E I. 
Let Mo[v)M1, v = t l . . . t in C T* and let t C T. 
By 3.10) and (iia), 3wl,. . .  ,wm:M~[wl...w,~)M~ and M1 = 3(M~). 
Since all t' C f(T) are llve in E I , there are a sequence w I C T t* and a marking 
M~ E [M~) such that  MI[w')M~ and f(t) occurs in w'. 
By 3.1(lib), Ml[f-l(w'))M2 for M2 = fl(Mg') and t occurs in f-l(w') by the definition 
of f -1 .  
Hence ~ is live. 

�9 3.3 

Theorem 3.3 states that ,  while E f may contain non-live internal transit ions,  the liveness or other- 
wise of E ~ on the relevant sets of t ransi t ions,  viz. on f(T),  coincides with the liveness or otherwise 

o rE .  

R e m a r k  3 .4  Relationship to other literature 

The concept of simulation defined above is much related to the notion of bisimulation 
introduced by D.Park in [34], and  applied to nets by M.Nielsen and P.S.Thiagarajan [33]. 
Bisimulation does not  include the requirement 3.1(iii) and specifies fl to be only a relation, 
rather  than  a surjective function,  on the sets [M0) and [M~). Bisimulation is known to be 
essentially equivalent to R.Milner 's  notion of observational equivalence [31], [10]. L.Pomello 
has shown that  the latter is a comparatively strong notion of equivalence [36]. Hence we 
suggest that  our notion of s imulat ion is a comparatively strong one, bu t  we shall not pursue 
these connections any further in these notes. More recently, K.Voss has investigated a notion 
of s imulat ion which is similar to the above bu t  is based on step sequences (i.e. sequences 
of concurrently enabled transit ions) rather than  transi t ion sequences [42]. A related notion 
of s imulat ion has also been defined by L.Priese [37]. Readers wishing to compare various 
definitions are referred to the paper  [32] by H.Mfiller. �9 3.4 

4 T-systems 

In the next  three sections we introduce,  and start  to study, three impor tant  classes of nets of 
increasing generality. The first class, called T-nets (or T-systems if a marking is implied), admits 
concurrency and synchronisation, bu t  no conflict. In the literature, T-systems are often known as 
'marked graphs '  or 'synchronisation graphs' .  

D e f i n i t i o n  4 .1  T-nets and T-systems 

E = (S, T; F, M0) is a T-system i f f  
its underlying net is a T-net ,  i.e. for all s ~ S: ['s[ _< 1 A Is~ _< 1. � 9  

In a T-system there is never any conflict, simply because there are no (forward) branched places. 
A token can be taken away from a place only by its unique (if existing) ou tput  transit ion.  T- 
systems are very welt understood. The basic references are [12,17], and  [27,19] may be consulted 
for further reading. 

The cycles of a T-system play an impor tan t  r61e in its analysis. 
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D e f i n i t i o n  4.2 Cycles and paths 

A cycle of a net  (S, T;  F)  is a sequence x o , . . . ,  xm with xl C S U T  (0 < i < m), (xi, xi+l) E F 
(0 < i < m) and x0 = xm. A cycle is called simple i f f  no element (except x0 = x,~) appears 
twice in it, i.e. Yk,j:  ( O < k < m  A 1 < j < n ~ - I  A k # j )  ~. z~ # x j .  
For later use, we define the (simple) paths of a net exactly as the (simple) cycles, except 
that  the requirement x0 = x,~ is omitted. �9 4.2 

We shall say that  a net ( S , T ; F )  is covered by (simple) cycles i f f  every z E S U T lies on 
some (simple) cycle. The reader should be cautious with definition 4.2, because it may occur that 
an element of a cycle has more than  one F-predecessors (or successors) on the same cycle, and 
similarly for paths. In cases of doubt,  it may be advisable to include F-arrows that  are meant  to 
belong to the cycle or to the path explicitly in the definition. 

T h e o r e m  4,3 Charaeterisation of the liveness of T-systems 

A T-system E = (S, T; F, Ms) is live iff all of its simple cycles carry at least one token and 
for all places s C S: I~ = 1. 

Proof: See [12], theorem 1 and I171, theorem (SS); but  when looking up these references, the 
reader should be cautious because in both of them, I~ = 1 = ]s ~ is required in place of 

I'sl s 1 > Is'l. �9 4.3 

T h e o r e m  4.4  Characterisation of the safeness of live T-systems 

A live T-system ~ = (S ,T;F,  Mo) is 1-safe iff it is covered by simple cycles which carry at 
most one token. 

Proof: See [12[, theorem 2 and [17], theorem (28S). �9 4.4 

The last theorem can be generalised by dropping the liveness assumption;  see I17], theorem (28S). 

Often one needs to use the fact that  markings are 'reproducible' .  In T-systems, reproducibility is 
very much related to liveness. 

D e f i n i t i o n  4.5 Reproducibility 

A marking M E [Mo) of E = (S ,T;F,  Mo) is reproducible i f f  there is an occurrence 
sequence tr of non-zero length such that  M = f irst(a) and  M = last(a), that  is, a starts 
with M and ends with M. �9 4.5 

T h e o r e m  4.6  Link between reproducibility and liveness 

A strongly connected T-system E -~ (S ,T;F,  Mo) is live iff its initial marking Mo can be 
reproduced by a in such a way that every transition occurs exactly once in a. 

Proof: For the direction (=~) of this theorem, see [12], theorem 7 and  [17], theorem (15S). 
The direction (r is easy to prove: the reproducing sequence necessitates at least one 
token on each cycle, and liveness follows with theorem 4.3. �9 4.6 

This theorem can be generalised by dropping the strong connectedness assumption (see [17], (14S) 
and  (15S)). However, we will not  bother to do so, since the chief interest is in strongly connected 
T-nets.  
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(i) included (ii) excluded 

Figure 10: I l lustrating the free choice structure 

C o r o l l a r y  4 .7  Charaeterisation of liveness in strongly connected T-systems 

In a strongly connected T-system E the following are equivalent: 

(i) Z is live. 

(ii) All simple cycles of ~ carry at least one token. 

(iii) The initial marking is reproducible such that every transition occurs exactly once. 

�9 4.7 

In fact, strong connectedness nicely characterises the existence of a live and safe marking: 

T h e o r e m  4.8  Existence of live and 1-safe markings of T-nets 

A T-net N can be endowed with a live and 1-safe marking iff it is strongly connected. 

Proof: See [12[, theorem 4, and [17], theorem (32S). �9 4 . 8  

The class of nets which is dual to T-nets is called S-nets [6]; their characterising property is that  
I't[ < 1 and ]t~ < 1 always holds for t E T. S-nets allow conflict, but  no synchronisation. The 
behavioural  theory of S-nets is rather simpler than  the theory of T-nets  s, unless one is interested in 
information flow: [25] have developed a nice and non-trivial  theory of information flow in S-nets. 
S-nets play a part icularly impor tant  r61e as substructures of larger nets, a topic which will not  be 
studied here (but see [3]). 

5 Free choice  s y s t e m s  

Free choice nets have been invented as a common generalisation of S-nets and T-nets,  with the aim 
of retaining as much as possible of the nice theory of these classes. They allow synchronisation 
(but  only in the 'T-net  way') and conflicts (but only in the 'S-net  way'). The former is to say 
tha t  if two places share a common output  t ransi t ion then they may not  have any further output  
t ransi t ions,  and the latter is to say that  if two transi t ions share a common input  place then they 
may not  have any further input  places. But  these two properties are equivalent! They allow the 
structures shown in Figure 10(i) but  exclude the structure shown in Figure 10(ii). 

