CS 735: Formal Models for Concurrent and Asynchronous Systems

- Introduction

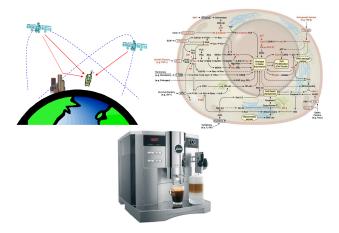
Instructor: S. Akshay

Jan-Apr 2024

Course hours: Slot09, Mondays and Thursdays 3:30-5:00pm Office hours: To be announced CS 735: Formal Models for Concurrent and Asynchronous Systems

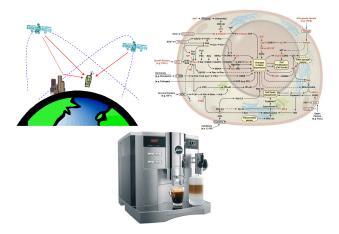
- Introduction

Instructor: S. Akshay

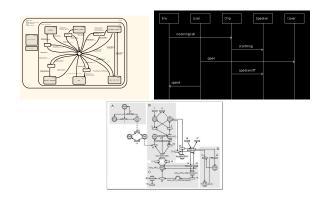

Jan-Apr 2024

Course hours: Slot09, Mondays and Thursdays 3:30-5:00pm Office hours: To be announced

Queries: Email me with [CS735-2024] in subject line akshayss@cse.iitb.ac.in


1

Formal Models for distributed and infinite-state systems


Formal Models for distributed and infinite-state systems

▶ Distributed: Concurrent, asynchronous, communicating,...

Formal Models for distributed and infinite-state systems

- ▶ Distributed: Concurrent, asynchronous, communicating,...
- ► Formal models: Mathematical description, graphical notations, Automata models

Formal Models for distributed and infinite-state systems

- ▶ Distributed: Concurrent, asynchronous, communicating,...
- ▶ Formal models: Mathematical description, graphical notations, Automata models
- ▶ Infinite-state: variables over an infinite domain: counters, channel/queue size, data, time, probabilities

Formal Models for distributed and infinite-state systems

- ▶ Distributed: Concurrent, asynchronous, communicating,...
- ▶ Formal models: Mathematical description, graphical notations, Automata models
- ▶ Infinite-state: variables over an infinite domain: counters, channel/queue size, data, time, probabilities

Questions that we will tackle

- ▶ Analysis of such models
- ► Characterization, relations
- ▶ Underlying properties, generalizations

Topics and models that we will cover in this course:

- 1. Petri nets
- 2. Well-structured transition systems
- 3. Distributed automata models and their behaviors
- 4. Advanced topics, extensions and applications

Topics and models that we will cover in this course:

1. Petri nets

- ▶ Elementary nets, Place/Transition nets
- Behaviors traces, posets, unfoldings.
- Decision problems reachability, coverability
- ▶ Tools, implementations and case-studies (optional)
- 2. Well-structured transition systems
- 3. Distributed automata models and their behaviors
- 4. Advanced topics, extensions and applications

Topics and models that we will cover in this course:

1. Petri nets

▶ Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

- Decision problems reachability, coverability
- ▶ Tools, implementations and case-studies (optional)
- 2. Well-structured transition systems
 - ▶ A generalized abstraction for infinite-state systems
 - ▶ Well-quasi orders and well-founded systems
 - ▶ Applications to show termination of infinite systems
 - ▶ Theoretical bounds on complexity (optional)
- 3. Distributed automata models and their behaviors
- 4. Advanced topics, extensions and applications

Topics and models that we will cover in this course:

1. Petri nets

▶ Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

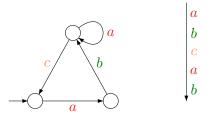
- Decision problems reachability, coverability
- ▶ Tools, implementations and case-studies (optional)
- 2. Well-structured transition systems
 - ▶ A generalized abstraction for infinite-state systems
 - ▶ Well-quasi orders and well-founded systems
 - ▶ Applications to show termination of infinite systems
 - ▶ Theoretical bounds on complexity (optional)

3. Distributed automata models and their behaviors

- Asynchronous automata
- Message passing automata and Lossy channel machines

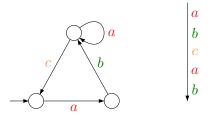
4. Advanced topics, extensions and applications

