CS 735: Formal Models for Concurrent and
Asynchronous Systems

— Introduction

Instructor: S. Akshay

Jan-Apr 2024

Course hours: Slot09,
Mondays and Thursdays 3:30-5:00pm
Office hours: To be announced



CS 735: Formal Models for Concurrent and
Asynchronous Systems

— Introduction

Instructor: S. Akshay

Jan-Apr 2024

Course hours: Slot09,
Mondays and Thursdays 3:30-5:00pm
Office hours: To be announced

Queries: Email me with [CS735-2024] in subject line
akshayss@cse.iith.ac.in



Goal

Formal Models for distributed and infinite-state systems




Goal

Formal Models for distributed and infinite-state systems

» Distributed: Concurrent, asynchronous, communicating,...




Goal

Formal Models for systems

> : Concurrent, asynchronous, communicating,...

» Formal models: Mathematical description, graphical
notations, Automata models

[




Goal

Formal Models for systems

> : Concurrent, asynchronous, communicating,...
» Formal models: Mathematical description, graphical
notations, Automata models

> : variables over an infinite domain: counters,
channel/queue size, data, time, probabilities



Goal

Formal Models for systems

> : Concurrent, asynchronous, communicating,...

» Formal models: Mathematical description, graphical
notations, Automata models

> : variables over an infinite domain: counters,
channel/queue size, data, time, probabilities

Questions that we will tackle
» Analysis of such models
» Characterization, relations

» Underlying properties, generalizations



Course contents

Topics and models that we will cover in this course:
1. Petri nets
2. Well-structured transition systems
3. Distributed automata models and their behaviors

4. Advanced topics, extensions and applications



Course contents

Topics and models that we will cover in this course:

1.

» Elementary nets, Place/Transition nets

» Behaviors - traces, posets, unfoldings.

» Decision problems - reachability, coverability

» Tools, implementations and case-studies (optional)



Course contents

Topics and models that we will cover in this course:

1.

vVvyyvyy

vvyyvyy

Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

Decision problems - reachability, coverability
Tools, implementations and case-studies (optional)

A generalized abstraction for infinite-state systems
Well-quasi orders and well-founded systems
Applications to show termination of infinite systems
Theoretical bounds on complexity (optional)



Course contents

Topics and models that we will cover in this course:

1.

vVvyyvyy

vvyyvyy

vy

Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

Decision problems - reachability, coverability
Tools, implementations and case-studies (optional)

A generalized abstraction for infinite-state systems
Well-quasi orders and well-founded systems
Applications to show termination of infinite systems
Theoretical bounds on complexity (optional)

Asynchronous automata
Message passing automata and Lossy channel machines



Course contents

Topics and models that we will cover in this course:

1.

vVvyyvyyYy vVvyyvyy

vy

Elementary nets, Place/Transition nets

Behaviors - traces, posets, unfoldings.

Decision problems - reachability, coverability
Tools, implementations and case-studies (optional)

A generalized abstraction for infinite-state systems
Well-quasi orders and well-founded systems
Applications to show termination of infinite systems
Theoretical bounds on complexity (optional)

Asynchronous automata
Message passing automata and Lossy channel machines

Concurrency in Programs
Concurrency and Quantities (Time/Probabilities)



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.
Questions

» How shall we distribute it?

» How shall we add concurrent behaviors?



Petri Nets

» An old model for distributed systems

» invented by Carl Petri (-at the age of 13- in 19397 or '62)
» to model resource consumption and so on...



Examples of Petri nets

» A chemical reaction: 2Hy + Oy — 2H50.
> A library
» A producer-consumer example

» A coffee machine



Examples of Petri nets

» A chemical reaction: 2Hy + Oy — 2H50.
> A library
» A producer-consumer example

» A coffee machine



Examples of Petri nets

Hy

» A chemical reaction: 2Hy + Oy — 2H50.
> A library

» A producer-consumer example

» A coffee machine

Applications: Business process models, stochastic processes,
biological networks and so on



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.



Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.
Questions

» How shall we distribute it?

» How shall we add concurrent behaviors?



Asynchronous Automata

a

» Behaviours are words, i.e., sequences of actions over a finite
alphabet ¥ = {a, b, }.



Asynchronous Automata

a b A \

» Actions are distributed across processes (with sharing!)