3The reader may check that a strongly connected S-net is live iff it carries at least one token and 1-safe iff it carries 
at most  one token. 
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D e f i n i t i o n  5.1 Free choice nets and free choice systems 

T~ = (S, T; F, M0) is called a free choice system (abbreviated FC system) i f f  its underlying 
n e t  is free choice, i.e. for all tl ,t2 E T, tl # t2:~ n ~ ~ 0 ~ [~ = 1 = I~ . �9 5.1 

It is clear that  every T-net ,  as well as every S-net, is free choice; tha t  is, free choice nets are indeed 
a common generalisation. F .Commoner  and M.Hack have shown that  there exist generalisations 
of the two theorems 4.3 and 4.4 about  liveness and safeness of T-systems. These generalisations 
will be described below in sections 8.1 and 8.2, respectively. 

An essential consequence of the free choice property is that  if t l  and t2 share a common input 
place then it can never be the case that one of them is enabled while the other is not. That  is, 
every marking enables either both of them or none of them. This may be contrasted with the 
(excluded) case of Figure 10(ii) where a marking can be found which enables t~ but  not t2. The 
next  result shows that ,  in the sense of the simulation notion defined in section 3, the property just  
explained is a characteristic one. 

D e f i n i t i o n  5.2 Extended and behavioural free choice systems 

= (S ,T ;F ,  Mo) is 

(a) extended free choice (EFC) i f f  Vtl, t2 E T: "tl A ~ # O =~ "tl = ~ 

(b) behaviourally free choice (BFC) i f f  
Vtl,t~ E T:~ n "t, # 0 ~ VM C [M0):M enables t l  r  M enables t2. 

�9 5.2 

It is immediate  that  every FC system is also EFC. Furthermore,  every EFC system satisfies the 
BFC Property. Conversely: 

T h e o r e m  5.3 Equivalence of FC, EFC and BFC systems w.r.t, simulation 

(i) Every BFC system can be simulated by an EFC system. 

(ii) Every EFC system can be simulated by an FC system. 

Proof: See [7]; the two easy constructions are sketched in Figure 11. �9 5.3 

Theorem 5.3 shows that  the three classes of FC systems, EFC systems and BFC systems are 'the 
same modulo simulation' .  In the sequel we shall consider FC nets only. 

We will take a closer look at liveness in FC systems. Our aim is to relate liveness to a weaker, 
easier-to-check, property called deadlock-freeness. 

D e f i n i t i o n  5.4 Deadlock-freeness 

= (S, T; F, Mo) is called deadlock-free i f f  VM e [Mo) 3t C T: M enables t. �9 5.4 

A system is deadlock-free if it may always go on working as a whole; no global system 'stop'  is 
possible. 

Liveness implies deadlock-freeness in general, simply because by definition, every net contains at 
least one transit ion.  Conversely, Figure 12 shows a P /T - sys t em (even a 1-safe free choice one) 
which is deadlock-free bu t  not  live. 

However, it is possible to characterise those transit ions whose liveness is guaranteed by deadlock- 
freeness: 
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T~ T2 

(i) BFC ~ EFC 

" V  

Tf T2 

'%4 

TI 

p '=q~  

" V  

IP ' I  = I q ' t  = 1 

(ii) EFC --* FC 

Figure 11: Constructions reducing EFC and BFC systems to FC systems 

Figure 12: A 1-safe FC system which is deadlock-free but not live 
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Figure 13: A strongly connected FC system which is deadlock-free but  not live 

T h e o r e m  5.5 Relationship between deadlock-freeness and livcness in FC systems 

Let E = (S,T;  F, M0) be a 1-safe FC system which is deadlock-free and let t E T be such 
that Vt' E T: (t ' , t) E F* (i.e. t can be reached from every other transition by a directed 
path). Then t is live. 

Proof: The proof proceeds by contradiction. Assume that  t is not  live; then there exists a marking 
M1 E [M0) at which t is dead, i.e. no successor marking of M1 enables t. 
Consider any p E "t; then, by the free choice property, all t r E p~ (not just  t itself) are dead 
at M1. But this implies that  any token put  on p after M1 will remain there. 
By 1-safeness, it follows that  the transit ions in "p can occur at most once, i.e. there is a 
marking M2 E [M1) at which all t ransi t ions in *p are dead. 
Since this holds for all p E ~ (and since the net is finite), there is some Ms E [-/9/1) at which 
all t ransi t ions in ~176 are dead. 
Repeating this argument  shows that  every transi t ion in the set {t' C T I (t ' , t)  E F*} can 
be made dead; bu t  since by assumption,  the latter set equals T, this means that  a deadlock 
can be reached. �9 5.5 

C o r o l l a r y  5.6 Liveness equals deadlock-frccncss in strongly connected FC systems 

Let E be a 1-safe strongly connected FC system. 
Then ~. is live iff E is deadlock-free.. �9 5 . 6  

It is seen readily that  the 1-safeness assumption in 5.5 and 5.6 can be weakened to n-safeness (for 
any n). However, Figure 13 shows that  it cannot  be omitted altogether; this observation, as well 
as the proof of 5.5/5.6 are due to D.Hillen [24]. 

6 Asymmetric  choice s y s t e m s  

The EFC (extended free choice) property can be rewritten equivalently as follows: 

Vsa,,~ c s: s~ n s; r 0 ~ s; = s;. 

It has turned out that  some of the free choice results hold also if a weaker condition is assumed, 
namely (s~ ___ s~ V s~ C s~) instead of s~ = s~ in the above formula. The resulting class of nets will 
be called asymmetric choice nets. 
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L? 
(i) Allowed (S,T,EFC) (ii) Allowed (reduced AC but not 

FC) 

~ f 2  

(iii) Allowed (AC but not EFC) (iv) Excluded 

Figure 14: Illustrating the AC structure 

Figure 15: A simple AC system 

Def in i t i on  6.1 Asymmetric choice systems 

Z = (S, T; F, Mo) is called asymmetric choice (AC) system i f f  
Vs,,s2 CS:s~ns;#O~(s~_Cs~Vs~C_s~). []6.1 

Figures 14(i)-(iii) show some allowed structures while Figure 14(iv) shows the typical structure 
which is excluded by the asymmetric choice property. It is immediate that  every (extended) free 
choice net is also asymmetric choice. 

There are many theorems which hold for FC systems but fail to hold for AC systems. An example is 
corollary 5.6: Figure 15 shows an AC system which is 1-safe, strongly connected and deadlock-free 
but not live. 

Just  as for FC systems, there is a property which explains AC systems in behavioural terms; but it 
is slightly more complicated. We introduce it by means of Figure 14(iv). In this Figure, a marking 
which enables t 1 but not t2, as well as a marking which enables t~ but  not t l ,  can be found. The 
behavioural correspondent of the asymmetric choice property excludes just this possibility. That 
is, if t l  and t2 are related to each other as in Figure 14(iv) (and this means: if there is some 
to C ( ' t l)" A ('t~)*) then either the enablement of tl must always imply the enablement of t~, or 
the other way round (hence the name: 'asymmetric choice property ') .  This property is captured 
by part  (i) of the next definition. 
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Figure 16: A non-transit ive conflict s i tua t ion  

D e f i n i t i o n  6.2 Behavioural and reduced asymmetric choice property 

Let E = (S ,T;F,  Mo) be a P /T-sys tem.  

