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Abst rac t .  Linear algebraic techniques for place/transition nets are sur- 
veyed. In particular, place and transition invariant vectors and their ap- 
plication to verification, proof and analysis of behavioral properties of 
marked Petri nets are l)resented. The considered properties are the non-  
reachabi l i ty  of a marking and conditious that hold true for all reachable 
markings. In addition, it is slmwn how the rank of tim incidence matrix 
implies sufficient criteria and necessary criteria for liveness of bounded 
marked Petri nets. 

1 I n t r o d u c t i o n  

This contribution surveys the state of tile art ill linear algebraic techniques for 
Petri nets. More precisely, we show how the matrix representation of a Petri 
net together with appropriate equation systems or systems of inequalities can 
be exploited for gaining or proving properties of the net's behavior. 

Tile main motivation for the linear algebraic approach is the behavioral com- 
plexity of Petri nets. In general, the set of reachable markings of an initially 
marked net can explode both with respect to the size of the net and the num- 
ber of initial tokens, and it even can be infinite. IIence, in practice, the explicit 
construction of all reachable markings is not feasible. This implies that ellicient 
analysis of behavioral properties can not be based on models of behavior such 
as marking graphs or sets of all occurrence sequences or even process nets. We 
rather have to stick to the structure of the consMered net, togetlmr with its ini- 
tim token distribution. Linear algebraic techniques exploit only those structural 
data. They yield at least sufficient o r  necessary conditions for properties of the 
behavior of a marked net. These conditions can be verified by help of efficient 
algorithlns for linear algebraic techniques. The complexity of such algorithms 
heavily depend on the dolnain under consideration. For example, solutions of an 
equation system in tim rational numbers are simpler to achieve than solutions 
in tile integers or in tile natural numbers. A trade-off frequently occurs between 
the complcxity of an algorithnl and tile expressive power of its result. 

Combining linear algebraic techniques and Petri nets is nearly as old as Petri 
net theory. The first relevant contributions appeared already in the mid 70ies. 
We collect both the old concepts and new results in a uniform and, hopefully, 
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readable way. We do not consider arc weights, capacity restrictions, time anno- 
tations or other extensions. Most presented results can canonically be extended 
to these generalizations. We also do not consider specific properties of restricted 
classes of Petri nets such as free-choice Petri nets. 

The applicability of equation systems to Petri nets is based on the duality of 
states and state changes that  was emphasized by C. A. Petri [Petr73, Petr82]. In 
Petri nets, places, being local units of states, and transitions, being atomic units 
of state changes, are represented on the same level. This duality is reflected by 
linear methods: In the matrix representation of a net, places and transitions are 
represented by rows and columns, respectively. Linear algebra relates properties 
of a matrix to properties of its transposed matrix. This applies in particular to 
solubility criteria for the respective equation systems. Translated to Petri nets, 
these criteria yield relations between the places and the transitions of a net that  
are used ill techniques described in this contribution. 

All linear algebraic techniques for Petri nets are based on the observation 
that the occurrence of a transition always causes the same relative change of the 
marking of places: it decreases the number of tokens on each place which is in 
its pre-set but not in its post-set by one, and it increases the number of tokens 
on each place which is in its post-set but not in its pre-set by one. The markings 
of all other places remain unchanged. There exist modified occurrence rules for 
Petri nets that  allow varying relative changes, too. For example, preemptive arcs 
allow to empty a place, no matter what its number of tokens was before. The 
more general self.modifying nets allow variable effects of a transition to a place, 
depending on the actual marking of some other place. These nets allow to copy 
the marking of some place to another place, similar to an assignment statement 
in a programming language. We will not consider such extensions in this paper. 

As a general prerequisite for matrix and vector notations, we assume a finite 
set of places S = {s l , . . .  ,sn} and a finite set of transitions T = { t l , . . .  ,tl}, that  
are indexed by the numbers 1 , . . . ,  n (1 , . . . ,  l, respectively). A marking associates 
to each place its actual nnmher of tokens, llence, every marking is a lnapping 
~1~: S ~ IN, where IN = {0, l, 2 . . . .  } is the set of natural mmfl)ers (non-negative 
integers). A marking m can be represented by a vector m E IN n such that  the 
i-th component of the vector m is the value m(si). The constant relative change 
caused hy a transition can be described by a vector, too. Its i-th component 
represents the effect of the transition's occurrence on the place si. 

Figure 1 shows a vending-machine, as introduced in [DeRe98]. Its places are 
s l ,  s2 , . . .  ,s6 and its transitions are t l , t 2 , . . . , t 5 .  The vector representation 
m0 of the initial marking and the vector representation t2 of the transition t2  

I n  0 : 

read as 

[il 61 and t2 = 
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sl  s3 t3 s4 

s2. ~u t5 s5 

Fig. 1. A marked Petri net 

A transition occurrence changes the number of tokens on a place at most 
by one. Ilence, the vectors associated to the transitions have components of the 
set { -1 ,  O, 1}. Generalizations to arbitrary integers are not difficult and they are 
studied ill the literature in depth (when nets with weighted arcs are considered) 

If the occurrence of a transition t transfers a marking m to a marking m t, 
then m t is uniquely determined by the vector equation 

l l l t  : n l  + t . 

The sequential behavior of a Petri net with initial marking m0 is given by its 
occurrence sequences. An occurrence sequence is a finite or infinite sequence of 
transitions such that  m0 enables the first transition, the reached marking enables 
the second transition, and so on. The marking m reached by a finite occurrence 
sequence can be computed using the respective numbers of occurrences of tran- 
sitions in tile sequence: If kt stands for the number of occurrences of a transition 
t in the occurrence sequence then the marking m can be computed by 

nI = m 0  + Z k l  t . 

t E ' l '  

Usually, this equatiou is given in its i~la.i,rix fol'in, The niatrix with cohinlns 
t l . . .  It is called incidence malrix of the net N. We will denote tlle incidence 
matrix of N by N,  i.e., N = [tl . . .  tt]. Let k be the column vector with compo- 
nents k ~ , . . . ,  ktx. Then, the matrix form of the above equation reads 

nl = nl0 + N . k  . 

This formula for the marking m is the basis of most concepts mentioned in this 
contribution. It  is a compact way to express tile interrelation between markings 
and numbers of transition occurrences in occurrence sequences. Its linear alge- 
braic background turns out particularly appropriate because it allows to transfer 
and interpret concepts and results fi'om linear aigebra to Petri nets. 

We provide one example already at this place: A slight reformulation of the 
equation given above yieMs a necessary condition for tile a marking m to be 
reachable fi'om the initial marking m0 in a net N: the marking equation of the 
marking m, 

N , x  = i l l - i n 0  , 
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must have a vector solution for x with components in IN. Hence, in particular, 
there must exist a solution with rational components. A suitable solution vector 
k for the variable x proves that  the marking equation is soluble. Conversely, the 
non-teachability of a marking m can often be shown by proving that  the marking 
equation is not soluble. There are efficient ways to prove non-solubility in the 
rationals, e.g. Gauss-elimination, but these techniques do not provide short and 
understandable proofs showing that no solution exists. 

Another well-known necessary condition for the teachability of a marking 
is provided by place invariants. A place invariant can be viewed as an integral 
vector i satisfying i .  t = 0 for each transition t. Hence, a place invariant vector 
is a solution i for y to the equation system 

x. N = ( 0 , . . . , 0 ) .  

The vectors 

(1,1,0,0,0,0) and (0,0,1,0,1,1) 

are two place invariant vectors of our example net of Figure 1. It is not difficult 
to see that, for each marking m reachable from m0, the products i-m 0 and i. m 
coincide for any place invariant vector i. Thus, place invariants yield very elegant 
proofs for the non-reachability of a marking m: every place invariant vector i 
satisfying i • m 0 # i. m does the job. 

A central theorem of linear algebra is the alternatives' theorem of Fredholm 
[Schr8fi]. It implies that the marking equation of a marking m possesses a rational 
solution if and only if i • m 0 = i • m for each place invariant vector i. Hence, 
solubility of the marking equation is shown by a suitable solution vector whereas 
its non-solubility can be proven by a suitable place invariant vector i satisfying 
i .  m # i .  m0. 

Decisive application oriented properties of Petri nets are mostly hard to de- 
cide, i.e., there exist no efficient algorithm to decide whether or not the property 
holds, llowever, there are necessary or sufficient conditions for many properties, 
that can efficiently be tested. We distinguish three kinds of techniques in this 
context: 

- a verification technique is a deterministic algorithm to prove a desired prop- 
erty, 

- a proof technique is intended to formulate a short proof of a property (for- 
really, it is a non-deterministic algorithm that  guesses the proof arguments 
and then verifies the proof), 

- an analysis technique provides a variety of properties of a given marked net, 
as a basis for fllrther arguments. 

For the above discussed property - non-reachability of some marking m - a 
verification technique finds out that the marking equation has no solution. A 
proof technique for tile same property employs a place invariant. The result of 
an analysis technique could be a collection of place invariants. 
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In section 2 we study basic concepts such as equation systems, systems of 
inequalities, Petri nets and their matrix representations, place and transition 
invariant vectors. Section 3 concentrates on the marking equation and related 
necessary conditions for the teachability of a marking. Linear algebraic charac- 
terizations of traps and siphons as well as consequences for teachability analysis 
are the topics of section 4. In section 5, we study state based properties of marked 
nets. In particular, we identify properties of markings of a net that are satisfied 
by all reachable markings. We provide a verification technique for such prop- 
erties, based on the results of the previous sections. Finally, the 6th section is 
concerned with the so-called rank conditions. These conditions provide necessary 
criteria and sufficient criteria for liveness of marked nets. 

Each section contains bibliographic notes including sources and related con- 
cepts. 

Bibliographic Notes 

The books [Pete8t, Reis85, DeEs95] as well as the survey articles [Pete77, 
JaVaS0, Mura89] contain sections on linear algebraic techniques for Petri nets. 
The papers [MeRo80, Laut87a] are surveys devoted to this topic. References to 
particular concepts such as place invariant vectors or the marking equation can 
be found at the end of the respective sections where they are introduced formally. 

A more detailed presentation of the results of this contribution and of further 
applications of linear algebra and linear programming to verification, proofs and 
analysis of Petri net behavior is provided in the book [Dese98] (in German). 

2 Definitions and Elementary Results 

2.1 S y s t e m s  o f  L i n e a r  h m q u a l i t i e s  

Tile set of rational numl)ers is denoted by (l), tile set of integers by ~ and the 
set of natural numbers (i.e., nonnegative integers) by IN. A positive integer is 
greater than 0. 

We use bold capitals A, B, C as symbols for matrices, bold a, b, c for vectors 
and a, b, c for numbers. The transposed of a matrix A is denoted A "r, and simi- 
larly for vectors. Variable vectors are denoted by x and y and variable numbers 
by x and y. Products  of a matrix with some other matrix or vector always as- 
sumes proper arities. The product of vectors or matrices with numbers is defined 
componentwise and is denoted by simple concatenation (without "."). 

l f a =  (at . . . .  ,a,~) and b = (b t , . . .  ,bn) are vectors, then a < b i fa i  < bi for 
all i ( 1 < i < n) and a < b if a i < b i for all i ( 1 < i < n). We write a ¢ b if not 
a = b. Notice that a < b , a  ~- b does not imply a < b. We write 11 for w~ctors 
with the entry 0 in each component. Each vector a > 0 is posilivc. E;tch vector 
a > 0 is nonnegative. For a set A and a nonnegative integer k, A t: denotes the 
set, of all vectors with k components and all components in A. We write A* for 
the set of all vectors over the set A, i.e., vectors with all components in A. 
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A linear inequality is given by an integral vector a and an integer b. I t  is 
represented in the form 

a . x ~ b .  
It  is soluble over a set A if there exists some k in A* satisfying a • k ~ b. 

A system of linear inequalities is a set of linear inequalities. It  is soluble if 
there exists a vector that  solves all inequalities of the set. If  it is finite then it 
has a matr ix  based representation 

A . x < b ,  

where the vectors a of the linear inequalities are the rows of the matrix A and 
the numbers b are the components of the vector b. Other representations are: 

A.x > b for (-1)A.x < (-1)b, 
A • x < b, C • x < d for the union of the two sets of inequalities, 
A.x=b for A.x gb, A.x>b. 

