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Formal Models for systems

> : Concurrent, asynchronous, communicating,...

» Formal models: Mathematical description, graphical
notations, Automata models

> : variables over an infinite domain: counters,
channel/queue size, data, time, probabilities

Questions that we will tackle
» Analysis of such models
» Characterization, relations

» Underlying properties, generalizations
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2. Well-structured transition systems
3. Distributed automata models and their behaviors

4. Advanced topics, extensions and applications
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Topics and models that we will cover in this course:

1.

vVvyyvyyYy vVvyyvyy

vy

Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

Decision problems - reachability, coverability
Tools, implementations and case-studies (optional)

A generalized abstraction for infinite-state systems
Well-quasi orders and well-founded systems
Applications to show termination of infinite systems
Theoretical bounds on complexity (optional)

Asynchronous automata
Message passing automata and Lossy channel machines

Concurrency in Programs
Concurrency and Quantities (Time/Probabilities)



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.
Questions

» How shall we distribute it?

» How shall we add concurrent behaviors?



Petri Nets

» An old model for distributed systems

» invented by Carl Petri (-at the age of 13- in 19397 or '62)
» to model resource consumption and so on...
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Examples of Petri nets

Hy

» A chemical reaction: 2Hy + Oy — 2H50.
> A library

» A producer-consumer example

» A coffee machine

Applications: Business process models, stochastic processes,
biological networks and so on
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Asynchronous Automata
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» Actions are distributed across processes (with sharing!)

» Some actions are shared, e.g., ¢ is allowed only if both p
and ¢ move on



Asynchronous Automata
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» What are the properties of languages accepted by such
automata? E.g. above accepts {abcab, bacab, bacba, abcba}.

» Given a language L, (when) can it be accepted by such an
asynchronous automaton?
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Message Passing Automata

» In fact, this formalism is Turing powerful!
> We will consider decidability issues.

P (Surprising fact: If you are allowed to lose messages randomly
then it is decidable!) These are called Lossy channel systems.
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Applications to Concurrent programs

What are good formal models for concurrent programs?

» Automata or transition systems
» Distributed/Asynchronous/Message-passing automata??
» Petri nets

Does this capture reality of programs in today’s world?
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Modeling concurrent programs

Two issues
» In the multi-processor world: memory access is no longer
atomic!

» There is no non-determinism! How to avoid exploring runs

Leads to:

1. Weak memory models

2. Partial order reduction techniques
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Modeling Quantitative Systems

Adding time
» Does time impose sequentiality?

» Are there still uses for timed models?

Adding Probabilities
» Why do we need to add probabilities?

» Classical models and more.

Another face of concurrency

» For decomposability of large systems!

> Reasoning and composing systems
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Generalizing...

» In general, these are examples of

> If you don’t like “state objects”, think of them as infinite
discrete structures!

» Why?
Another title for this course:
Reasoning about infinite (discrete) structures!

» Theory of well-structured transition systems
» Under-approximate verification

» Fixed-point approaches

Pictures and Mathematics
» How do you write these objects mathematically?

» Why write them mathematically?



Some take-aways from this course

» Different formal models for distributed systems

» Mathematical formalisms that reason about (the infinite)
behaviors of such systems.

» Techniques to automatically analyze such systems.

» How to use them and where they are applied.



Logistics

Evaluation (flexible/tentative... upto a point)
» Continuous evaluation - assignments/quizzes : 35%
» Exam (Midsem/Endsem): 35 %
» Paper presentations: 30 %

There will be guest lectures, research directions given along the
way.


http://www.cse.iitb.ac.in/~akshayss/teaching.html

Logistics

Evaluation (flexible/tentative... upto a point)

» Continuous evaluation - assignments/quizzes : 35%
» Exam (Midsem/Endsem): 35 %
» Paper presentations: 30 %

There will be guest lectures, research directions given along the
way.

Course material, references will be posted at

» http://www.cse.iitb.ac.in/~akshayss/teaching.html

» Piazza will be set up soon
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