(i) ~ is behavioural ly  asymmetr ic  choice (BAC) i f /  for all ts, t2 E T: 

( ' t l )  ~ rq ( 't2)" --- 0 V (VM e [Mo):M enables t l  :*z M enables t2) 
V (VM C [Mo):M enables t2 :~ M enables t l ) .  

(ii) I] is reducedly asymmetr ic  choice (RAC) i f /  for all p,q E S: 

p ' M q ' = O  V ( I p ' l = l A [ q ' [ < 2 A ' ( q ' ) : { p , q } )  
v (Iq'l = 1 A [p'( < 2 A "(p ' )  = (p,q}).  

�9 6.2 

The reduced AC proper ty  allows all free choice structures having no more than two input  places 
for each t ransi t ions,  and only one type of non-FC structure,  namely the very simplest  AC structure 
shown in Figures 10(ii) and 14(ii). It excludes AC structures such as shown in Figure 14(iii) and 
even EFC s t ructures  such as the th i rd  net of Figure 14(i). Thus RAC systems seem to be a ' t iny '  
subclass of AC systems. However, there is the following: 

T h e o r e m  6 .3  Characterisation of asymmetric choice nets 

Let ?, be a P/T-system. 

(a) If ~ is RAC then ~ is BAC. 

(b) If ~ is BAC then ~ can be simulated by ~ such that ~ is AC. 

(c) I[ ~ is AC  then ~ can be simulated by ~ such that ~ is RAC. 

Proof: (a) is obvious from the definitions. 
For (b), see [7], theorem 3.4. For (c), see [7] and [2], theorem 4. �9 6.3 

Par t  (c) of this theorem means tha t  all the complexity of AC nets is a l ready hidden in reducedly AC 
nets. But  notice tha t  (unlike in the FC case) not all (s tructural ly)  AC systems are behavioural ly 
AC. 

A further  useful fact about  AC systems is tha t  the conflict relat ion is transit ive.  To see tha t  this 
need not  always be true,  consider the ' typica l '  non-AC net of Figure  14(iv) with the marking shown 
in Figure  16. In this marking,  both  t l  and t2 are in conflict wi th  to, but  they are concurrently 
enabled,  i.e. not  in conflict with each other. 
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Figure 17: A system which is place-live but  not  live 

T h e o r e m  6 .4  Conflict is transitive in A C systems 

Let ~. = (S ,T ;F ,  Mo) be an A C  system, let M E [M0) be a marking and let to , t l , tz  in T be 
such that both tl and t2 are in conflict with to at M.  
Then tl is in conflict with t2 at M.  

Proof: By lemma 2 .8 (0 ) ,  we may pick p E "tl ~ ~ and q ~ ~ fq ~ such that  M(p) = 1 and 
M(q) = 1. By the AC property,  either p~ ___ q" or q~ p ' .  Ifp~ q~ then q E  " t lM~ 
and hence, by lemma 2.8(r t l  and t2 are in conflict at M.  If q~ ___ p~ then p E ~ M "t~, 
yielding the same conclusion. �9 6.4 

We will prove another  typical proper ty  of AC nets. It yields a characterisat ion of liveness (which 
we will call 'place-liveness')  which is easier to check. Place-liveness captures the idea that  no place 
of a net  can ever become empty and unable to receive a token again. 

D e f i n i t i o n  6.5 Place-liveness 

E = (S ,T ;F ,  Mo is place-live i f f  VM, E [M0) Vs E S 2 M  E IMI) :M(s )  > 0. �9 6 .5  

L e m m a  6 .6  Liveness implies place-liveness 

/ f  ~ = (S, T; F, Mo) is live then ~ is place-live. 

Proof: If, for s E S,  "s ~ 0 then whenever t E "s occurs, a token is pu t  (or remains) on s. 
If s" ~ 0 then whenever t E s" occurs, a token must  previously have been on s. 
The case "s = 0 = s" is excluded by the definition of a net. 1 6 . 6  

Figure 17 shows the typica} example of a (non-AC) system which is place-live but  not  live. 

We intend to show next that  such a case cannot occur in an AC net. For the purpose of proving 
this, the following small technical lemma is helpful. 
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L e m m a  6.7  A technical lemma 

Let Z = (S ,T ;F ,  Mo), M E [M0) and t , t '  E T such that: 

(i) "t ---- {Sl , . . .  , Sra} and 8; C_ 8; C_ . . .  C 8~; 

(ii) for some i, 1 < i < m, 81 , . . . , 8  i are marked under M ,  i.e. M(81) , . . .  ,M(s i )  "> O; 

(iii) "t' n {sl . . . . .  8,} ~ O; 

(iv) M enables t'. 

Then M also enables t. 

Proof: Suppose not, then as a consequence of (ii), 3q E { s , + l , . . . ,  sin}: M(q) = O. 
But by (iii), " t ' n  {8a , . . . , s i }  ~ O, say p E "t 'N { s l , . . . , s , ) .  
By (i), p" C q~ which implies t '  E q ' .  
Hence M does not enable t ' ,  contradicting (iv). m6.7 

T h e o r e m  6 .8  Equivalence of liveness and place-liveness for A C  systems 

Let E = ( S , T ; F ,  Mo) be an A C  system. Then E is live iff E is place-live. 

Proof: (::~) follows from 6.6. 
To prove (r let M E [M0), t E T and ~ = { s l , . . . ,  s,~}; we have to prove that  t can be 
enabled from M. 
The AC property implies that  the S l , . . . ,  s,~ can be linearly ordered as in 6.7(i), so without 
loss of generality we may assume s~ c_c_ . . .  C 8~. 
We construct  a reachable marking which enables t by put t ing  tokens on 81, . . .  ,sin, one 
after the other, in this order. 
By place-liveness, there exists a marking M1 E[M)  which marks 81, i.e. M1(81) > 0. 
Suppose that  a marking Mi has been reached which marks all of 81 , . . . ,  si, i.e. satisfying 
6.7(ii), for some i, 1 _< i < m. Then by place-liveness, a marking M~+I in IMp) exists which 
marks s~+l, i.e. M~+l(Si+l) > 0. Two cases are possible: 

(1) In the t ransi t ion from M~ to Mi+l,  an output  t ransi t ion t ' of {81 , . . . ,  s~} has occurred, 
removing a token from one of 81, . . .  ,8i. In this case, lemma 6.7 can be applied to 
show that  the marking which enables t '  also enables t, and the proof is done. 

(2) In the t ransi t ion from M~ to M~+I, all tokens have remained on s l , . . . , s i .  In this 
case, M~+I marks 81, . . .  ,s~+l, and the construction can be repeated; eventually, all 
S l , . . . ,  sm are marked and t is enabled. 