Thus, each linear equation system can be interpreted as a particular system of 
linear inequalities that contains only equations. 

We will frequently employ analysis techniques that are based on the solubility 
of systems of linear inequalities. The complexity of these teclmiques depend on 
the domain under consideration. Ti~e following well-known results can e.g. be 
found in [Schr86]. 

P r o p o s i t i o n  1. 

(1) Each system of linear inequalities over ~ can be solved in polynomial time 
(linear programming). 

(2) The solubility of systems of linear inequalities over 2g is NP-complete (inte- 
ger linear programming, variant 10 

(3) The solubility of linear equation systems over IN is NP-complete (integer 
linear programming, variant 2,) 

2.2 P e t r i  N e t s  a n d  L i n e a r  A l g e b r a i c  R e p r e s e n t a t i o n s  

For a formal definition of Petri nets and their behavior as well as for usual 
notations we refer to [DeRe98], in this volume. IIere, we only consider nets with 
finite and nonempty sets of places and transitions. All places and transitions of 
a net N are said to be elements of N. The sets of places, transitions and arcs of 
a net N are denoted by SN, TN and FN, respectively. The net N is denoted by 
the triplet (SN,TN, FN). The set of all elements of N is frequently also denoted 
by N, i.e., N = SN U TN. 

For the application of linear algebraic techniques, we ,assume 

S = { s t , . . . , s , }  and T =  { t~ , . . . , t l } .  

Then,  a mapping k: S ~ A can be represented by a row or a column vector 
k with n components such that  the i-th component of k is k(si) (1 < i < n). 
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Such vectors are called place vectors. Abusing terminology, we will frequently 
define place vectors via their associated mappings and write k(s)  instead of 
k(s),  Transition vectors and related notions are defined correspondingly, 

For example, a marking m: S ~ IN of N is represented by the place vector 

I n  - -  " ~ ] N  ll  . 

If  a transition t occurs at a naarking m then the follower marking m '  is given 
by 

l i1 t = n l - ~ -  t 

where t: S ---, IN is a place vector defined by 

-1 i f s E ° t \ t  °, 
t(s)= +1 ifsEt*\*t,  

0 otherwise.  

For each place s, the vector e j : S  --* {0,1} is defined by %(s)  = 1 and 
%(s ' )  = 0 for s ¢ s t. For a transition t, tile transition vector et is defined 
correspondingly. 

For a set A of places, x (A)  denotes the characteristic place vector, defiaed 
as the sum of all vectors e~ for places s E A. Characteristic transition vectors of 
sets of transitions are defined correspondingly. 

2.3 I n c i d e n c e  M a t r i x  a n d  M a r k i n g  E q u a t i o n  

For a net N with n places and l transitions, the n x l-matrix N = [tt . . .  tt] is 
called incidence matrix of N. We will always denote tile incidence matrix of a 
net N by the bold letter N. 

For a finite sequence cr of transitions of N, the transition vector P,7: T ---* IN 
denotes the Parikh vector of a,  where pa( t )  is the mtmber of occurrences of t in 
the sequence u. 

Each finite occurrence sequence terminates in a marldng that  can be com- 
puted by help of the incidence matrix and the Parikh vector of the sequence: 

T h e o r e l n 2 .  Let mo o m be a finite occurrence sequence of a net N .  Then 

I n  0 + N • Po : nl. [ ]  

Tile following necessary condition for tile reachability of a marking is an imme- 
diate consequence: 

C o r o l l a r y  3. Let N be a net. I f  a marking m of N is reachable from a marking 
too, then there ezists a solution for x over IN to the equation 

N • x : m - m o  • [ ]  

For a given net N with initial marking m0, this equation is cabled the marking 
equation for m. 
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Each finite sequence a of transitions is enabled at some marking (if a has 
length k, provide k tokens for each place). However, given a fixed initial marking, 
no reachable marking may enable q. Every transition vector over IN can be 
interpreted as a Parikh vector of a sequence of transitions; hence the following 
iemma: 

L e m m a 4 .  Let k in IN* be a transition vector of a net N .  Then there exist 
markings m,  m'  and aft occurrence sequence m ~ m'  of N such that k is the 
Parikh vector of a. 13 

2.4 Place  Invariants  and Transi t ion Invariants  

Place invariants have already been mentioned in the introduction. A formal 
definition was provided in [DeRe98]. An equivalent definition based on linear 
algebraic concepts is given by the characterization of the following proposition. 

P ropos i t ion  5. Let N be a net. A mapping i: SN ---, 2~ is a place invariant i f  
and only i f  its corresponding row vector i is a solution for y to the homogeneous 
equation system 

y . N = 0 .  1:3 

The vector representation of a place invariant will be called place invariant vec- 
tor. 

The fundamental property of place invariants can be rephrased in terms of 
place invariant vectors. It follows immediately from the marking equation: 

T h e o r e m  6. Let N be a net with a place invariant i. Ira markiug m is reachable 
from a marking m0, theft 

i - n l  : i .111(i . 

Proof. If m is reachable from m0, the marking equation for m has some solution. 
Multiplication of both sides of the equation hy i yields the result. 13 

Transition invariants and place invariants are defined correspondingly in 
[DeRe98]. The following proposition provides a linear algebraic characterization 
of transition invariants: 

P ropos i t ion  7. Let N be a net. A mapping j: TN --~ ~ is a transition invariant 
i f  and only if  its corresponding column vector j is a solution for x to 

N . x = O .  
r'l 

These transition vectors are called transition invariant vectors. 
The fundamental property of transition invariants follows immediately from 

the marking equation: 
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T h e o r e l n  8. [,el N be a net with an occurrence sequence m ¢ ,, , m g  The Parikh 
vector Po of ~r is a transition invariant vector if  and only if  rn = m ~. 

Proof. Pa is a transition invariant vector if and  only if N • Pa = 0. This implies 
the result, because m0 + N • Po = m.  ra 

A connectedness theorem was given in [DeRe98]: Each connected net with a live 
and bounded marldng is strongly connected. We finish this section with a similar 
result: 

T h e o r e m  9. Each connected net with a positive place invariant and a positive 
transition invariant is strongly connected. 

Proof. Let N be a connected net. Let i be a place invariant of N such that  i > 0 
and let j be a transition invariant of N such that  j > 0. We only prove that ,  for 
each arc (u, v) of N, there exists a path from v to u. The results follows by tile 
definition of weak and strong connectedness. 

Case 1: u E SN and v E TN. 
Let tile mapping j ' :  T --* IN be given by 

f ( t )  = ( ~ ( t )  otherwise.if there is a path f f o m v  to t, 

Consider the place vector N . j / I t s  component for a place s is given by 

uE*$  uE$ ° 

We show N • j ' ( s )  _< 0 for each place s. Let s be a place, 
Assmne first j ' ( t )  = 0 for each transition t in *s. Since j ' ( t )  > 0 for each 

transition t by definition, 

0 = E j ' ( t )  <_ E j ' ( t ) .  
tE's tEs" 

If j ' ( t )  = j ( t )  > 0 for some transition t i n ' s  then there is a path from v to s. 
In this case there exists a path from v to any t in s ' .  Therefore, j~(t) = j ( t )  > 0 
for each transition t in s °. So, in this case, 

o < _< E : Z : E / i t ) .  
tE 's tE's tEs" tEs" 

We have shown for both cases: 

_< 
tE 's t~s" 

This finishes tile proof of N • j '  < 0. 
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We have i .  N = 0, because i is a place invariant. Therefore, i • N • je = 0. 
Since i > 0 and N .j~ < 0, the vector N-j~ has no negative component, which 
implies N • j '  = 0. IIence, jt  is a transition invariant. 

So we obtain the following inequalities: 

Z j'(t) = Z j'(t) (j' is a transition invariant) 
~E*u ten*  

= j(v) (definition of j ' )  
> 0 (j is a positive transition invariant vector). 

Hence, there exists a transition t E °u satisfying j~(t) > 0. By the definition of 
j~, there is a path fl'om v to t. This path can be extended by the place u. 

Case 2: u E T and v E S. 
Consider the net N' = (T,~, SN, F~),  where places and transitions of N are 
swapped. The incidence matrix N ~ of N ~ is given by ( -1)  N T. So, by Proposi- 
tions 5 and 7, i is a positive transition invariant of N ~ and j is a positive place 
invariant of NC The arc (v, u) leads fl'om a place of N t to a transition of NC As 
shown above (case 1), the net N ~ contains a path from transition v to place u. 
In the net N, this path leads from place v to transition u. [::] 

B ib l iograph ic  R e m a r k s  

Place invariants were first introduced in [LaSc74, Laut75] in a linear algebraic 
framework. The paper [Ramc74] considers transition invariants (using different 
notations). Other relevant early references are [Lien76] and [MuraT7], where the 
latter paper concentrates particularly on the marking equation. [Sifa79] gives a 
proof of the connectedness theorem (Theorem 9) in a more general setting. 

3 The Marking Equation 

The problem whether a marking m is reachable from a given initial marking 
mo is known to be decidable, but its enormous complexity prevents effective 
algorithms (see [DeRe98] for references). In this section, we study the inverse 
probIem: is a given marking m not reachable from m0? As discussed in the 
introduction, verification and proof techniques based on linear algebra lead to 
more efficient algorithms that work for many, though not all, instances. Such 
techniques for verifying or proving non-reachability of a marking are studied in 
this section. 

It was shown in the introduction that  there is a solution of the marking 
equation over the natural numbers for each reachable marking. Thus, the mark- 
ing equation provides a necessary condition for l'eachability. This condition can 
be employed to verify the non-reachability of the marking. Any algorithm can 
be used that  decides integral solubility of the marking equation: The marking 
under consideration is not reachable in case there is no solution. Nevertheless, 
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there might exist non-reachable markings of a net which do possess an integral 
solution to the marking equation. Therefore, this verification technique does not 
work for all non-reachable markings. 

Moreover, unfortunately no efficient algorithm is known that decides integral 
solubility of linear equation systems (Proposition 1). We will consider weaker cri- 
teria for reachability, namely solubility of tile marking equation over the rational 
numbers, over the non-negative rational numbers and over the integers. These 
conditions will lead to more efficient verification algorithms with, admittedly, 
less expressive power. 

As any verification technique, the verification techniques mentioned above 
can be viewed as proof techniques, too. lIowever, we can do better. As an ex- 
ample, a place invariant can be used to prove the non-reachability of some given 
marking. It is easy to check that a given place vector is in fact a place invariant 
vector and that the initial marking and the given marking disagree w.r.t, this 
invariant. In the introduction, we have shown that a place invariant can be used 
to prove non-reachability of a marking if and only if the marking equation has no 
rational solution. Here, we show that more powerfid proof techniques correspond 
to the solubility of the marking equation over the positive rationals and over the 
integers. 

3.1 Solubi l i ty  of  tile M a r k i n g  E q u a t i o n  over  tile N a t u r a l  N u m b e r s  

Tile marking equation provides a necessary criterion for tile reachability of a 
marking m: if m is reachable fi'om the initial marking m0 of a net N then 

N . x ~ I n  - n l  0 

has a solution for x ill IN*. Hence the following teachability condition for m: 

(M1)  The marking equation for m has a solution for x in IN*. 

This condition cannot be decided etticieutly in general because (Mt) is an in- 
stance of "Integer Linear Programming", hance an N P-complete prol)lem ( Propo- 
sition I(3)). 

The example given in Figure 2 shows that  the marking equation provides no 
sufficient condition for reachahility: The marking 

Ink = (0 ,  1 , 0 , 0 ,  1 , 0 , 0 )  T 

is not reachable from the initial marking 

m0 = (0, 0, 1, 1,0, 0, 0) T . 

llowcw'.r, there is the [bllowilJg sohltion to the marking e<lttation: 

N • (1, 1,0,2,2,0,2) t = ml - mo . 