Topics and models that we will cover in this course:


1. Petri nets

- ▶ Elementary nets, Place/Transition nets
- Behaviors traces, posets, unfoldings.
- Decision problems reachability, coverability
- ▶ Tools, implementations and case-studies (optional)

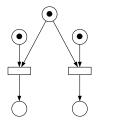
2. Well-structured transition systems


- ▶ A generalized abstraction for infinite-state systems
- Well-quasi orders and well-founded systems
- ▶ Applications to show termination of infinite systems
- ▶ Theoretical bounds on complexity (optional)
- 3. Distributed automata models and their behaviors
 - Asynchronous automata
 - Message passing automata and Lossy channel machines
- 4. Advanced topics, extensions and applications
 - Concurrency in Programs
 - Concurrency and Quantities (Time/Probabilities)

Automata

• Behaviours are words, i.e., sequences of actions over a finite alphabet $\Sigma = \{a, b, c\}$.

Automata

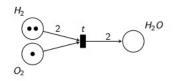


Behaviours are words, i.e., sequences of actions over a finite alphabet Σ = {a, b, c}.

Questions

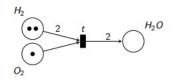
- ▶ How shall we distribute it?
- ▶ How shall we add concurrent behaviors?

Petri Nets


▶ An old model for distributed systems

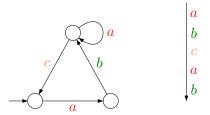
- ▶ invented by Carl Petri (-at the age of 13- in 1939? or '62)
- ▶ to model resource consumption and so on...

Examples of Petri nets

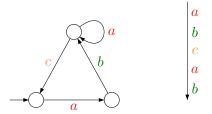

- ▶ A chemical reaction: $2H_2 + O_2 \rightarrow 2H_2O$.
- ► A library
- ► A producer-consumer example
- ▶ A coffee machine

Examples of Petri nets

- A chemical reaction: $2H_2 + O_2 \rightarrow 2H_2O$.
- ► A library
- ► A producer-consumer example
- ▶ A coffee machine


Examples of Petri nets

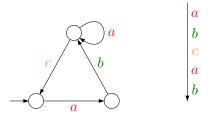
- A chemical reaction: $2H_2 + O_2 \rightarrow 2H_2O$.
- ► A library
- ► A producer-consumer example
- ▶ A coffee machine


Applications: Business process models, stochastic processes, biological networks and so on

Automata

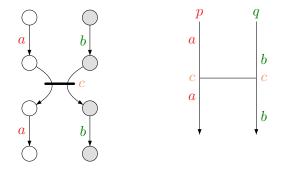
• Behaviours are words, i.e., sequences of actions over a finite alphabet $\Sigma = \{a, b, c\}$.

Automata

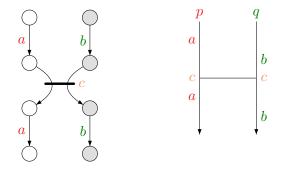


Behaviours are words, i.e., sequences of actions over a finite alphabet Σ = {a, b, c}.

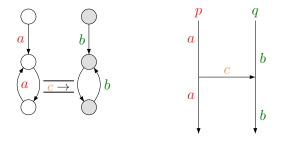
Questions


- ▶ How shall we distribute it?
- ▶ How shall we add concurrent behaviors?

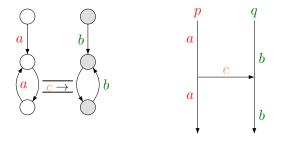
Asynchronous Automata


Behaviours are words, i.e., sequences of actions over a finite alphabet Σ = {a, b, c}.

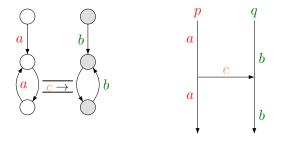
Asynchronous Automata


Actions are distributed across processes (with sharing!)
Some actions are shared, e.g., c is allowed only if both p and q move on c.

Asynchronous Automata


- What are the properties of languages accepted by such automata? E.g. above accepts {<u>abcab</u>, bacab, bacba, abcba}.
- Given a language L, (when) can it be accepted by such an asynchronous automaton?