I 6.8 

A very similar result is lemma 4.3 of [26] which states that  every dead t ransi t ion in an AC system 
has an  input  place which remains unmarked.  Theorem 6.8 holds even if the AC premise is changed 
to BAC. The proof is given in [7] (proposition 3.8); it is different from the above because it is 
not  obvious that  the construct ion which associates a simulating AC system to each BAC system 
preserves place-liveness. 
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t, ( f2 tl ~ 4 ~  t2 

(i) A net  (ii) A subnet (iii) Not a subnet 

Figure 18: I l lustrat ing the definition of a subnet  

7 T - c o m p o n e n t  covers  o f  free choice  s y s t e m s  

The small results presented so far hardly scratch the surface of the rich and elegant structure 
theory of free choice nets uncovered by F .Commoner  [11] and M.Hack [21], and amplified (and 
made accessible to a wider audience) by other  authors [41,40,15,9,38]. 

It is impossible to explain all of the results in detail in these notes. We shall concentrate on only 
one of them and explain its proof in full. This is M.Hack's theorem that  a live and 1-safe FC 
system is covered by strongly connected T-components .  It is the basis for many further results 
about  free choice nets. 

This theorem was chosen for two reasons. Firstly, its proof highlights some typical ways of arguing 
about  free choice nets. Secondly, its proof  is rather 'h idden '  in the published literature. Hack's 
original proof  in [21] is not  very easily accessible. Besides, it is not  exactly perspicuous and 
contains some serious mistakes which have been corrected in [22] and in [14]. Thus,  at present, 
one would have to examine closely at least three papers in order to unders tand it. 

To introduce T-components  we first need the notion of a snbnet.  

D e f i n i t i o n  7.1 Subnet 

Let N - (S ,T;F)  and NI = (S~,T~;F1) be two nets. 
N1 is a subnet  of N if f  S 1 ~_ S, T 1 ~_ T and F1 = F D ((S, • T1) U (7'1 • S,)). �9 7.1 

The restriction on F1 in this definition deserves an explanation. It means that  F1 must contain 
not  just  some subset of the F-arrows between elements of $1 U T1, but  even all such F-arrows. 
Figure 18 explains the difference. 

T-components  are special subnets which satisfy two further conditions. Firstly, if a T-component  
contains a transi t ion then it must contain all of its bordering places as well. In this case we say 
that  the subnet  is 'generated '  by its transit ions:  

D e f i n i t i o n  7.2 Transition generated subnets 

L e t N 1  = (S1,T1;FI) be a subnet  of N = (S ,T;F) .  N1 is generated by 7"1 i f f  
$1 -- ~ U T 1" (where the presets and postsets are taken w.r.t. F) .  �9 7 . 2  

For any T1 c T there is always exactly one subnet  generated by T1, namely the net  N1 -- ($1, T1; F1) 
w i t h  S 1 : ~ U T~' and F1 -- f n ((S 1 X T1) O (T1 • S1)). 

The second requirement to be satisfied by a T-component  is that  'by itself '  it must  be a T-net.  
We capture  this as follows: 
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(i) A net (ii) A subnet not generated by t] 

t2 

,o 

(iii) h subnet generated by {t~, tz} (iv) A non-strongly connected T-component 
which is not a T-component (generated by tl)  

Figure 19: Illustrating the definition of T-components 

De f in i t i on  7.3 T-components 

NI = (S~,T~;F1) is called a T-component of N = (S ,T;F)  if f  N1 is the subnet generated 
by 7"1 and, in addition, Vs E SI: I~ ~ T~ [ < 1 A Is ~ A :/'11 < 1 (where the preset and the postset 
are taken w.r.t. F ,  but it would come to the same if they were taken w.r.t. F1). �9 7.3 

A T-component N1 will be called strongly connected iff it is strongly connected as a T-net 'by 
itself', that  is, if there is a directed Fl -pa th  between any two distinct elements of N1. Definitions 
7.1-7.3 are quite subtle and deserve careful study. Figure 19 explains them further. The net 
shown in Figure 19(i) has no strongly connected T-component. We will give examples of strongly 
connected T-components later in this section (Figure 21). 

The reader should be cautioned that  T-components are different from T-invariants [6]. While the 
set {tl, t2, ta} in Figure 19(i) defines a T-invariant (where one has to count t3 twice), it does not 
define a T-component. On the other hand, every strongly connected T-component (and those are 
of chief interest) defines also a T-invariant. In this sense, T-invariants are more general. In the 
following, the notion of a T-invariant will play no further r61e, but see [28]. 

The objective of this section is to prove, by elementary means, Hack's result that every live and 
1-safe free choice system E is covered by strongly connected T-components. That is to say: every 
place and every transition of a live and safe free choice system is contained in some strongly 
connected T-component. A moment's reflection reveals that  the theorem need only be proved 
for transitions, since the covering of the places can be deduced immediately from that of the 
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transitions (using the property that T-components are generated by their transitions). Hence the 
essential statement which we wish to prove is the following: 

Every transition t of ~ lies on some strongly connected T-component/~r of E. 

We solve this problem by defining an algorithm which constructs tiC, given t. Before defining 
this algorithm we give several examples. Figure 20 shows that  the three preconditions (liveness, 
safeness and the free choice property) are necessary to establish the theorem. 

The example in Figure 21 explains the construction of the T-component t i  covering t. (In passing, 
the system shown in Figure 21(i) is live, 1-safe and FC, but its initial marking in not reproducible, 
so that  corollary 4.7 fails to hold for FC nets.) 

The task of the algorithm is to grow a T-component from a given single transition t. Because 
the T-component is generated by its transitions, it stands to reason to extend the 'current '  t i  at 
those transitions that  have input places or output places not in/~.  For instance, if t i  consists only 
of t : ts initially (see Figure 21(!)), we might extend _N by the output place ss of t3 and hence 
include t7 in it as well (to make N strongly connected). But one has to be careful because in the 
next step, t i  may not be further extended by t~ (this being an output  transition of an output 
place of tT), since no T-component will result; we will have to choose tl rather than t2. 

To account for this, our algorithm extends t i  not in terms of single elements but  in terms of 
certain 'nice' directed F-paths.  The initial t i  (which equals t) in Figure 21(i) will be extended, in 
the first iteration, by the cycle consisting of t, t7 and tl as a whole (see Figure 21(ii)). The next 
iteration detects that  tl  has an output place not yet in t i ,  and another path including t4 will be 
added to t i .  The construction then finishes because the subnet shown in Figure 21(iii) is already 
a T-component of the original net. Formally, the algorithm is defined as follows: 

A l g o r i t h m  7.4 Algorithm to construct T-components 

Let E = (S ,T;F,  Mo) be a live and 1-safe free choice system and let ~ e T. We construct 
inductively a triple N = ( S , T ; F )  which will turn out to be a strongly connected T- 
component containing t. 

Step 1: ~: := ~, T := {t}, F := 0 and t i  := ( S , T ; F ) .  

Step 2: Repeat the following exhaustively: If there is t E T with t ~ ~Z S then choose s C t~ 
arbitrarily and t ~ E s ~ in such a way that  there is a nice path 
p = {to, S l , t l , . . .  ,Sin,tin} from t' : to to t i  (see below for what this means); then 
put 

:= ~ u {~} u {~1,. . . ,  ~,,,} 
: = ~ u { t 0  . . . .  , t~}  

P := P u{ ( t ,  ~), (~,r)}  u {(to, ~,), (~ l , t , ) , . . . ,  (~,,, t,~)} 
and ti  : :  (~, ~;_~). 