All other markings of this net with solvable marking equation are reachable. So 
tile technique only fails for tile marking ml .  
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s5 ~ t6 

Fig. 2. Limits of the nl~.rking equiition 

Tile marking equation does not characterize tile set of reachable markings 
because the token count on a place never turns negative. If tokens could be 
"borrowed" temporarily to avoid negative markings, each marking satisfying 
the marking equation was reachable. This observation can formally be expressed 
by addition of another marking at both sides of the marking equation: 

P ropos i t ion  10. Let N be a net with markings m0 and m. I f  

m0 + N • k = In 

for some k in IN* then there exists a marking Fa and a transition sequence cr 
such that k is the Parikh vector of a and 

~t 

~ - i + m 0  ----~ i ~  + m .  

Proof. Choose a marking ~ which associates to each place more tokens than the 
sum of all conlponents of k, Il 

3.2 Solubil i ty of  the Marking  Equat ion  over tile Rat iona l  N u m b e r s  

Integral sohltions of the marking equation with negative components correspond 
to "backward occurrences" of transitions. Of course, the marking transformation 
caused by a transition occurrence is not reversible in general. Another impor- 
tant aspect of the occurrence rule is atomicity of tokens. If tokens could be 
"broken into pieces", each token could be replaced by suitable "token pieces". 
If the marking equation has a non-negative rational sohition k with a common 
denominator d then 

N . x  I = d a n -  d i n 0  

ha..t thc noli-negai,ive integral sohil, iOli d k for X'. The w'ci,ol's d nll i  liill.I el nl  lil'l~ 
the initial and the final marking after replacing each token by d "token pieces". 

For these reasons, the following condition (MI) properly weakens (M1), be- 
Callse i t  allows negative and rat ional  nunll;)ers. 
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.... . S5 

tl L ~ t 2  t4 t5 

Fig. 3. Limits of r~tional solutions of the marking equation. 

(M2)  The marking equation for m has a solution for x in Q*. 

Tile example shown in Figure 3 shows that (M2) has less expressive power 
than (M1) I. The marking 

ml  "- (I ,0,  i ,0,  I, 1,0,0) T 

is not reachable from the depicted initial marking m0. There is no solution of 
the marking equation over ,~; therefore, there is no solution over lN. IIowever, 
there is a solution over ~ ,  namely 

m 0 + N .  0 ,1 ,1 ,~ ,  = m i .  

It is easy to see that the marking )nl would be reachable from mo if transitions 
could occur for "half tokens". 

(M2) w ~  discussed in the introduction already. There are efficient algorithms 
to decide if a given equation system has a rational solution; e.g. the Gauss 
elimination works in in cubic time. For a related proof technique, there exists 
a more etllcient way using place invariants. The equivalent expressive power of 
these techniques is stated in the following proposition: 

P r o p o s i t i o n  11. Let N be a net with markings mo and m. There exists no 
sohttion of the markiT~g equation for m over ~ if and only if some place invariant 
i satisfies 

i .  mo # i .  m .  

Proof. Tile proposition follows immediately from Fredhohn's theorem of tile al- 
ternatives (which was first observed by Gauss ill the year 1809), see [Schr86, 
Corollary 3. lb, page 28]. 

1 This can be shown using simpler examples but we shMl need this example later in 
other contexts, too. 
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3.3 Solubil i ty of  the Marking Equat ion  over the  Non-Nega t ive  
Rat iona l  N u m b e r s  

Let Q+ denote the set of non-negative rationals. Then, Q~. contains all rational 
vectors x > 0. 

If the marking equation for a marking m has no solution over Q+, there is 
in particular no solution over lN. So (M1) can be weakened to (M3): 

(M3) The marking equation for m has a solution for x in Q*+. 

Clearly, this condition is stronger than (M2). It can be expressed by the solubility 
of the following system of linear inequalities: 

N - x - -  I l l - - I l l 0 ,  
x > O ,  

where x varies over Q*. This system can be solved in polynomial time, because 
it is an instance of Linear Programming (Proposition 1 (1)). So (M3) provides 
an efficient verification technique. 

For a related proof technique, we use the following variant of Farkas' Lemma 
(see [Schr86, Corollary 7.1c, page 89]): 

P ropos i t ion  12. Exactly one of the following systems of inequalities has a so. 
lution over Q: 

A . x = b , x > 0 ,  
A r ' y > 0 ,  b ' y < 0 .  [] 

With N = A and b = i n -  m0, (M3) corresponds to the first line of the 
system given in this proposition, llence, the complement of (M3) is equivalent 
to the rational solubility of the following system of inequalities: 

N T . y  > 0 ,  
( m - m 0 ) . y  < 0. 

Similar to place invariant vectors, any solution of this system of inequalities 
provides all efficient proof showing that m is not reachable fl'om m0. Notice 
that for every rational solution there also is all integral solution, obtained by 
multiplication with the common denominator. 

The example of Figure 3 demonstrates that (M3) has less expressive power 
than (M1), because the previously given rational solution has no negative com- 
ponents. 

If a net has a positive transition invarian~, solubility of the marking equation 
over Q and solubility of the marking equation over Q+ coincide, because repeated 
addition of a positive transition invariant vector to any solution will eventually 
yield a non-negative solution. 
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3.4 Solubility of the  Marking Equat ion over the  Integers  

Another weakening of (M1) is given by 

(M4) The marking equation of the marking m has a solution for x in 2~*. 

The conditions (M4) and (M3) are incomparable. Notice that (M3) and (M4) 
together do not imply (M 1) because the existence of a non-negative solution and 
the existence of an integral solution does not imply that there is a solution that 
is both integral and non-negative. 

The verification technique based on (M4) corresponds to the integral solubil- 
ity of the marking equation. The theory of linear diophantic equations implies 
that the incidence matrix N can be transformed to its Smith normal form (see 
[Schr86], page 50): 

Proposi t ion 13. Any integral matrix N can be transformed into its Smith nor- 
real form S. This transformation is given by the matrix product S = Q . N • P, 
where Q and P are unimodular matrices of suitable size. S has the following 
form: 

S = 

/81,1 

' .  0 

8"a~a 

0 

O .. .  
0 

where s l , l , . . . ,Sa,a are positive integers and, for i = 1 , . . . , a -  1, the diagonal 
element si,i divides si+t ,i+t. The Smith normal form is uniquely determined. 
Its diagonal elements are called elementary divisors of the matrix N.  

Q and P arc invertible quadratic integral matrices such that their inverses 
Q-~ and p - I  are also integral (unimodMarity of the matrices). [] 

The next theorem shows that integral solubility of the marking equation can 
be decided by constructing the Smith normal form of the incidence matrix. 

T h e o r e m  14. Let N be a net and too, m be markings of N. Let S = Q • N • P 
be the Smith normal form of N.  Define 

b=(bl ,b2  . . . .  )T = Q . ( m _ m 0 ) .  

There exists an integral solution for x to the marking equation 

N • x = m - hi(} 

if (tad only if  

(a) si,i divides bi (1 < i < a) , and 
(Z) b~ = o (i > . ) .  
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Proof. Since S = Q • N-  P,  the marking equation call be transformed into 

Q - l .  S . P - 1  . x  = m - m 0  • 

Define y = p - 1  . x. Multiplication by Q yields 

S . y  = Q .  ( m -  m 0 )  = b .  

Since P as well as P -  1 are integral matrices, this equation system has all integral 
solution for y if and only if the marking equation has an integral solution for x. 
It is easy to see that, by the form of S, there is an integral solution for y if and 
only if (~) and (/3) hold true. Q 

The transformation matrix Q can be constructed in polynomial time [KaBa79]. 
Given the matrix Q, the conditions (a) and (/6) of Theorem 14 can obviously 
be decided in polynomial time. IIence, by constructing the Smith normal form 
(including the matrix Q), it can be decided in polynomial time whether the 
marking equation possesses an integral solution. Thus we obtained an efficient 
verification technique based on condition (M4). 

Place invariants do not suffice for a proof technique based on (M4). They 
can only prove the non-existence of rational solutions of the marking equation. 
As mentioned above, in Figure 3, the marking 

m t =  (1,0, 1,0, 1, 1,0,0) m 

agrees with the initial marking on all place invariants but its marking equation 
has no integral solution. 

For this example, it is not difficult to verify that 

m(sl )  A- re(s2) + re(aS) -4- re(s6) is an even number  

holds for all reachable markings m: If a marking m satisfies tile property and 
the occurrence of a transition leads to m ~ then m' satisfies the property, too. 
The same holds for the complementary property (odd token count on the places 
in {sl, s2, sS, s6}). For the markings m0 and mt we obtain the following sums: 

,no(si) + m0(s2) + mo(ss) + too(s6) = 4, 

mKsl) + ,ntis2) + ml(sS) + ml(sS) = 3. 

IIence, since this sum is initially even and remains even when transitions occur, 
mt is not reachable from too. 

The same argument can be stated as follows: For the vector 

i = (1, 1 ,0 ,0 ,  1, 1 ,0 ,0 )  

and each column vector t of the incidence matrix N, 

i .  t = 0 ( m o d 2 ) .  
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Each marking transformation m ~ , rn' satisfies 

l i 1  t = I n - - I -  t , 

where t is the column of the incidence matrix associated to the transition t. 
Multiplication by i yields 

i . l n  ~ = i . l n + i ,  t .  

Since i .  t _= 0 (mod 2), 
i - i n '  = i .  m ( m o d  2) . 

Vectors with this property will be called modulo place invariant vectors: 
Let k >__ 2 be a natural number, and let N be a net. A vector i E 2~,* is called 

modulo.k place invariant vector of N if, for each column vector t of N, 

i .  t = 0 ( m o d  k).  

A vector i E 2g* is called modulo place invariant vector if it is a modulo-k place 
invariant vector for some k > 2. 

Clearly, each place invariant vector is a modulo-k place invariant vector for 
any k. The inverse does not hold in general. Ill the above example, the vector 
(1, 1,0, 0, 1, 1,0,0) is a modulo-2 place invariant vector but no (classical) place 
invariant vector. 

Each modulo place invariant vector induces a token conservation law: 

T h e o r e l n  15. Let mo be an initial marking of a net N and let m be reachable 
from too. Then each modulo-k place invariant vector i of N satisfies 

i . m 0  = i . m  (rood k) . 

Proof. Since m is reachable from m0, there is a solution for x in IN* of the 
marking equation 

in0 + N • x = m .  

Multiplication by i yields 

i . n l o  + i . N . x  = i . n l .  

A l l  imnlediate consequence is 

i - m 0  + i . N . x  = i . m  (rood k) . 

Since i is a modulo-k place invariant vector, all components of i. N are multiples 
of k. Since x is integral, multiplication by x yields a multiple of k. llence, 

i .  N • x = 0 (rood k) . 

So this product can be removed in the above congruence, which completes the 
proof, o 
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The inverse of Theorem 15 does not hold true in general. Figure 2 shows a 
counter example. However, modulo place invariants allow to characterize the 
integral solubility of tile marking equation: 

T h e o r e m  16. Let mo and m be markings of a net N.  The following propositions 
are equivalent: 

- For each integer k >_ 2 and each modulo-k place invariant vector i, 

i .  m - i .  m 0  ( r o o d / ~ ) .  

- The marking equalion 
m0 + N .  x = m 

has a solution for x over 2g. 

Proof. The direction (¢:=:) was already part of the proof of Theorem 15. So only 
(==~) remains to be proven. Let S = Q • N .  P be the Smith normal form of N 
with diagonal elements st,t ,  . . . ,  8a,a. Define b = ( b l ,  b2 , . . . )T  = Q.  (m - m 0). 
By Theorem 14, it suffices to show: 

(a) si,i divides bi (1 < i < a), and 
(~) b~ = 0 (i > ~). 

Let k be the least multiple of sa,a which is greater than all values ]bi], the 
components of b. By assumption, every modulo-k place invariant vector i satisfies 
the congruence 

i .  ( m  - too)  - 0 (rood k ) .  

(a) Let 1 < i < a. Since si,i divides Sa,a and since k is a multiple ofsa,a, the 
number si,i divides k. So we can define the integral vector 

( Yi = 0 , . . . , 0 , - - ,  ~.. ,0  
Si,i 

with a positive i-th component. Multiplication by the matrix S yields 

y i - S  = ( 0 , . . . , 0 ,  k , 0  . . . .  ,0)  . 