» Some actions are shared, e.g., ¢ is allowed only if both p
and ¢ move on



Asynchronous Automata

a b A \

» What are the properties of languages accepted by such
automata? E.g. above accepts {abcab, bacab, bacba, abcba}.

» Given a language L, (when) can it be accepted by such an
asynchronous automaton?



Message Passing Automata

Y Y

» In fact, this formalism is Turing powerful!

> We will consider decidability issues.



Message Passing Automata

» In fact, this formalism is Turing powerful!
> We will consider decidability issues.

P (Surprising fact: If you are allowed to lose messages randomly
then it is decidable!)



Message Passing Automata

» In fact, this formalism is Turing powerful!
> We will consider decidability issues.

P (Surprising fact: If you are allowed to lose messages randomly
then it is decidable!) These are called Lossy channel systems.



Applications to Concurrent programs

What are good formal models for concurrent programs?

» Automata or transition systems



Applications to Concurrent programs

What are good formal models for concurrent programs?
» Automata or transition systems
» Distributed/Asynchronous/Message-passing automata??
» Petri nets



Applications to Concurrent programs

What are good formal models for concurrent programs?

» Automata or transition systems
» Distributed/Asynchronous/Message-passing automata??
» Petri nets

Does this capture reality of programs in today’s world?



Modeling concurrent programs

Two issues
» In the multi-processor world: memory access is no longer
atomic!



Modeling concurrent programs

Two issues
» In the multi-processor world: memory access is no longer
atomic!

» There is no non-determinism! How to avoid exploring runs

Leads to:

1. Weak memory models

2. Partial order reduction techniques



Modeling Quantitative Systems

Adding time



Modeling Quantitative Systems

Adding time

» Does time impose sequentiality?



Modeling Quantitative Systems

Adding time
» Does time impose sequentiality?

» Are there still uses for timed models?



Modeling Quantitative Systems

Adding time
» Does time impose sequentiality?

» Are there still uses for timed models?

Adding Probabilities
» Why do we need to add probabilities?

» Classical models and more.



Modeling Quantitative Systems

Adding time
» Does time impose sequentiality?

» Are there still uses for timed models?

Adding Probabilities
» Why do we need to add probabilities?

» Classical models and more.

Another face of concurrency

» For decomposability of large systems!

> Reasoning and composing systems



Generalizing...

» In general, these are examples of



Generalizing...

» In general, these are examples of

» If you don’t like “state objects”, think of them as infinite
discrete structures!



Generalizing...

» In general, these are examples of

» If you don’t like “state objects”, think of them as infinite
discrete structures!

» Why?



Generalizing...

» In general, these are examples of

» If you don’t like “state objects”, think of them as infinite
discrete structures!

> Why?
Another title for this course:

Reasoning about infinite (discrete) structures!



Generalizing...

» In general, these are examples of

» If you don’t like “state objects”, think of them as infinite
discrete structures!

» Why?

Another title for this course:

Reasoning about infinite (discrete) structures!
» Theory of well-structured transition systems
» Under-approximate verification

» Fixed-point approaches



Generalizing...

» In general, these are examples of

> If you don’t like “state objects”, think of them as infinite
discrete structures!

» Why?
Another title for this course:
Reasoning about infinite (discrete) structures!

» Theory of well-structured transition systems
» Under-approximate verification

» Fixed-point approaches

Pictures and Mathematics
» How do you write these objects mathematically?

» Why write them mathematically?



Some take-aways from this course

» Different formal models for distributed systems

» Mathematical formalisms that reason about (the infinite)
behaviors of such systems.

» Techniques to automatically analyze such systems.

» How to use them and where they are applied.



Logistics

Evaluation (flexible/tentative... upto a point)
» Continuous evaluation - assignments/quizzes : 35%
» Exam (Midsem/Endsem): 35 %
» Paper presentations: 30 %

There will be guest lectures, research directions given along the
way.


http://www.cse.iitb.ac.in/~akshayss/teaching.html

Logistics

Evaluation (flexible/tentative... upto a point)

» Continuous evaluation - assignments/quizzes : 35%
» Exam (Midsem/Endsem): 35 %
» Paper presentations: 30 %

There will be guest lectures, research directions given along the
way.

Course material, references will be posted at

» http://www.cse.iitb.ac.in/~akshayss/teaching.html

» Piazza will be set up soon


http://www.cse.iitb.ac.in/~akshayss/teaching.html