[] 7 .4  

Notice that we immediately have ~: _C S, :F C T and F ___ F always. However, it is not even clear 
that  t i  is a subnet, leave alone a T-component, of ]E. 
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(i) 1-safe, FC and not covered by strongly connected T-components (but not live) 

(ii) live, FC and not covered by strongly connected T-components (but not safe) 

(iii) live, 1-safe and not covered by strongly connected T-components (AC but not FC) 

Figure 20: Illustrating the preconditions of the main theorem 



193 

(i) An LSFC system; t = t3, and at the first step of the construction,/~ consists only of t. 

So 

f~ 

s~ 

5 5 

t7  

So 

tl  

s 2 

f~ 

(ii) Second step of the construction: 
is just a simple cycle. 

(iii) Third and last step of the construction: 
the final N. 

Figure 21: Illustrating the algorithm 



194 

D e f i n i t i o n  7.5 Nice paths 

With the notat ion as in 7.4, p = {to, s1,... ,sm,t,~} is a nice path  from t' to / r  i f f  

�9 (tj-1, sj) E F A (sj, ti) E F (1 _< j _< m) (p is a directed path) 
�9 p is simple (i.e. no element occurs twice in it) 

�9 t t = t o a n d t m E ~ "  

�9 s i r  a n d t j f [ T ( l < j < m  ). 

The special case that  m = 0 is allowed; we then have t ~ = to = t m  E T. �9 7.5 

p being a 'nice pa th '  simply means that  p must s tar t  with t ~ and lead back into N at a transition; 
it is impor tan t  that  p may not directly lead to a place of ~r. If t '  C T already, then p is the trivial 
path  {t~}, and all that  gets added t o / ~  by 7.4 is the place s. Otherwise,  both s and the path p 
are included in the n e w / ~ .  Hence what  is added to ~r at each step of 7.4 is always a simple path  
which leaves ~r at a t ransi t ion (namely at t) and re-enters N at another  transit ion (namely at t,~, 
which might  equal t~). It could even be the case that  t - t'; then s is a side condition of t which 
will be included in the new ~r. 

The reader should carefully check this construction on the example  of Figure 21(i) and convince 
himself that  with t = t3 only the two iterations as shown in Figures 21(ii) and 21(iii) are possible. 
However, the construction need not be deterministic; to see this, the reader could try t = t7 in 
Figure 21(i). The reader may also wish to try the example of Figure  20(iii) to find out that  the 
algori thm works as well, but  may yield a triple N which is not  a subnet.  

It has to be shown that  a transi t ion t ~ E s" with the properties demanded  in 7,4 always exists. 
Fur thermore,  it has to be shown that  when the construction is completed,  ~r is a strongly connected 
T-component .  The rest of this section is devoted to the proofs of these two statements.  

Let us first collect a few simple facts about  the construction. Firs t ,  every place is handled (i.e. 
added to N)  only once, either as some s E t ' \ S  or as an sj in some pa th  p of construction 7.4. As a 
result,  every place in S has exactly one incoming/~-arc and exactly one outgoing F-arc  (although 
it may have many other  incoming and outgoing arcs). Moreover, every transit ion in T has at least 
one incoming/~-arc  and at least one outgoing F-arc ,  except at the very beginning when ~r consists 
only of t. Also, at any stage of the construction, N is strongly connected in terms of ~" (i.e. every 
two dist inct  elements of N are connected by a directed F-path) ,  since at the very beginning, N is 
trivially strongly connected and adding directed paths emanat ing from ~r and leading back to ~r 
does not  destroy the strong connectedness of N.  These four propert ies hold at every iteration of 
the a lgor i thm (with the only exception that  initially, t does not  have any bordering F-arcs). 

Let us now turn  to the proof that  a transi t ion t ~ E s" exists with the properties required in 7.4, 
provided s ~ S and t E T N "s are as in 7.4. Figure 22 shows the setup. 

In this proof we will encounter  the same type of arguments that  have been employed in the basic 
l emmata  of [41]. In part icular ,  we will use the notion of a maximal  marking which plays an 
impor tant  r(31e in lemmata  3.1 and 3.2 of [41]. Unfortunatley, it is not possible to apply these 
l emmata  directly here, because their proofs in [41] make actual use of Hack's results, particularly 
the dual of the one we wish to prove here, and because the class of nets considered in [41] slightly 
differs from the class we are interested in. Hence we will have to do the proof ' f rom scratch'. 

Now let us consider the initial setup of the problem shown in Figure  22. We know that  t E T, 
s ~ S and s E "t, and we wish to prove that  there is some t F E s ~ from which a simple directed 
path  re-enters N at a t ransi t ion 4. First ,  let us settle the case that  s is also an input place of t, i.e. 

4After reading the first version of this paper, P.S.Thiagarajan has noticed that, in fact, every transition t ~ E s ~ can 
be used to start some simple path which re-enters ~ at a transition. For a proof which yields this result, the reader 
is referred to a forthcoming paper [8]. Also, J.Desel has recently found a direct proof of this fact [13]. 
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Q"' 

, �9 . . . . .  

J . . . - "  

J 

Figure 22: Knowing t and  s, t '  and  p mus t  be  found 

a side cond i t ion  of t. Then  the  choice t = t f a l ready satisfies the  requi rements ,  so t ha t  we need 

not  consider  th is  case any fur ther .  

Since the  s y s t e m  is live, the  t r ans i t i on  t can  be enabled.  After  one occurrence of t, it can be  
re-enabled.  B u t  be tween two occurrences  of t, some token mus t  have  d isappeared  from s because 
of 1-safeness, so t h a t  some t w E s ~ mus t  have occurred between the  two occurrences  of t. The  idea 
is t h a t  if t he  r ep roduc t ion  of the  occurrence  of t is proper ly  chosen,  t hen  this  t '  migh t  be a su i tab le  
t r ans i t i on  which  satisfies the  requ i rements  of the  a lgor i thm.  

Let us make  th is  a rgumen t  more  precise. We can find a sequence of the  following form: 

M o . . .  M [ t ) M ' [ . . .  r . . . ) M " [ t ) M " ,  

where z is a t r ans i t i on  sequence leading f rom M '  to M "  which re-enables  t. We have jus t  seen t h a t  

because of the  1-safeness of s (and  because  s ~/" t ) ,  T mus t  conta in  some t '  E s ~ Let  us, in order  
to  d iscount  ' u n i m p o r t a n t '  occurrences  (of t r ans i t ions  t h a t  have  no th ing  to do wi th  the  par t  of the  
ne t  present ly  u n d e r  considera t ion)  assume t h a t  r is a m i n i m a l  sequence wi th  the  above propert ies;  
t h a t  is, r c a n n o t  be  made  any shor ter .  T h e n  define to E s" such t h a t  to occurs in r and consider 

the  last  occurrence  of to in r:  

M I  r M "  = M '  . . . to . . .  M "  

no ill 

If to is in 7" t hen  there  is no th ing  more  to prove; we have found a p a t h  of the  required kind, namely  
{to}. If to is no t  in T then  we mus t  consider  the  set of o u t p u t  places of to, i.e. t~, in order  to  
prolong the  pa th .  Let us suppose,  for the  m om en t ,  t h a t  none  of the  o u t p u t  places of to are in 
S,  i.e. t h a t  t~ M S = 0. Because r is min imal ,  the  o u t p u t  places of to canno t  r emain  all marked  
f rom ( the last  occurrence  of) to to  M "  i n  r (if so, the  last  occurrence of to could be  omi t ted  f rom 
r) .  Hence be tween  (the last  occurrence  of) to and  M "  in T, some t~ E t~ ~ mus t  have occurred;  
consider  again  the  last  such occurrence.  If t l  is in T t hen  there  is again  no th ing  more to prove, 
because  a nice p a t h  leads f rom to to t l .  If t l  is not  in T, however,  t hen  we have to consider the  
o u t p u t  places of Q. Assume again  t h a t  we can  prove t h a t  t~ fq S = 0. T h e n  the  a rgumen t  can be  
repea ted ,  us ing  the  min imal i ty  of r again,  to show t h a t  between ( the last  occurrence of) t l  and  
M "  in r ,  some t~ E t~ ~ mus t  have occurred.  However, th is  canno t  go on forever, since r is a finite 
sequence.  Hence eventually,  some nice p a t h  mus t  result ;  the  last occurrences  were always taken  

in order  to ensure  t h a t  this  p a t h  is simple.  