Substituting S by Q • N .  P and nmltiplying both sides of the equation by P -  t 
proves 

yi • Q .  N = (0 , . . . , 0 ,  k , 0 , . . . , 0 ) ,  p - t  

Since p -1  is an integral matrix, each component on the right hand side of this 
equation is a multiple of k. Therefore, Yi* Q is a modulo-k place invariant vector. 

The assumption implies 

Y i  " Q "  ( I l l  - -  1110)  = Y i  " b ~ 0 (rood k) . 

By the definition of Yi follows 

k 
bi = 0 (rood t~). 

8i,i 
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This congruence holds true if and only if si,i divides hi. 

(fl) Let i > a. Then 
e i . S = 0 .  

As in the previous case, substituting S by Q - N - P and multiplying both sides 
of the equation by P - 1  proves 

e i . Q . N = 0 .  

Hence, ei • Q is a place invariant vector. So it is also a modulo-k place invariant 
vector. The assumption implies 

ei • Q .  (111 - -  h i 0 )  " -  ei . b = bl =-- 0 (rood k) . 

Since k was chosen greater than Ib~l, we finally obtain bi = O. [] 

This theorem states that,  if there is no integral solution of the marking equation, 
then there exists a modulo place invariant proving the non-reachability of the 
marking under consideration. So the proof technique based on modulo place 
invariants is exactly as powerful as the verification technique based ou (M4). 

3.5 C a l c u l a t i n g  M o d u l o  P l a c e  I n v a r i n n t s  

Theoreln 16 referred to all modulo place invariauts of a net. I11 its proof we 
showed that  it suffices to consider a fixed modulo nmnber k which depends on 
both the net and the difference between tile considered markings. For a given net, 
no number k suffices for all markings: Every marking m0 + k ei agrees with m0 
oil all modulo-k place invariant vectors. IIowever, in general there are no integral 
solutions for arbi trary vectors ei of tile corresponding equation N • x = k ei. 

A finite set of modulo place invariants with different numbers k is not suffi- 
cient, too. We could equivalently choose a common multiple of these numbers as 
a common modulo number and run into the same problem as above. Therefore, 
no finite set of modulo invariants identifies all markings without integral solution 
to the marking equation. Tile situation is different for classical place invariauts: 
Every integrat base of the vector space of' solutions of N .  x = 0 suffices to prove 
the non-solubility of the marking equation in the rational numbers. 

The following theorem shows that,  combining classical place invariants and 
modulo place invariants, a finite set of vectors comprises the expressive power 
of all classical place invariants and modulo place invarimats. 

The  following notations will be useful: Each place invariant vector i of a net 
N is called a modulo-O place invariant vcctor. Each place vector i C 2Z* is called 
modulo-I place invariant vector. For arbitrary u E ~ ' ,  we write u _= u (rood 0) 
and for arbi trary u, v E 2Z, we write tt = v (mod 1). 

P r o p o s i t i o n  17. Let u and v be i~tleyers, and let k E IN. Then u =_ v (rood k) 
i f  and only i f  l u -  v[ is a multiple of k. [] 
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P r o p o s i t i o n  18. Let N be a net, and let k E IN. An integral place vector i is 
a modulo.k place invariant .vector if and only if  i • N = k j for some integral 
transition vector j .  

Proof. For k = 0, the equation coincides with the definition of place invariants. 
For k = 1, choose j = i .  N. For k > 2, we have i • N = k j  for some integral 
transition vector j if and only if each component of the vector i .  N is a multiple 
of k. Since these components are the products i • t for column vectors t of N,  
the equation holds exactly for modulo-k place invariant vectors. [] 

We will show that every row of the transformation matrix Q of the Smith 
normal form is a generalized modulo place invariant vector. The so detined set of 
modulo place invariant vectors is complete in the sense that  no larger set allows 
more implications for the non-teachability of a marking. 

L e m m a 1 9 .  Let N be a net with n places. Assume that S = Q • N .  P is the 
Smith normal form of N with diagonal elements sl ,1, . . . ,Sa,a.  For a < i < n, 
define si,i = O. Then, for 1 < i < n, the i-th row vector of the matrix Q is a 
modulo-si,i place invariant vector. 

Proof. For 1 < i < n, let qi denote the i-th row vector of the matrix Q. 
The equation S = Q • N • P implies 

Q . N = S . p  -1. 

Since S is a diagonal matrix with diagonal entries s1,1, s~,2,..., each entry si,i 
satisfies 

ql " N = s i , i  • P i ,  

where Pl is the i-th row of p - t .  Since p - t  is an integral matrix, Pi is integral, 
too. So Proposition 18 can be applied; it yields: qi is a modulo-si,i place invariant 
vector. O 

T h e o r e m  20. Let mo and m be markings o /a  net N with n places. Assume that 
S = Q . N . P  is the Smith normal form of N with diagonal elements s i n , . . .  ,sa,a. 
For a < i < n, define 8i, t = O. Then the following propositions are equivalent: 

- For 1 < i < n, the i-th row ql of the matrix Q satisfies 

qi • m _-- ql • mo (mo<l si,i) . 

The marking equation 

N • x = I n  - I n  0 

has an integral solution for x. 
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Proof .  
(¢==) For the rows qi satisfying si,i = 0, the vector qi is a classical place invariant 
vector. Since the marking equation has an integral solution, it has in particular 
a rational solution. So 

This is equivalent to 

qi " In : qi " l n o  , 

ql "m =__ qi 'm0  (mod 0) . 

For the rows qi satisfying si,i = 1, nothing has to be shown. For the rows qi 
satisfying si,i > 2, the proposition follows immediately from Theorem 16. 

(::=~) Let 

b = (b l , . . . , bn )  = q .  ( i n - m 0 ) .  

By Theorem 14, it suffices to show: 

(~) si,i divides bi (1 < i < a), and 
(~) b~ = 0 (i > ~). 

The assumption implies that every row qi of Q satisfies 

ql " (m - m0) -- 0 (rood si, i)  • 

By the definition of b, bi is a multiple of si,i for each i. This implies (c~) for 
1 < i < a, and it implies (/3) for i > a. o 

B i b l i o g r a p h i c  R e m a r k s  

Tile material of this section is essentially based on [DeNR96], This applies in 
particular to modulo-invariants and their relation to the marking equation. 

A survey on the reachability problem and related topics with emphasis on 
decidability and complexity issues can be found in [EsNi94]. [Jant87] studies tim 
complexity of solutions of the marking equation in various domains. 

[CoSi91] studies non-reachable markings that nevertheless possess solutions 
to the marking equation. 

The reachability problem is simpler for certain subclasses of Petri nets. An 
example are live and bounded marked free-choice Petri nets where the initial 
marking can always be reached again. [DeEs93, DeEs95] show that in this class 
a marking is reachable if and only if the marldng equation has a rational solution. 
So, for this class, place invariants can disprove reachability for all non-reachable 
markings. 
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4 T r a p s  a n d  S i p h o n s  

The marking equation does not always suffice to identify all non-reachable mark- 
ings of a marked net. Figure 2 provides an example; the marking 

mt = (0, 1,0,0, 1,0,0) T 

of the net shown in the figure is not reachable from the depicted initial marking 
although the marking equation has a nonnegative integral solution. 

Another technique for proving non-teachability is given by traps, discussed in 
detail in [DeRe98]. A trap is a set A of places satisfying A* C *A. The following 
proposition formulates the salient property of traps'. 

Propos i t ion  21. Let mo and m be markings of a net N such that m is reachable 
from too. Then each trap A of N containing a place marked at mo coutai,s some 
place marked at m. [] 

In the net shown in Figure 2, the set 

A = {sl,s3, s4, s6, sT} 

is an initially marked trap. So, for all reachable markings, at least one place 
of the trap A is marked. In particular, this trap proves that the marking mt 
defined above is not reachable, because it marks no place of A. Thus, traps 
provide a proof technique for nou-reachability that adds expressive power to the 
techniques based on the marking equation of the previous section. 

4.1 Traps and  Reachabil i ty 

Traps generate a necessary condition for a marking m to be reachable from an 
initial marking m0 of a net: 

(T1) I f  some trap A contains a place marked at mo then it contains a place 
marked at m. 

The proof technique for non-reachability based on (TI) tbrnmlates a suitable 
set of places, checks the trap property, and verifies that the initial marking marks 
at least one place of this trap whereas the marking under.consideration does not. 
Both the defining property of a trap and the conditions for the two markings 
are easily verified. 

It is more difficult to use (T1) for verification. We present a linear algebraic 
approach in the sequel. A transition might have more input places that belong 
to some trap than output places. Thus, the token count of a trap can decrease by 
the occurrence of transitions. The trap condition only requires that, whenever 
the transition consumes at least one token from a place of a trap then it also 
adds at least one token to a place of this trap. Ilence, by an appropriate weight 
of output places, we obtain the inequality expressed in the following lemma. 



279 

L e m n l a  22. A set A of places is a trap if and only if, for each transition t, 

t 'tt . I A n t ° t  > I A n ' t t .  

Proof. 
(::==~) Let t be a transition. If t ~ A'  then [A f'l °t I = 0 and we are finished. So 
assume t E A e. Then t E *A, because A is a trap. Therefore, IAf3t* I >_ 1. So we 
obtain 

I ' l l .  IAnt ' l  > I'll > I A n ' t l ,  

(¢==) Let t be a transition ill A e. Then ]AN ' t  I > 0. Tile hypothesis yields 

I ' l l .  IAn t ' l  > IAnq l  > 0 

and therefore [A Clt*] > 0. This implies t E *A. rn 

Recall that,  for a transition t of a net, x(*t) is the characteristic vector of 
its pre-set and X(t*) is the characteristic vector of its post-set. Both vectors are 
place vectors. Their sum is the column t of the incidence matrix, 

L e m m a 2 3 .  A set A of places of a net is a trap if and only if there exists a 
nonnegative place vector x in q~* such that 

- a component of x is 0 if and only if the corresponding place belongs to A 
(i.e., A is the carrier set of x),  

- for each transition t of N,  

I't l  x ( t ' ) ,  x > x ( * t )  • x .  

Proof. 
(=:~) The characteristic vector of A enjoys the property required for x, We have 

x ( t ' )  • x (A)  = IA n t ' t  and ,~:('t). x(A) = IA rq " t l .  

The inequality follows by Lemma 22. 

(¢==) Let t E A ° be a transition. The assumption on x implies x ( ' t )  • x > O. 
Hence, 

I*tl x ( t ' ) ,  x > x ( * t )  . x  > 0 

by the second assumption. Therefore, ,~(t °) - x > 0. Again using the assumption 
on x, this inequality implies t E "A. Ilence A is a trap. [] 

Deciding (T1) can be reduced by Lemma 23 to the rational solubility of the 
following system of inequalities: 
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T h e o r e m  24. Let N be a net and too, m be markings of N.  There is a trap 

- containing a place s satisfying too(s) > 1, and 
- containing no place s satisfying re(s) >_ 1 

if  and only if the following system of inequalities has a solution: 

m 0  r • x > 0 ,  

m T . x  < 0,  
( t ' t l  • x ( t  ° )  - x ( ' t ) )  . x >__ o for  each trausiUo,  t ,  

x > _ O .  

Proof. Tile third and fourth inequality ensure that the carrier set of the solution 
vector is a trap, by Lemma 23. The first inequality states that  initially at least 
one place of tile trap is marked. Thc second inequality states that  no place of 
the trap is marked at m. [] 

If tile system of inequalities has any solution, then, by Lemma 22, the carrier 
set of this vector is a trap and the characteristic vector of this trap is a solution, 
too. So, if soluble at all, the system of inequalities has a solution x in {0, 1}* 
which moreover satisfies m T • x = 0. 

(T1) can be decided efficiently, because the system of inequalities of Theo- 
rem 24 can be solved in polynomial time, by Proposition 1 (l). 

4.2 Siphons  a n d  l ' teachabi l i ty  

Siphons and traps are very similar concepts. Whereas a trap A satisfies A* C_ *A, 
a siphon is a set of places satisfying *A C A' .  Siphons containing no initially 
marked place will never gain a token (see [DeRe98]): 

P r o p o s i t i o n  25. Let mo and m be markings of a net N such that m is reachable 
from too. Then each siphon A of N containing no place marked at mo contains 
no place marked at m. n 

So also siphons generate a necessary condition for a marking m to be reach- 
able from the initial marking m0: 

(S1) I f  some siphon A contains no place marked at mo then it contains no 
place marked at m. 