Message Passing Automata


- ▶ In fact, this formalism is Turing powerful!
- ▶ We will consider decidability issues.

Message Passing Automata

- ▶ In fact, this formalism is Turing powerful!
- ▶ We will consider decidability issues.
- (Surprising fact: If you are allowed to lose messages randomly then it is decidable!)

Message Passing Automata

- ▶ In fact, this formalism is Turing powerful!
- ▶ We will consider decidability issues.
- (Surprising fact: If you are allowed to lose messages randomly then it is decidable!) These are called Lossy channel systems.

Applications to Concurrent programs

What are good formal models for concurrent programs?

Automata or transition systems

Applications to Concurrent programs

What are good formal models for concurrent programs?

- Automata or transition systems
- Distributed/Asynchronous/Message-passing automata??

▶ Petri nets

Applications to Concurrent programs

What are good formal models for concurrent programs?

- ▶ Automata or transition systems
- Distributed/Asynchronous/Message-passing automata??
- ▶ Petri nets

Does this capture reality of programs in today's world?

Modeling concurrent programs

Two issues

In the multi-processor world: memory access is no longer atomic!

Modeling concurrent programs

Two issues

- In the multi-processor world: memory access is no longer atomic!
- ▶ There is no non-determinism! How to avoid exploring runs

Leads to:

- 1. Weak memory models
- 2. Partial order reduction techniques

Adding time

Adding time

▶ Does time impose sequentiality?

Adding time

- ▶ Does time impose sequentiality?
- ▶ Are there still uses for timed models?

Adding time

- ▶ Does time impose sequentiality?
- ► Are there still uses for timed models?

Adding Probabilities

- ▶ Why do we need to add probabilities?
- ▶ Classical models and more.

Adding time

- ▶ Does time impose sequentiality?
- ▶ Are there still uses for timed models?

Adding Probabilities

- ▶ Why do we need to add probabilities?
- ▶ Classical models and more.

Another face of concurrency

- ► For decomposability of large systems!
- ▶ Reasoning and composing systems

▶ In general, these are examples of infinite-state objects.

- ▶ In general, these are examples of infinite-state objects.
- If you don't like "state objects", think of them as infinite discrete structures!

- ▶ In general, these are examples of infinite-state objects.
- If you don't like "state objects", think of them as infinite discrete structures!
- ► Why?

- ▶ In general, these are examples of infinite-state objects.
- If you don't like "state objects", think of them as infinite discrete structures!
- ► Why?

Another title for this course:

Reasoning about infinite (discrete) structures!

- ▶ In general, these are examples of infinite-state objects.
- If you don't like "state objects", think of them as infinite discrete structures!
- ► Why?

Another title for this course:

Reasoning about infinite (discrete) structures!

- ▶ Theory of well-structured transition systems
- ▶ Under-approximate verification
- ▶ Fixed-point approaches

- ▶ In general, these are examples of infinite-state objects.
- If you don't like "state objects", think of them as infinite discrete structures!
- ► Why?

Another title for this course:

Reasoning about infinite (discrete) structures!

- ▶ Theory of well-structured transition systems
- ▶ Under-approximate verification
- ▶ Fixed-point approaches

Pictures and Mathematics

- ▶ How do you write these objects mathematically?
- ▶ Why write them mathematically?

Some take-aways from this course

- Different formal models for distributed systems
- Mathematical formalisms that reason about (the infinite) behaviors of such systems.
- ▶ Techniques to automatically analyze such systems.
- ▶ How to use them and where they are applied.

Logistics

Evaluation (flexible/tentative... upto a point)

- ► Continuous evaluation assignments/quizzes : 35%
- \blacktriangleright Exam (Midsem/Endsem): 35 %
- ▶ Paper presentations: 30 %

There will be guest lectures, research directions given along the way.

Logistics

Evaluation (flexible/tentative... upto a point)

- ► Continuous evaluation assignments/quizzes : 35%
- \blacktriangleright Exam (Midsem/Endsem): 35 %
- ▶ Paper presentations: 30 %

There will be guest lectures, research directions given along the way.

Course material, references will be posted at

- http://www.cse.iitb.ac.in/~akshayss/teaching.html
- ▶ Piazza will be set up soon