The  above a r g u m e n t  depends  on  the  a s sumpt ion  t h a t  we have t~ f3 S = 0 whenever  ti ~ / T  in r .  
We now t u r n  to look how this  a s s u m p t i o n  can be ensured.  Apparent ly ,  we have to examine more  
closely the  possible  shape  of the  sequence r.  Let  us first see wha t  it would m e a n  for a t r ans i t ion  
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t (we are now re-using the previously fixed name t for an arbitrary transition) to have an output 
place in ,~ but not to be contained in T: t ~ M S # 0 and t ~ 7". Then every occurrence of t puts 
at least one token on the set of places S. We call t an ' input transition' of/~r and define 

T i n  

(or shorter: T in = ~ as the set of 

T ottt ~_ 

{ t e T I t ' n ~  # r 1 6 2  } 

input transitions of N. Symmetrically, 

{ t Z T } ' t n S  # O A t C T }  

(or shorter: T ~ = ~3~ is defined to be the set of output transitions of N. Notice that T i" and 
T ~ are defined for every step of the construction 7.4; they depend on (and vary with) .~. It could 
well be true that T i" N T ~ ~ 0 (even for the final N), but we have, by definition, T i" f3 T = ~ as 
well as T ~ f3 7" = O. 

In terms of these definitions, we may rephrase our assumption: we must find a transition sequence 
r with the above properties which does not contain any T~"-transitions. Our aim now becomes to 
show that every transition in T can be enabled and re-enabled by some r which does not contain 
any transitions from T in . 

Since N always likens a (strongly connected) T-net, we may examine corollary 4.7 to find that, 
at least, all the cycles of ~r should be filled with tokens if there is to be a chance of T-transitions 
being reproduced without the occurrence of input transitions. In order to achieve this, we may 
try to put as many tokens as possible on ~r. To this end, let us call a marking M (again, any 
marking, not just the one considered previously) to be N-maximal iff, starting from M, no further 
tokens can be put on N without some tokens having to be taken away first. More precisely, we 
define a marking M to be N-maximal i f f  : 

Vr: if r is a transition sequence from M and r does not contain any transitions from 
T ~ then r does not contain any transitions from T in either. 

This means that N is 'saturated' at the marking M. We may hope that from a 'saturating' 
marking of/~, the transitions of /~  may be reproduced without the use of transitions from T i". 

Hence, our next subtask becomes to show that for every/V that may arise in construction 7.4, an 
/~r-maximal marking exists and can be reached from the initial marking. We prove this statement 
by counting the number of tokens on the simple cycles of/~.  First we recall that (except at the 
very beginning) ~r is covered by simple cycles since it is strongly connected. Now consider any 
marking M and the number fi(M), defined as follows: 

Ct(M) = ~ M(~), 
a simple cycle of .~r 

where M(~) = ~sesne M(s ) .  This number is simply the count of the tokens on the simple cycles 
of N, such that each token is counted as often as it is covered by a simple cycle. (Initially, when 
the sum is empty, we may put Ct(M) = 0 by definition.) We will now classify the transitions of the 
system in accordance with whether their occurrence increases h(M), decreases Ct(M), or leaves 
fi(M) invariant. 

First consider the transitions that have nothing to do with N, i.e. are neither in T nor in T i" nor 
in T~ t C T\(7" U T ~" U T~ Then, clearly, "t ~ S = 0 = t" n .~, and hence, the occurrence of t 
changes nothing on the marking of S. In particular, h(M) is left untouched since it depends only 
on the tokens of S. 

Next, consider a transition t in T i " \ T  ~ Such a transition could be called a 'proper' input of N. 
Because t q~ T ~ and t ~ T, we have "t M S = 0; that is, the occurrence of t cannot decrease the 
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- '  ,.'" 

Sf ~ S  2 

Figure 23: I l lustrat ing the case that  I~ fq e I > 1 

s 

f' f 

Figure 24: I l lustrat ing the case that  It" N 51 = 0 

number  h(M).  But  can h(M) be left invariant,  or is it always increased by the occurrence of t? 
t E T in implies tha t  for at least one s E S we have a E t ~ f3 S. But since N is strongly connected, 
there is some simple cycle 5 of N which contains s. The number  of tokens on this cycle is increased 
by the occurrence of t. Hence the occurrence of t E TiN\T ~ always properly increases h(M). 

Next,  consider a tl:ansition t E 7"; this is the hardest  case to analyse. The  result we will eventually 
get is that  the occurrence of t leaves the number  h(M) invariant. First ,  however, we will only 
prove that  the occurrence of t does not  decrease h(M),  which is sufficient for our present purposes. 
In order to prove this claim, we will have to examine what  t can do to the cycles of N.  

Let  5 be any simple cycle of ~r. We claim that  I ' t  n 51 _< 1 (where the preset is taken w.r.t. F) .  
Suppose otherwise,  i.e. I~ M e I > 1, say {sl,  s2} _ ~ fl e (see Figure 23). 

Then  by the FC property, we have s~ = s~ = {t}, and hence ~ cannot be a simple cycle (t must 
occur at least twice in it); this holds even if sl or s2 (or both) are side conditions of t. Hence, in 
general,  I~ n 51 < 1. Thus,  the only way that  t could possibly reduce the number  of tokens on e 

is if the following holds true: 
I~  = 1 and I t ~  I = 0; 

suppose this is t rue and s E ~ n e. However, t cannot then be the output  transi t ion of s in 5, so 
there  must  be another  one, say t w (see Figure  24). 

We have (s, t') E F since e is a cycle in ~r, and hence (s, t) ~ / v  since, as we have seen previously, 
every place in S has exactly one /V-ou tpu t  are. But since t E T, t must have at least one F - inpu t  
arc, a contradict ion to the FC property. This finishes the proof that  the occurrence of a transit ion 

t E T cannot  decrease the number  h(M). 

The  last class of transit ions to be considered is the set T ~ . However, let us recall our current  
aim, which is to find an N-maximal  marking M of _~r. The existence of such a marking can be 
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shown even without considering the effect of the T~ on ~(M) .  Because of 1-safeness, 

the number ~(M) has a marking-independent upper bound (for instance, the number of simple 
cycles of N times the number of places on them). Hence there is some maximal number of times 
that transitions of Tin\T ~ can occur without transitions of T ~ necessarily having to occur, since 
the former properly increase the number ~(M) while only the latter could possibly decrease it. 
To construct a At-maximal marking, it is therefore sufficient to let Tin\T~ (but not 
T~ occur until no longer possible. 