As for traps, a proof techniquc for non-reachability based on (S 1) tbrmulates a 
suitable set of places, checks tile siphon property, and verifies that tile initial 
marking nmrks no place of this siphon whereas tile marking under consideration 
marks at least one place of this siphon. 

Using (S1) tbr verification of non-reachability follows closely the above lines 
for traps. Tile following lemma is an analogue to Lemma 23: 
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L e m m a  26. A set A of places of a net is a siphon "if and only if there exists a 
nonnegative place vector x in ~* such that 

- a component o f x  is 0 if and only if the corresponding place belongs to A, 
- for each transition t of N,  

I t ' l  x ( ' t )  . x > X ( t  ° )  . x . 

Proof. By definition, a siphon of a net (S, T, F) is a trap of the net (S, T, F -1) 
and vice versa, where F -1 = {(u ,v) l (v ,u  ) E F}.  The pre-set *t of a transition 
t in ( S , T , F )  is equal to the post-set t ° of t in ( S , T , F  -1) and vice versa. The 
result follows by Lemma 23. 1:2 

By Lemma 26, (S1) reduces to the rational solubility of the following system 
of inequalities: 

T h e o r e m 2 7 .  Let N be a net and too, m be markings of N .  There is a siphon 

- containing no place s satisfying too(s) > 1, and 
- containing some place s satisfying re(s) > 1 

if and only if the following system of inequalities has a solution: 

I n 0  • x ~__ 0 , 

l n . x > 0 ~  

(It ' l .  x ( ' t )  - x ( t ' ) )  . x >__ 0 f o r  each t r a n s i t i o n  t ,  
x > 0 .  

Proof. Analogously to the proof of Theorem 24. Q 

There is a polynomial time algorithm to decide (S1) by Theorem 27 and Propo- 
sition 1 (1). 

B ib l iograph ic  R e m a r k s  

Calculating traps and siphons using equation systems was suggested in [Laut87b]. 
The characterizations of traps and siphons used in this section are based on re- 
suits from [EzCS93]. 

5 Verif icat ion of  Facts 

In contrast to properties like liveness and boundedness, considered in [DeRe98], 
properties of Petri nets that are specific for a given net are studied ill this 
section. We concentrate on state based properties, i.e., properties formulated ill 
terms of markings of a net. Figure 4 shows a typical example. This net models an 
algorithm that guarantees nmtual exclusion of critical sections of two concurrent 
processes. The critical sections are modeled by the places s2 and s4. 
For proving mutual exclusion, it has to be shown: 
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Fig. 4. Mutual exclusion 

(M1)  At no reachable marking, both e2 and s4 are marked. 

Conversely, this specification states a property for all reachable markings, namely 
that  either s2 or s4 is not marked. It is not difficult to verify that  the example 
net satisfies this specification, by constructing the set of all reachable markings. 
However, we aim at proving such properties by linear algebraic techniques, be- 
cause the explicit construction of all reachable markings is not feasible in general. 

We restrict to state based properties shaped: 

Every reachable marking satisfies 7~, 

where ~ is a predicate over minimal or maximal token counts on places. The 
property (M1) belongs to this class, because it is equivalently fornmlated as 

( M I ' )  Every reachable marking m satisfies (m(s~.) = 0 V re(s4) = 0). 

5.1 L inea r  P r e d i c a t e s  

A state of a system corresponds to a marking of its Petri net model. So a predicate 
of a net is a relation on tile token count of places. IIere, we consider ally marking 
of a net and do not stick to markings reachable from some initial marking. A 
predicate is interpreted on markings; for each marking, it is either satisfied or 
not. IIence, a predicate is uniquely determined by the set of markings for which 
it holds true. 

Predicates will be formulated by linear inequalities with variables varying 
over markings. Every such inequality denotes tile predicate given by the set of 
markings satisfying the inequality. More formally, a predicate ia of a net N is 
called linear if it is satisfied by (and only by) the nonnegative integral solutions 
for the varial>le m of a linear inequality 

where u is an integral place vector and v is an integer. The predicate 9 is said 
to be denoted by this inequality. 
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We will additionally employ the following notations: 

- u .  m >_ 1) stands for ( - 1 ) u - m  < ( - 1 ) v ,  and 
- u • m = v represents the two linear predicates u • m < v and u • m :> v. 

Notice that  variables in these inequalities are markings whereas in previous sec- 
tions we considered inequalities with transition vectors as variables. 

Many important  predicates are linear: 

(1) If a place s of a net models a logical condition, the corresponding predicate 
is given by "re(s) > 1". A corresponding inequality in the above form is 

e ,  • m >__ 1 . 

(2) The set of markings that mark at least one place of a set A of places is 
denoted by the predicate 

x(A) .  m > 1. 

(3) Each place invariant vector i defines two linear predicates that  are satisfied 
fbr all markings reachable fi'om the initial marldng m0. They are denoted by 

i . m  = ( i . m 0 )  • 

(4) An upper bound k of a place s is denoted by 

e,  • m < k .  

(5) Two places s and r model mutually exclusive sections if they are never 
marked together. If moreover both places are l-bounded, this predicate can 
be denoted by 

(e, + e r ) . l n 5  1. 
Linear predicates are not closed under conjunction or disjunction in general. The 
complement of a linear predicate is linear, too: 

P r o p o s i t i o n 2 8 .  I f  ~p is a linear predicale, denoted by u . m < 1) lhen its com- 
p l emen t  - ~  is linear; it is denoted by u • m > 1) + 1 . [] 

5.2 I m p l i c a t i o n  o f  L i n e a r  P r e d i c a t e s  

Implications between linear predicates can be characterized by means of systems 
of inequalities: 

P r o p o s i t i o n  29. A s s u m e  linear predicates T t ,  . . . , ~n,  denoted by inequalit ies 

u / . m  < 1)i (1 < i < , ) .  

Let ta be the l inear predicate denoted by u .  m <_ v. The  set {~al,. • . ,  V',~} impl ies  
(i.e., every mark ing  satisfying all predicates of  this set also satisfies !a) i f  and 

only i f  the fo l lowing inequality sys tem has no solution for  m over IN. 

U 1 • I l l  _~ '01 

! 1 2  " n l  _~ I) 2 

U n " I l l  ~__ 'V~, 

u • m >_ 1) + 1 . [:3 
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In the marked net shown in Figure 2, all reachable markings satisfy the 
following inequalities: 

( -1 ,  0, -1,  -1 ,  0, -1 ,  -1  ) . m  < - i  , 
( 2,1, 1, 1,1, t, l ) . m <  2.  

Now we show that these predicates imply the mutual exclusion of s2 and ss. 
According to Proposition 29, we add the complement of the inequality 

(0, 1,0, 0, 1, 0 , 0 ) . m _ <  1 

to the above inequalities: 

( - 1 ,  0 , - 1 , - 1 ,  0, -1,  - 1 )  .m  < - l ,  
( 2, 1, 1, 1, 1, 1, 1 ) . m _ <  2, 
( 0 , -1 ,  O, 0 , -1 ,  O, O ) . m < - 2 .  

All inequalities are fornmlated in terms of the relation "<". ttence, summing up 
the respective left hand sides and right hand sides yields one more inequality 
which is implied by the other inequalities. In the example, this sum is 

( l, O, O, O, O, O, O ) . m < - 1 .  

Clearly, this inequality does not have any nonnegative solution for m. Therefore, 
the three inequalities above have no common nonnegative solution for m, and 
we are finished. 

The same result is shown easier if the property of the marking m being non- 
negative is added in terms of inequalities. Then, it suffices to prove that there is 
no integral solution for m. In the above example, the inequality 

( - l , O , O , O , O , O , O ) . m < O  

can be added, and we gain the contradiction "0 < -1",  
Proposition 29 also states that a linear predicate ~o does not follow from other 

linear predicates if the inequality system given in the proposition has an integral 
solution. In fact, every solution constitutes a marking that satisfies all premises 
but does not satisfy ~,. 

We mentioned already that neither the conjunction nor the disjunction of 
linear predicates is linear in general. Ilowever, the above proof technique can be 
extended to such predicates. The following results, recalled from propositional 
logic, will frequently be used: 

P ropos i tkm 3(}. Let ~l . . . .  ,~,, be predicates. The set {~1 . . . . .  ~ , }  implies the 
conjunction of linear predicates Ct, . . . ,~/)k i f  and only i f  it implies every ¢i 
(1 < i < k). It implies the disjunction of linear predicates ¢ 1 , . . . ,  ~'k i f  and only 
i f  the set {~l ,  .. . , ~n , '~¢ i ,  . . . , "~'¢'k- t } implies the predicate Ck. f3 
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As an example, consider the predicate that holds for all markings of a net 
except one particular marking ml (non-reachability of ml). This predicate is 
expressed by a disjunction of linear predicates, denoted by the inequalities 

e ,  . m  < , n l ( s ) -  1 , 
e, . m  > m l ( s ) +  1 , 

for each place s. For proving that this predicate is implied by a set {~ot,..., ~ok } 
of linear predicates, it suffices to show the non-solubility of the following system 
of inequalities: 

111 " 111 __. ?)l  , 

I I  k " I I I__~ 'O  k , 

e s , - m  = ml(Sl) , 

e , .  ' In = ml(Sn) , 

where the first k inequalities denote the predicates ~0t,..., ~'k and s t , . . . ,  s ,  are 
the places of the net. 

Thus, the technique of Proposition 29 can be generalized from linear predi- 
cates to propositional formulas constructed from linear predicates. To this end, 
w.l.o.g, assume a formula in conjunctive normal form. Then, all clauses can be 
proven as shown above. 

5.3 Facts  and Place  Invariants  

We are particularly interested in facts of initially marked nets, i.e. predicates 
that hold for all markings reachable from the initial marking. Facts can be used 
to establish other facts: 

P ropos i t i on  31. Given an initially marked net, each predicate implied by a set 
of facts is a fact, too. 0 

In particular, each weakening of a fact is also a fact. 
A given predicate ¢ is a fact if and only if the strongest fact 

¢o = "is reachable from the initial marking" 

implies ¢. In most cases, the proof of this implication is not trivial because 
¢o characterizes the set of all reachable markings, a set difficult do deal with. 
Neither the predicate ¢0 nor the predicate ¢ is linear in general. Implications of 
linear predicates can nevertheless be used, when the following steps are taken. 

(1) The predicate ¢o implies linear predicates ~'t ,-- . ,~n. 
(2) The set of predicates {~x, . . . , ~n } implies further linear predicates ~t ,  . . . , ~ 
(3) The set of linear predicates { ~ ] , . . . , ~ }  implies ¢. 
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Step (2) was discussed in the previous subsection. Step (3) consists of logical 
transformations. As an example, ¢ could be the conjunction or the disjunction 
of linear predicates. In our examples, ¢ is always a linear predicate itself. Proof 
of step (l) requires inequalities from the structure of the net and from the initial 
marking such that the linear predicates ~'1 . . . .  ,~,~ hohl true for at least all 
reachable markings. 

Place invariants provide an example, as shown above. In the example of 
Figure 2, the vector i = (2, 1, 1, 1, 1, 1, 1) is a place invariant vector. Together 
with the initial marking, it generates the second of the above inequalities: 

( 2 , 1 , i ,  i ,  I, I , I )  . i n  < 2 .  

Other linear predicates are derived from traps; by Proposition 21, every initially 
marked trap A induces the linear predicate 

x(A)" m >_ I . 

In the above example, the first inequality 

( - 1 , 0 , - 1 , - 1 , 0 , - 1 , - 1 )  . m  _< - 1  

states that  the set of places {sl, sa, s4, s6, ST} contains at least one marked place. 
This predicate is a fact because the set constitutes an initially marked trap. 
Finally, each initially marked siphon A generates the fact 

x ( A ) . l n  _< O. 

It was previously shown that the marking equation has no solution if and 
only if some place invariant proves the considered marking non-reachable. Now 
this result is used for proving facts using place invariants. To this end, let the 
linear predicates ~1 , . . . ,  ~ ,  be denoted by the inequalities 

u i . m < v l  ( l < i < n ) .  

Ill each inequality, tile variable marking m can be replaced by m0 + N • x as, 
for every reachable marking m, there exists some nonnegative integral solution 
to the marking equation m0 + N • x = m. Thus, for I < i < n we obtain the 
inequalities 

ui"  (too + N . x )  _< vi • 

Trausformation yields 

(ul .N)  .x  <_ vi - ui .m0 . 

Each place invariant vector i induces two linear predicates, given by the equation 

i .  Ill = ( i .  l n O )  . 

Substitution into the above inequMity leads to 

( i . N ) . x  = ( i . m 0 ) - i . m  0 . 
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Since i .N = O, both sides evaluate to O, independently from the value o fx .  Ilence, 
these inequalities generated by place invariants carry no informatiou and can be 
dropped. In particular, if a linear predicate follows only from place iuvariants 
then it suffices to consider a single inequality: 

T h e o r e m  32. Let N be a net with initial marking too. A linear predicate, de- 
noted by u . m < v, follows from linear predicates generated by place invariants 
if  and only if the following system of inequalities has no rational solution for x: 

( u .  N ) .  x > v + 1 - u " I l l  0 , 

x > 0 .  

Cl 

5.4 Facts, Traps and Siphons 

Each initially marked trap A yields a very simple linear predicate that  can be 
used for proving facts of a marked net: 

x (A)  . m  > 1, 

i.e., the trap is marked at each reachable marking m (Proposition 21). 
Now we are interested in a corresponding verification technique: Given a 

linear predicate, is there a trap that proves that this predicate is a fact? In 
general, the construction and investigation of all traps is not efficient because 
the number of traps can grow exponentially w.r.t, the size of the net. 

The expressive power of all place invariants is characterized by solubility of 
the marking equation. Hence the verification of a fact using place iuvariants re- 
duces to the solubility of a single system of inequalities, as shown in the previous 
theorem. Similarly, we will develop a system of inequalities that has a solution if 
and only if some trap proves that a given linear predicate is a fact. More formally, 
we aim at constructing a linear predicate characterizing the set of markings with 
at least one marked place in each initially marked trap. The inequality for this 
predicate does not only have variables fbr markings but also additional variables. 
The number of these additional variables exceeds the number of transitions of 
the net by one. Therefore, the solubility of corresponding systems of inequalities 
is still polynomial in the size of the net. 

Recall (TI)  from the previous section: 

( T 1 )  I f  some trap A contains a place marked at the initial marking mo then 
it contains a place marked at m. 

By Lemma 23, a set A is a trap if and only if there exists a nonnegative place 
vector x in (l)* such that 

- a component of x is 0 if and only if the corresponding place belongs to A 
(i.e., A is the carrier set of x), and 

- for each transition t of N we have [*t I x(t*) • x > x ( ' t ) ,  x. 
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The vector ['t[ x ( t ' )  - x ( ' t )  is a place vector for each transition t. We employ 
these vectors as columns of a matrix B. Then a set A is a trap if and only if it 
is the carrier set of a non-negative solution for x of the inequality 

B T . x >  0 .  

ttence, given a net with all initial marking m0 and some marking m, there is 
a trap A containing at least one place marked at m0 and containing no place 
marked at m if and only if there is a solution to the following system of inequal- 
ities: 

no • x > 0, 

r e . x < 0 ,  
D T .x>O, 

x > o .  

A variant of Farkas' Lelmna was employed in the second section of this paper 
(Proposition 12). IIere, another variant will be usefill, which can e.g. be found 
in [Schr86, Corollary 7.1f, page 90]. 

P r o p o s i t i o n  33. Ezactly one of the following systems of inequalities has a so- 
lution over Q: 

A . y < b , y > O ,  
A T-x>O, b . x < O ,  x > O .  

n 

Consider an additional colunm to the previously defined matrix B that con- 
tains the componeuts of the vector ( - 1 ) m .  Substituting this extended matrix 
[B I ( - 1 ) m  ] for A and the vector ( - 1 )m0  for b, the above system of inequalities 
exactly matches the second row of Proposition 33. Therefore, Farkas' Lemma 
proves that  this system has no solution if and only if the following system is 
soluble: 

[n I ( - l ) - q  .y < ( - 1 ) m 0 ,  
y>0. 

In other words, this system of inequalities has a solution for y if and only if the 
marking m marks all initially marked traps. 

Let y be the last component of the variable vector y, and decompose y into 
y. Then tlle above system is equivalently represented as: 

ym>_ B . : ~ + m 0 ,  
:~>0, 
y>_0 .  

If there is a solution satisfying y = 0, the same solution vector ~ completed 
by any positive value for y is also a solution, because m is a marking with no 
negative components. So the last line of the above system can be replaced by 
y > O, without changing the solubility of the system. Division by y yiehls 

, .  >_ n .  + 1.o, 
: 9 > 0 ,  
y > 0 .  
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Setting ~, = ~ .  ~ and z = ~ yields 

m_> B . i +  z m 0  , 
i>__O, 
z > O .  

This form is linear in the variables in, ~ and z. The following theorem recaptures 
the result of these transformations. 

T h e o r e m  34. Let N be a net with initial marking too. Each trap containing an 
initially marked place contains a place marked at a given marking m if and only 
if the following system of inequalities has a rational solution for ~ and z: 

[I] [ nlO 1(-1)I]" [ i1] 1 ) 0 ,  z ) O ,  z ) O ,  

where the matrix B is the matrix defined above and I is the identity matrix. 
[] 

Since, for every reachable marking, there is a solution to this system of inequal- 
ities, every implied linear predicate is a fact. Its expressive power comprises the 
expressive power of all initially marked traps: 

C o r o l l a r y  35. Given an initially marked trap A, its generated fact x (A)  • an > 0 
is implied by the system of inequalities given in Theorem 34. n 

Siphons can be used for the verification of facts in a similar manner. Recall 
the reachability criterion for a marking m generated by siphons from the previous 
section: 

(S1) If some siphon A contains no place marked at the initial marking mo 
then it contains no place marked at m. 

By Lemma 26, a set of places A is a trap if and only if there exists a non-negative 
place vector x in Q* such that  

- a component of x is 0 if and only if the corresponding place belongs to A, 
- for each transition t of N, we have It' I X'(*t) • x >__ x( t ' )  • x. 

Similarly as above, we employ the vectors It* IX (* t) - x'(t*) as columns of a matrix 
C. Then a set A is a siphon if and only if it is the carrier set of a non-negative 
solution for x of the inequality 

CT.x > O. 

Hence, given a net with an initial marking m0 and some marking m, there 
is a siphon A containing at least one place marked at m and containing no 
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place marked at m0 if and only if there is a solution to the following system of 
inequalities: 

l n . x > O ,  
m0. x < 0 ,  
C v - x > 0 ,  

x > 0 .  

We apply again Farkas' Lemma (Proposition 33), taking [C I(-1)m0] for A and 
( -1)  m for b. Tiros, there is a solution of the above system if and only if the 
following system of inequalities has no solution: 

[C I ( - l ) m 0 ] . y  < ( - 1 ) m ,  
y > 0 .  

The following theorem follows immediately: 

T h e o r e m  36. Let N be a net with initial marking too. Each trap containing no 
initially marked place contains no place marked at a given marking m if and 
only if the following system of inequalities has a rational solution for ~, and y: 

['] [Cl(-X)moli] .  y <O,~_>o,y>__O, 
n l  

where C is the matrix defined above and I is the identity matrix, t3 

This system of inequalities has a solution for every reachable marking because 
unmarked siphons remain unmarked. Its expressive power comprises the expres- 
sive power of all initially unmarked siphons: 

Coro l la ry37 .  Given an initially unmarked siphon A, its generated fact 
x(  A ). m <_ 0 is implied by the system of inequalities given in Theorem 36. 1:3 

5.5 Deadlock-freeness  and Facts 

Tile enabling condition of a transition call be formulated by means of a conjunc- 
tion of linear predicates: For each input place of the transition, a linear predicate 
demands a token. For transitions with only one input place, enabledness is thus 
described by exactly one linear predicate, which is called enabling predicate of 
the transition. 

If a transition has more than one input place but all its input places are 
bounded by 1, then one enabling predicate is sufficient, too: 

P ropos i t ion  38. Let t be a transition of a marked net and assume that every 
place in *t is 1-bounded. Then t is enabled at a reachable marking m if and only 
if 

x ( ° t )  • m > I°tl . 
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Proof. Tile value x(°t)  • m denotes the number of tokens on input places of t at 
a nmrking m. If none of these places carry more than one token, X(*t) • m > I 'tl  
implies that every input place is marked at m. Conversely, x ( ' t ) . m  < I*tl implies 
that at least one place in °t is unmarked at m. [] 

By 1-boundedness, tile value x ( ' t ) "  m never exceeds t't[. Hence, the relation 
symbol ">" can be replaced by "=",  

If every transition of a net has a single enabling predicate, a marking is 
dead if and only if the disjunction of these enabling predicates holds true for 
this marking. Hence, for showing deadlock-freeness, this disjunction has to be 
proven a fact. The following theorem states this result for l-bounded marked 
nets: 

T h e o r e m  39. A net N with a l-bounded initial marking mo is deadlock-free if 
and only if  every reachable marking m satisfies the linear predicate 

x(°t), m ~ l°tt 

for at least one transition t. [] 

In all previous examples, it is possible to prove deadlock-ffeeness with this 
technique, employing only place invariants. In other words, in all these marked 
nets, the disjunction of the enabling predicates is implied by linear predicates 
generated by place invariants. 

12 

s6 

Fig. 5. A deadlock-free marked net 

Tile marked net shown ill Figure 5 is also deadlock-free but this property 
cannot be proven by help of place invariants only. The marking 

m = (0 ,1 ,0 ,0 ,1 ,0)  r 
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is a (non-reachable) dead marking, tlowever, we have 

m0 + N • (2,2,2,0,  1,1,1) "r = m .  

Hence, by Proposition l l ,  the marking m agrees with the initial marking m0 on 
all place invariants. However, non-reachability of m can be proven by help of a 
trap; the set 

A = {s3, s4, s6} 

constitutes an initially marked trap which is not marked at m. 
Not only the dead marking m is non-reachable, but any dead marking, as 

will be shown next. Consider the place invariant vectors 

il = (1, 1,0, 1,0, 1) and i.~ = (0,0, 1,0, I, 1).  

The place invariant vector it proves that the places s l , s 2 ,  s4 and s6 are 1- 
bounded, whereas i2 moreover proves 1-boundedness of the places s3 and aS. 
We show that these place invariants and the trap A suffice to prove that the 
disjunction of the enabling predicates is a fact. Equivalently, we show that the 
following system of inequalities has no integral solution for m: 

[l] (1, 1,0, 1,0, 1) . m  = 1 place invariant it , 
[2] (0,0, 1,0, 1, I ) .  m = 1 place invariant i2, 
[3] (0, 0,1,1, 0,1) . m > l trap A,  
[4] (0 ,0 ,0 ,0 ,0 ,1 ) . an  = 0 t l  and I;2 are not enabled, 
[5] ( 1 , 0 , 0 , 0 , 0 , 0 ) . m  = 0 t3  and 1;4 are not enabled, 
[6] (0,1,1, 0, 0, 0) - m < 1 1;S is not enabled, 
[7] (0, 0, 1, 1, 0, 0) .  m < 1 1;6 is not enabled, 
[8] (0,0,0, 1, 1,0). an _ 1 t7  is not enabled, 

Assunm that some marking m satisfies all these inequalities; we aim at deriving 
a contradiction. 