This ends our first subtask, namely to show that an N-maximal marking exists. Our next task 
is to show that from an N-maximal marking, any t E T can be enabled and reproduced without 

any occurrences of Ti~-transitions. In fact we will show that this can he done even without the 
occurrences of any T~ (which implies, by N-maximality, that Ti"-transitions do not 
occur either). Instead of the above, we will prove the following, even stronger, statement: 

Let t E ~" he given. Every At-maximal marking M can be transformed into another 
/~r-maximal marking M '  by M [ T ) M '  such that  �9 does not  contain any transitions from 
T ~ (an hence also none from Tin), and M t enables t. 

First  of all, we show that  N-maximal i ty  is preserved by the occurrences of transitions not  in T~ 

Suppose that  M is /V-maximal, t ~ T out and M [ t ) M ' ;  if r were a t ransi t ion sequence from M '  
which contains transitions from T i" but  not  T ~ then t r  would be a similar sequence from M.  
Hence M '  must  also be iV-maximal. 

Next, we remark that  every t '  E T ~ has a conflicting transi t ion t" E ~P, i.e. t" E ( ' t ' )"  N ~'. This 
simply follows because any place s E ~ M ~: has (exactly) one F-a rc  leading to t" E T. 

Now let t be an arbi t rary t ransi t ion in ~" and M be an arbi t rary At-maximal marking. We have 
to show that  there is a t ransi t ion sequence r and a marking M '  such tha t  M [ r ) M  r, "r does not  
contain T~ and M '  enables t. The idea is to construct  r in such a way that  whenever 
some t '  E T out is in danger of occurring, we choose the conflicting t" C ~c M (~ ~ instead. This can 
happen only a finite number  of times before the given t E ~P must of needs occur. 

More precisely, we consider a first t ~ E T ~ that  can be enabled from M and let its corresponding 
t"  E T M (~ ~ occur; this is possible because of the (behavioural) free choice property. From 
the resulting marking, another  t ~ E T ~ can be chosen to be enabled,  and so on. Thus we 
may construct  a transit ion sequence which contains arbitrarily many  :T-transitions but  no T ~ 

transitions.  However, there cannot  be arbitrari ly many ~r\ {t}-occurrences! This follows as in 
theorem 5.5: any t I E f N ~176 can occur at most  once before t has to occur; any t ~ E ~" N . . . .  t can 
occur at most twice before t has to occur, etc. The claim follows because N is strongly connected 
and finite. 

This concludes the proof that  at any stage of the construction 7.4, a t ransi t ion t f E s ~ can be found 
which satisfies the requirements,  i.e. from which a nice path leads back to a transit ion of N.  What  
remains to be done now is to show that  the end result of construct ion 7.4 is indeed a T-component  
o f / ~  ( t ha t /V  is strongly connected has already been shown, and of course it contains t). 

From now on, let N = (S, 7"; F )  denote the final result of construct ion 7.4. The proof that  _N is a 
T-component  involves three steps: 

(1) Show that  N is a subnet.  
(2) Show tha t  N is generated by :T. 
(3) Show that  N satisfies 7.3. 

(1) means that  we have to show that  whenever x E S U : ~ ,  y E ~PU,~ a n d ( x , y )  E F then 
(x, y) E ~b. For (2), we have to show that  every t E :~ satisfies t ~ C S and ~ C S. (3) means that  
]~ n S I = 1 = It*M S I (the equality can be taken rather than < since N is strongly connected).  But  
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Figure 25: I l lustrat ing the proof that  ~r is a subnet  

(3) follows immediately from (1): together with the fact that  each s E S has exactly one incoming 
F-arc  and exactly one outgoing F-arc.  Thus,  all tha t  remains to be proved are the statements (1) 
and (2). 

Let us deal with (1) first. (1) is wrong if there is an F-arc f between two elements of fi~ which is 
not  also an F-arc.  Two cases are possible: f leads from a place to a t ransi t ion,  or f leads from 
a transi t ion to a place. Let us first consider the case that  f = ( , , t )  with * E S and t E T. If 
f ~ F then there must  be F-arcs bordering on s and t in the way shown in Figure 250); bu t  this 
is excluded by the FC property, whence f must  be in t ~. 

Let us then consider the case that  f =- (t, s) with t E T and s E S. If f ~ P then there must  be 
F-arcs  bordering on t and s as shown in Figure 25(ii). We claim that  the occurrence of t properly 
increases the number  fi.(M) defined above! To see this, consider any simple cycle b of N which 
contains s. There are two possibilities: if t is not  included in ~ then ]'t n ~] -=- 0 and I t .  N ~l = 1; if 
t is included in ?: then I't n ~] = 1 and  I t .  n ~] = 2; in both cases, I 't (3 ~] < I t .  N ~l and hence the 
occurrence of t increases the number  of tokens on ~. On the other hand we have seen that  t can 
occur arbi trari ly often in some t rans i t ion  sequence which does not  contain any T~ 
This contradicts the fact that  fi(M) is bounded by a marking-independent  constant  number,  and 
thus we must  have f C ~'. This finishes the proof of (1!, i.e. that  N is a subnet.  (In passing, the 
last argument  also implies that  It" M cl -< 1 for any t E T and simple cycle ~ of N and  that,  as has 
been claimed above, the occurrence of t C T leaves the number  r invariant.) 

The last step in the whole proof is to show (2), i.e. the fact that  fir is generated by T. One half 
of this is trivial, because from construct ion 7.4 it follows immediately that  t" _C_ ,9 for all t C ~" 
(in fact, this is the terminat ion condit ion of the algorithm). We have to exclude the case that  
t E T but  "t ~ S; to do so, we shall assume t e T,  s E " t \ S  (see Figure 26) and construct a 
contradiction. 

We claim that  from an fit'-maximal marking  which enables t C T, t can be reproduced by occur- 
rences of T-t ransi t ions  only! Indeed, let 

Mo... MIt)M'[... r...)M"[t)M" 

be a sequence such that  M is N-max ima l  and r contains no T~ (and consequently no 
Tin-transit ions).  Suppose that  r is of the form 

T = . . . f t t  " . . .  
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Figure 26: I l lustrating the proof that  N is generated by 

where t~ E T and t" 6 T \ T .  We claim that  t'" n "t" = 0. To see this, suppose s' ~ t'" M't"; by t' 6 :T 
and t'" C S we have s E S, bu t  then by t" ~ :~, we have t" E T ~ contradicting our assumption 
that  r contains no T~ Hence t P" A "t" = 0, and lemmata  2.9(b) and 2.6 can be used 
to show that  t t and t" can be exchanged in r. Repeating this, if necessary, the above sequence can 
be rearranged as follows: 

Mo. .  . M[ . . .  rl . . . ) M  l[ t )M 2 [... T2 . . . ) M " [ t ) M ' ,  

such that  r~ contains only t ransi t ions from T \ T  (even from T \ ( T  u T ~ u T~ i.e. t ransit ions 
tha t  have nothing to do with N)  and r2 contains only transit ions from 7". 

Now assume that  t C T has an input  place s which is not in S, as in Figure 26. Then M 1 (s) = 1 
since M 1 enables t, and M2(s) = 0 since s cannot  also be an ou tpu t  place of t (since t ~ _C S and 
s r S). But  M"(s)  = 1 again because M" also enables t. Hence in r2 some transi t ion t ~ E ~ 
occurs, bu t  t '  cannot  be in T since T~ _C S. This gives a contradict ion to the fact that  r~ contains 
only :F-transitions, showing that  the assumption ~ ~ S is false. Hence (2) is also proved. 