By [5], re(s1) = 0. By [4], re(s6) = 0. 
Assume that re(s3) > 1. Then, by [6], re(s2) = 0 and, by [7], re(s4) = 0, 

contradicting [1]. 
Now assume that m(s$) = 0. Then, by [3], re(s4) >_ 0 and hence, by [8], 

m(sS) = 0, contradicting [2]. 
So we obtain a contradiction in both cases, which finishes the proof. 
Notice that, for this example, we have to consider solubility of the system of 

inequalities over ,~ because there exists a rational solution; the marking 

( )T 
I I I I 0 

m =  0 , 2 , 2 , 2 , 2 ,  

satisfies all above inequalities. 
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B i b l i o g r a p h i c  R e m a r k s  

Place invariants and other structural techniques for proving facts are suggested in 
many publications. See e.g. [Reis85]. The main results on traps (Subsection 5.4) 
are taken from [EsMe96]. The representation of the enabling condition by a 
linear inequality was introduced in [Dese85]. The example of a live and safe 
marked net for which deadlock-freeness can not be proved by place invariants 
can be found in [Dese88]. The paper [TeCS93] contains a deeper discussion of this 
analysis technique. In particular, techniques for reducing the number of enabling 
predicates are presented. 

6 The  Rank Condit ions 

The rank conditions provide a sufficient criterion and a necessary criterion for 
liveness of bounded marked Petri nets. In particnlar, they establish relations 
between a net's behavioral property and the rank of its incidence matrix. This 
connection might be surprising because the rank of the incidence matrix has 
no obvious interpretation in terms of behavior. Moreover, it is invariant against 
addition of rows or cohmms, nmltiplication by numbers and even transposition. 
All the corresponding transformations of a net structure cause significant changes 
of behavior that do not preserve properties such as liveness. 

As shown in [DeRe98], every live and bounded marked net has a positive 
transition invariant. The column rank of the incidence matrix of a live and 
bounded marked net is therefore not maximal; it never exceeds IT I - 1, where 
T is the set of transitions of the net. Transition invariants are closely related 
to occurrence sequences that lead from a marking back to itself. If a net has 
only one transition invariant (and its multiples) then the relative number of 
transition occurrences in an occurrence sequence that leads from a marking to 
itself is very restricted. In particular, no conflict can occur again and again. If 
there is a conflict between transitions tl and t2 then tl could be chosen more 
often than t~ or vice w~.rsa. In this case, therc exist transition invariaut vectors 
j l  > 0 and ju > 0 such that 

j~(t~) > j~(t~) and j~(~) < j..,(t2). 

Then tile rank of tile incidence matrix does not exceed IT[ - 2 because j l  and j~ 
are linearly independent. 

These considerations suggest that the rank of the incidence matrix of a net 
is related to the number of its possible conflict situations. The rank conditions 
tbrnmlate such relations. 

Two distinct transitions are said to be in potential cow,filet if their pre-scts 
are not disjoint. The  conflict appears when both transitions are enabled and a 
common input place carries only one token. The conflict area of a transition t 
is the minimal set of transitions that  contains t and is closed under potentially 
conflicting tansitions. Formulated differently, it is an equivalence class of the 
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s2 
t3 

tl 
t4 

sl t5 

t6 

Fig. 6. A net with two conflict areas and four different pre-sets of transitions 

transitive closure of potential conflict. In the example of Figure 6, the conflict 
areas are { t l , t2}  and {t3,t4,tB, t6}. 

The sufficient rank condition requires the rank of the incidence matrix to be 
smaller than the number of conflict areas of the net. 

In the sequel, we consider only nets with each transition having a nonempty 
pre-set. Two transitions are in independent conflict if they have identical pre- 
sets. Every marking enabling one of the trmasitions enables the other one, too. 
This relation is an equivalence relation. The number of equivalence classes equals 
the number of different pre-sets of transitions. In the example of Figure 6, these 
different pre-sets are {sl}, {s2,s3}, {s3,s4} and {s4}. 

The necessary rank condition requires the rank of the incidence matrix to be 
smaller than the number of different pre-sets of transitions. 

In the first subsection, strong occurrence sequences will be introduced. This 
technical notation will be used to prove the sufficient rank condition. Strong 
occurrence sequences obey a more restrictive enabling rule in the occurrence 
condition. Strongly ii.ve markings are based on strong occurrence sequences. The 
second subsection considers the sufficient rank equation. This condition is suffi- 
cient for the liveness of a marking. It is sufficient and necessary for strong liveness 
of a marking, as will be shown in the third subsection. In the fourth subsection, 
the necessary rank conditiou will be proven. We do not only provide the upper 
bound for the rank of this condition but a lower bound, too. 

We stick to nets with positive place and transition invariants. The existence 
of a positive place invariant implies that every marking is bounded. If a net 
with a positive place invariant can be marked lively, then it even has a live and 
bounded marking. In this case, there also exists a positive transition invariant 
(see [DeRe98]). Moreover, each net with both a positive place iuvariant and a 
positive transition invariant is strongly connected (Theorem 9). 

We provide a sufficient condition for liveness of a marked net with positive 
place and transition invariants. First we give a condition for potential liveness 
of a net: 

I f  the rank of the incidence matrix is smaller than the number of conflict 
areas then the net can be marked lively. 
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s l  
~2 
s3 
s4 
s5 
s6 
s7  
s8 
sO 

s lO 

£1 t2 t3  t4  t5 t6  t7  t8  t 9 t l O  

- 1  0 0 0 - 1  1 0 0 0 1' 
- 1 - 1  0 0 0 1 1 0 0 0 

0 - 1  - 1  0 0 0 1 1 0 0 
0 0 - 1  - 1  0 0 0 1 1 0 
0 0 0 - 1 - 1  0 0 0 1 1 
1 0 0 0 0 - - 1  0 0 0 0 
0 1 0 0 0 0 - 1  0 0 0 
0 0 1 0 0 0 0 - 1  0 0 
0 0 0 1 0 0 0 0 -- 1 0 
0 0 0 0 1 0 (I 0 0 - I 

F i g .  7.  All example  net  and its incidence m~trix 
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Before proving this result, we demonstrate it by help of an example. Consider 
the net shown in Figure 7. It has the positive place invariant vector 

i = (1, 1, 1, 1, 1,2,2,2,2,2) 

and the positive transition invariant vector 

j = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). 

The rank of the incidence matrix is 5. The set of vectors { t l ,  t2,  t3, t4, t5} is a 
basis of its columns. 

The net has 6 conflict areas, 

{tl, t3, t4, is}, (t(q, {tz}, {is}, {tg}, {tao}. 

So the premise of the above condition is fulfilled. Ilence, the result states that  
the net can be marked lively. In fact, there are live markings; an example is the 
marking depicted in the figure. 

6.1 S t rong  Occur rence  Sequences  and  S t r o n g l y  L i v e  M a r k i n g s  

Two transitions are said to be ill a conflict situation at a marking if both transi- 
tions are enabled and share a common input place. Conversely, a commou input 
place does not guarantee that both transitions are only enabled ill conflict sit- 
uations. For example, if one of the transition becomes enabled before the other 
transition then it might occur before the other transition is enabled. Such a con- 
fused situation can sometimes be avoided by the following restricted enabling 
condition: 

A transition can occur only in case all transitions of  its conflict area are 
enabled, i.e., all places in the pre-set of  transitions of  its conflict area 
are marked. 

In this case, the transition is called strongly enabled. 
Not every transition enabled at a marking is strongly enabled; a marking 

might enable only a subset of a conflict area. In tile example, transition t6 is 
strongly enabled, because {t6} is a conflict area. The marking obtained after 
the occurrence of t6  marks the places s l ,  s2, sS and sS. It enables, anmng other 
transitions, e l .  However, it does not strongly enable e l  because t2  belongs to 
the same conflict area and is not enabled. 

A finite occurrence sequence mo a ~ mn is called a strong occurrence sequence 
if, with (r = tl  . . . t n  and 

) • , ,  ) 11111 

each marking ml - l  strongly enables the transition ti (1 < i < n). In the example, 
the sequence 

a = t6  t8 t l  
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is a strong occurrence sequence, enabled at the initial marking. 
A marking m0 is strongly live if, for each reachable marking m and every 

transition t, there exists a strong occurrence sequence m -? ,  m ~ such that  t 
occurs in a. The initial marking of the above example net is strongly live. 

Clearly, each strongly enabled transition is enabled and each strong occur- 
fence sequence is an occurrence sequence. Each strongly live markiug is live, 
because, in the definition of strong liveness, the marking m is any reachable 
marking. 

6.2 A Sufficient  C o n d i t i o n  for  tile Ex i s t ence  of  a Live M a r k i n g  

A net is potentially live if there exists a live initial marking. In this subsection 
we show that  a net with positive place and transition invariants is potentially 
live if the rm~k of its incidence matrix is smaller than the number of its conflict 
areas. Actually, we show the contraposition: if the net has no live initial marking 
then the rank of its incidence matrix is not smaller than the number of conflict 
areas. The proof consists of the following steps: 

(1) A given net N with positive place and transition invariants has no live initial 
marking. 

The definition of strong liveness and (1) imply: 

(2) The net N has no strongly live initial marking. 

The following Lemma 40 will show that (2) implies: 

(3) For each initial marking of N,  there is a reachable marking which does ~ot 
strongly enable any transition. 

This result will be applied to the marking that associates one token to each 
place. Then the following Lemma 41 will prove: 

(,1) There or.isis a set of transitioT~s {tl, . . . .  t,,} o / N ,  containing e~:actly one 
transition o/each conflict area, and a place vector x satisfying x .  ti < 0 
( l < i < n ) .  

Consider the matrix [tl . . .  t ,] .  By (4), the vector x .  [tt . . .  tn] has only negative 
components. Assume a solution j of [tt . . .  t , ] -  y = 0. Then either j = 0 or j has 
both positive and negative components. In particular, we obtain: 

(5) Every solution j o/[ t l  . . .  tn] • y = 0, y > 0 satisfies j = O. 

Together with (5), Lemma 42 will prove: 

(6) The set { t l , . . . , t n }  is linearly independent. 

Finally, (6) immediately implies the result we are after: 

(7) The rank of N is not smaller than the number o/conflict areas of N.  
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L e l m n a 4 0 .  Let N be a net with positive place and transition invariants and 
let mo be an initial marking of N which is not strongly live. Then there is a 
reachable marking m such that no transition is strongly enabled at m. 

Proof. Since mo is not strongly live, there exist a reachable marking m and a 
transition t such that  m does not enable any strong occurrence sequence contain- 
ing t. In this situation, t is said to be excluded at m. Every transition excluded 
at  a marking m remains excluded at any marking reachable from m by a strong 
occurrence sequence. Now w.l.o.g, assume that  m excludes a maximal set of 
transitions. Then all markings reachable fi'om m by strong occurrence sequences 
exclude the same set of transitions. 

If  a transition is excluded at a marking m then so are all transitions of its 
conflict area. Let K be a conflict area such that  all its transitions are excluded 
at m. Define 12 = • K.  Tile net N is strongly connected because it has positive 
place and transition invariants (Theorem 9). Itence, R is not the empty set. 
The  definition of conflict areas implies K = R •. Therefore, no strong occurrence 
sequence enabled at m contains transitions in R •. 

The marking m is bounded because N has a positive place invariant. IIence, 
the number of tokens on places in R cannot grow unlimited and transitions in 
*R can occur only finitely often in strong occurrence sequences enabled at m. 
Consider a strong occurrence sequence which is enabled at m and leads to some 
marking that  also excludes all transitions in *R. We have chosen the marking 
m such that  the number of excluded transitions is maximal at m. IIence, all 
transitions in *R are already excluded at m. 

Now assume that  u is a transition excluded at m. Then u belongs to some 
conflict area K.  We have shown that  every transition in K and every transition 
in • (*K)  is excluded at m. So every transition connected to u by a directed path  
ending at u is excluded at m. There exists at least one transition excluded at m, 
vic. transition t. Therefore, since N is strongly connected, every transition of N 
is excluded at m. In other words: no transition is strongly enabled at m. [] 

L e m m a 4 1 .  Let N be a net and let mo be the marking of N that associates one 
o 

token to each place. Assume an occurrence sequence mo --- ,  m such that no 
transition of N is strongly enabled at m. Then, for every set { K l , . . .  ,Kk}  of 
coT~flict areas of N there are transitions t! E K t , . . .  ,t~ E K~ and a place vector 
x in IN* satisfying x .  ti < 0 (1 < i < k). 

Proof. We proceed by induction on k, tile number of  considered conflict areas. 

Base. If  k = O, nothing has to be shown. 

Step. Assume k >_ 1 and define K = K I U . . . U K k .  Let R denote tile set of 
places in • K that  are not marked at m. The definition of a conflict area implies 
12" C_K. 