This completes the proof of the main theorem. We may remark that  on two occasions (namely in 
the proof of the fact tha t  T-t ransi t ions  do not decrease fi(M) and in the proof that  N is a subnet)  
we have used the FC property in a strict way. Tha t  is to say, if only the EFC property is assumed 
in place of the FC property, then the proof does not  go through. As a mat ter  of fact, construction 
7.4 does not  always produce the desired results for EFC systems. The interested reader may wish 
to find a counterexample and a modification to the algorithm which works for EFC nets as well. 

It should be ment ioned that  M.Hack also proves a dual of the above theorem, namely that  an 
LSFC system can be covered by S-components which carry exactly one token each (see section 
8.2 below). Furthermore,  he shows that  theorem 4.8, i.e. the necessary and sufficient condit ion 
for the existence of a live and 1-safe marking in a T-net ,  can be generalised. Also, he shows 
that  an FC net N has a live and 1-safe marking if and only if its reverse-dual net  (i.e. the net 
( N - l )  d : (Nd)  -1 [6]) has a live and 1-safe marking. For the proof of these additional results, the 
reader is referred to [21,22,14]. 

In [23], M.Hack shows how some of his constructions can be generalised to EFC nets and to 
ESMA nets, which are another  generalised class of nets; for the latter class, [26] can also be 
consulted. Further  generalisations are described by G.Memmi [29,30] and by W.Griese [20]. These 
generalisations il lustrate various essential aspects of the free choice property. 

Finally, we ment ion that  the free choice property (or a close analogon thereof) has been translated 
into other formalisms of concurrent  systems, notably  to COSY by M.W.Shields [40] and to F IFO 
nets by A.Finkel [16]. 



201 

so( 

f0 

t 2  

S I 53  

fz fl 

I -  t, 

s 2 

Figure 27: A live AC system which does not satisfy the dr-property 

8 S o m e  f u r t h e r  r e s u l t s  

The proof of section 7 was given in detail in order to explain the kind of reasoning employed 
in structure theory (of free choice nets). Once the reader is acquainted with this proof then, 
hopefully, he will find it easier to understand (the proofs of) the various other results that exist 
about free choice nets (and other net classes). We will give a selection of such other results in this 
section. They will only be explained briefly, and their proofs will be omitted. 

8.1 A l iveness  cr i terion 

An exact condition for the liveness of an FC system is due to F.Commoner and M.Hack [11,21]. A 
proof is also in [38] and, partly, in I26]. The theorem states that an FC system ~ = (S, T; F, Mo) 
is live if, and only if it has the so-called tit-property, i.e., by definition, every 'deadlock' So C S 
contains a trap 5'1 ___ S which is marked under M0, i.e. Mo(S1) > O. So being a 'deadlock' means 
that "So ___ S~; $1 being a trap means that S~' C "$1. (We put 'deadlock' in quotes here since it is 
not a satisfactory term.) 

F.Commoner has show in [11] that the dt-property is even a sufficient condition for the liveness 
of AC systems. However, conversely, it is not a necessary condition: Figure 27 shows an AC 
system which is live, even though the 'deadlock' So = {so, 81, s2, s3) contains no marked trap (as 
the reader is invited to check). As an exercise, the reader may also wish to find out why the 
Commoner/Hack theorem reduces to theorem 4.3 for the special case of T-systems (a hint is that, 
according to the strict definition, no net may have isolated places). 

8.2 A safeness  cr i ter ion for l ive FC s y s t e m s  

In [21], M.Hack has proved a generalisation of theorem 4.4 as well. This states that a live FC 
system is 1-safe iff it is covered by S-components which carry exactly one token each. The concept 
of an S-component is defined dually to that of a T-component; for a definition, the reader is 
referred to [6]. In this safeness criterion, the S-components replace the simple cycles of theorem 
4.4. 
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Figure 28: A live and 1-safe AC system violating the promptness theorem 

8.3 A m o n o t o n i c i t y  result  

In [15], K.DSpp has proved that a number of properties of an FC system ~E = (S,T; F, Mo) do not 
change if its initial marking is increased by adding tokens to it, that is, by considering the new 
FC system ~' = (S,T;F, Mg) where M~ > M0. In particular, if Z is live then so is Z'. Also, if 

is deadlock-free then so is ]E *. Furthermore, if ~ has certain reachability properties the so does 
]E ~. See [15] for the details. In general nets, this monotonicity property is false: adding a token to 
a live system may well 'kill' it; the reader may find examples by himself, or consult [38]. 

8.4 Promptness 

Of the many nice results of [41], we shall mention only a few here. Promptness (of a system 
with respect to a set of transitions To) means that the system may not go on working indefinitely 
without using transitions from To. To may be thought of as a set of 'external' transitions of E; 
then E is prompt relative to To if there is some maximal length of those behaviours that consist 
of ' internal '  Occurrences only. 

Theorem 4.1 of [41] shows that an LSFC system E is prompt relative to To iff To has a non-empty 
intersection with every strongly connected T-component of E. This means that the behaviour of 

is, in a sense, generated by its strongly connected T-components. Figure 28 shows that the 
theorem is not true for AC systems: with To = {tl,t2,ts}, no transition sequence can have two 
non-T0-elements in succession, yet there is a T-component (namely that generated by {t4,ts, t6}) 
which does not intersect with To. 

The promptness theorem can be interesting when To is interpreted as the 'interface' of the system 
to its environment. 

8.5 A c o n t a i n m e n t  proper ty  

In section 5 of [41], it has been proved that every strongly connected subnet N1 -= (St, T~;F1) of an 
LSFC system ]E = (S,T;F, Mo) which is a T-net by itself (that is, N~ satisfies Vs C $1: I~ A Tll < 
1 > Is" n T1 ]) is contained in some strongly connected T-component of ~. This result also follows 
directly from the arguments given in section 7 of these notes, since any strongly connected subnet 
which is also a T-net could be the result of an intermediate step of construction 7.4. 
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8.6 H o m e  states  

A marking h) / is  a home state of a system ~ = (S,T;F, Mo) if for all M C [M0/: ~ / C  [M); that  
is, f4  always remains reachable. If the ' teachabil i ty graph of ]E is strongly connected then every 
marking is a home state. On the other hand, systems whose reachability graph is not strongly 
connected could still have home states; Figure 21(i) shows an example which is even an LSFC 
system. 

[9] prove that  an LSFC system always has at least one home state. The proof makes essential 
use of the T-component covering proved in section 7. It is a challenging exercise for the reader to 
prove that  the theorem does not hold in general, i.e. to construct a live and 1-safe system which 
has no home states. K.Voss has even found an AC system with this property [9]. Home states 
may be useful in protocol validation [1]. 

8.7 Fairness 

[41] and [4] show that in FC systems and in AC systems, fairness considerations are greatly 
simplified. Section 6 of [41] shows that  global fairness of an LSFC system can be achieved locally, 
i.e. by taking care that  every local conflict is resolved fairly. [4] shows that in AC systems (and 
a fortiori, in FC systems), there is no notion of 'proper conspiracy' (of, say, two processes against 
a third one), such as it may occur in the well-known 'five philosophers' example. The details of 
these results will be omitted here. 
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