No transition is strongly enabled at tile marking m. IIence, every conflict area 
in {KI,... ,  Kk} has at least one input place in R. Since m0 marks all places, tile 
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occurrence sequence c~ contains t ransi t ions in R* (at  least one for each conflict 
area) .  Assmne tha t  t is the last t ransi t ion occurr ing in ~ t ha t  belongs to R °. 
Then  t ~ *R because places in R are not  marked  at  m.  

W.l.o.g. assume tha t  t belongs to the conflict a rea  Kk. We apply  the induction 
hypothesis  to { K 1 , . . . , K k - t }  and obtain t ransi t ions t i  E Kl  . . . .  , t k - I  E Kk-1 
and a place vector  x ~ in IN* such tha t  x ~. ti < 0 (1 < i < k - 1). Now choose 
the t ransi t ion t for the conflict area Kk,  i.e., set tk := t. The  place vector x is 
defined by 

(IRI + 1) x'(s) if s e ' ( K ,  U . . . U I ( k _ l )  ClR, 
x(s )  = 1 if s E *Kk Cl R, 

0 otherwise.  

Clearly all componen t s  of  x are nonnegat ive  integers. Moreover,  every posit ive 
componen t  belongs to a place in R. We have to show tha t  x .  ti < 0 (1 < i < k). 

Case I. i = k. Then  ti = tk = t. Recall tha t  the vector t (s)  equals 1 for s E t*\*t,  
- 1  for s E *t \ t*  and 0 otherwise.  So 

x ,  = Z Z x s) 

We have t* rl R = 0 because t ~ *R. So the first sum equals 0. Since t E Kk and 
t E R*, there exists  a place s in °t satisfying s E *Kk n R. Then  x ( s )  = 1. So 
the second sum evaluates  to at  least 1, and we obtain x .  t ~ - 1 .  

Case 2. For 1 < i < k - 1, the definition of x implies: 

x .  t~ _< (IRI + 1) x ' .  t~ + It' n ('tCk n R)I _< (I/~l + 1) x ' .  t~ + I/~l • 

Since x ~ • ti is negat ive and integral, we have x '  • ti _< - 1 ,  and hence 

(lr~l + 1) x ' .  ti + It?] < ( - I R I -  1 ) +  lr~l < o . 

D 

L e m m a 4 2 .  Let N be a net with a positive place in'variant. Let { t i , . . . , t k }  be a 
.set of transitions of N,  containing at most one transition of each conflict a~va. 
Then either the set { t t , . . . , t k }  of associated columns of the incidence matriz 
is linearly independent or there are nonnegative coefficients A t , . . . ,  A~ >_ 0 such 
t h a t ( A t , . . . , A k )  i kO a n d A l t t + . . . + A k t k  = 0 .  

Proof. Assume the set  {tt  . . . .  , ¢k } is not linearly independent .  Then  there exist  
coefficients P t , . . . , # k  such tha t  a t  least one of  the tli is posit ive and 

p t t t + ' - - + # k t k = O  . 

For each i, t < i < k, define the coefficient Ai by 

{ t q  if lq >-- 0, 
Ai := 0 otherwise.  
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No hi is negative. Since at least one of the Pi is positive this likewise holds for 
some )~i. Now define the transition vectors j and j~ as follows: 

' ( 
j = t and j '  = . 

The vector j is a transition invariant vector, i.e., N. j  = 0. We will prove N-j ~ > 0. 
Let si be any place and si its associated row vector of tile incidence matrix. 

The negative components in si belong to the transitions in s[. In particular, 
they all belong to a single conflict area. Hence, by assumption, s[ contains at 
most one transition t in { t l , . . . , t k} .  For any other negative component of si, 
the component in j and the component j '  equals 0. We show si . j '  > 0. 

If s~ n { t t , . . . , t k}  = @ then nothing has to be shown. Now assume that  
s~ n { t l , . . . , t k }  = {t}.  

Case 1. I f j ( t )  < 0 then j '( t)  = 0 and we are finished. 

Case 2. If j(t)  > 0 then j ' ( t)  = j(t).  The vector (j' - j )  has no negative com- 
ponents. Furthermore, (j' - j ) ( t )  = 0. So, for each negative component of si, 
the component in the vector (j' - j )  has the value 0. Therefore, si • (j' - j )  > 0. 
Finally, si . j  = 0 implies si . j '  > 0. 

So we obtain 

N . j '  = . j '  > 0. 

s 

The net N has a positive place invariant i, i.e. i > 0 and i • N = 0. IIence, 
i . N . j '  = 0. Now i > 0 and N . j '  > 0 implies N . j '  = 0, 

By definition o f j ' ,  we finally obtain 

~ t t t  + ' "  + ~ktk = 0 

which completes tile proof. [3 

T h e o r e m 4 3 .  Let N be a net with positive place and transition invariants. If 
the rank of N is smaller than the nnmber of conflict areas of N then there exists 
a live initial marking of N. 

Proof. The contraposition of this theorem is given by the implication (1) =~ (7) 
of the previously defined propositions (1) and (7). With the above lemmas, the 
implications (1) =¢, (2) =~ ..- =~ (7) are shown above, r3 

This sufficient condition for potential iiveness can be checked efficiently, i.e., 
in polynomial time: the existence of positive invariants can be decided by solving 
the respective inequality systems and the rank inequality is checked by calculat- 
ing tile rank and counting the conflict areas. 
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6.3 Characterizing S t r o n g l y  Live  Markings 

In this subsection we give a sufficient condition for liveness of a marking. This 
condition is also necessary for strong liveness. 

L e m m a 4 4 .  Let N be a net with positive place and transition invariants. Let 
{ s t , . . .  ,sk} be a set of places of N containing at most one place of each conflict 
area. Then either the set of row vectors {s l , . . .  ,sk} of the incidence matrix is 
linearly independent or there exist nonnegative coefficients A t , . . . , A k  > 0 such 
that (A I , . . . ,Ak )  # 0 and Atst +-- -+Aks:~ = 0. 

Proof. Assume N = (S, T, F).  Let N n = (T, S, F - t )  be the dual net of N, where 
F-1  = {(Y, x)](x., 9) E F}. Then N d is the transposed matrix of N. Each positive 
transition invariant of N is a positive place invariant of N d, and vice versa. The 
net N is strongly connected because it has positive place and transition invariants 
(Theorem 9). In particular, no conflict area consists of a single transition with 
an empty pre-set. By definition, every conflict area of N d is the pre-set (in N) 
of a conflict area of N, and vice versa. Therefore, the set { s t , . . .  ,Sk} is a set of 
transitions of N d, containing at most one transition of each conflict area. Now 
Lemma 42, applied to N d and the set { s t , . . .  ,sk}, proves the result. [] 

T h e o r e m  45. Let N be a net with positive place and transition invariants. As- 
sume that the rank of N is smaller than the number of conflict areas of N.  
Then a marking mo of N is strongly live if  and only if ever T non-negative place 
invariant vector i >__ 0 satisfies i •mo > O. 

Proof. 
(=¢,) Each strongly live marking is live. As shown in [DeRe98], a live marking 
m0 satisfies i . m 0  > 0 for each place invariant i > 0, i  # 0. 
(¢:) We prove the contraposition. Let m0 be a marking of N which is not strongly 
live. By Lemma 40, some marking m is reachable from m0 such that no transition 
is strongly enabled at m. Ilence, for each conflict area K,  there exists at l e ~ t  
one place in *K that is not marked at m. 

W.l.o.g. assume that {s t , . . .  ,sk} is a set of places, all unmarked at m, con- 
taining for each conflict area K exactly one place of ' K. The mmd~er of places in 
this set is equal to the number of conflict areas. By assumption, the rank of N is 
smaller than the number of conflict areas. Ilence the set of vectors { s t , . . . ,  sk } 
is not linearly independent. By Lemma 44, there are coefficients At , . . . , ,kk :> 0 
such that  (At . . . .  , Ak) 7£ 0 and Atst + -.- + Aksk = O. 

Let i be the place vector of N, defined by 

i = (At , . . . , , ~k ,0 . . . , 0 ) .  

Then i .N = 0, i.e., i is a place invariant vector satisfying i >__ 0, i  # 0. Since every 
place in { s t , . . . , s k }  is unnmrked at m, we have i .  m = 0. Since m is reachable 
from m0 and since i is a place invariant, finally follows i- m0 = 0. [] 

The following corollary fornmlates the sufficient condition for liveness of a 
marked net given by Theorems 43 and 45. 
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C o r o l l a r y 4 6 .  Let N be a net with initial marking moo Assume that N has 
positive place and transition invariants and that the rank of N is smaller than 
the number of conflict areas of N. If every place invariant i with i > O,i # 0 
satisfies i .  m0 > 0 then mo is a live marking. 

The condition of the previous theorem and corollary can be checked efficiently 
by help of the following system of inequalities. The condition is satisfied if and 
only if there exists no solution 

N T • x "- 0 (x T is a place invariant vector) 
( 1 , 0 , . . . , 0 ) . x  > 0 ( x > 0 )  

( o , . . . , o , O . x  >_ o 
( 1 . . , 1 ) . x >  1 (x#O) 

m r , x _< 0. 

6.4 A N e c e s s a r y  C o n d i t i o n  for  t h e  L iveness  o f  a M a r k i n g  

Now we show tile counterpart  to the previous results, i.e. we provide a necessary 
condition for liveness which is based on the rank of the incidence matrix, too. 

As motivated at tile beginning of this section, two transitions which are 
always enabled in conflict lead to different transition invariants. This observation 
holds in particular for transitions with identical pre-sets. In tile sequel, we add 
regulation circles to nets, that  ensure that  sets of transitions with identical pre- 
sets occur cyclically in a fixed order. 

Let U = { t t , . . . , t k }  be a nonempty set of transitions of a net. For each 
transition ti E U, let s~ be a new place. (s~ is not an element of N) .  Then tile 
net 

N "  : ({ ~i, • •., 4 }, U, {(t,, ~i), ( , i ,  t~) , . . . ,  (t ~, 4 ) ,  ( 4 ,  t, )} ) 

is called a regulation ciwle of U. Tile net obtained by the componentwise union 
of the nets N and N v is called the composition of N and N v.  

L e l n m a 4 7 .  Let N be a net, let N v be the regulation circle of some set U of 
transitions of N,  and let N ~ be the composition of N and N U. [f N has a positive 
place in variant then N t also has a positive place invariant. 

Plvof. Let i be a positive place iuvariaat vector of N. Let i ~ be a place vector 
of N I that  coincides with i for all places of N and that  has the value l for all 
places of tile regulation circle. By construction, this vector is positive. 

Let t be all arbitrary transition of N. If t ~ U then *t ill N and *t in N ~ are 
identical, and tile same holds for t*. I f t  E U, both ' t  and t* contain in N I exactly 
one additional place of the regulation circle. Both corresponding components of 
i ~ are 1. So, in both cases, i ~ . t = i .  t = 0. t3 
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Fig. 8. A piece of a net with e, regulation circle 

L e m m a  48. Let N be a net with a positive place invariant. Let U be a nonempty 
set of transitions of N such that all transitions in U have identical pre-sets. Let 
N U be a regulation circle of U, and let N ~ be the composition of N and N u. I f  
there exists a live marking of N then there also exists a live marking of N ~. 

Proof. Let m0 be a live marking of N. Since N has a positive place invariant , 
m0 is bounded. Therefore,  the set of markings reachable from m0 is finite; let k 
be its cardinality. Define a marking m~ of the net N '  that  coincides with mo for 
all places of N and associates k tokens to every place of the regulation circle. 
We will show that  m~ is a live marking of N I. 

Let m~ a ~ m~ be any occurrence sequence of N ~, and t be any transition. 
We will construct an occurrence sequence r,  enabled at m~, that  includes an 
occurrence of t. The sequence r is the concatenation of two sequences rl and r..,. 

Since N ~ is constructed from N and N u by identification of common tran- 
sitions only, every occurrence sequence a of N ~ induces occurrence seq~mnces of 
N and N v .  More formally, for each marking m ~ of N ~ we denote its restriction 
to the places of N by m and its restriction to the places of N u by mv .  The 
projection a U of ~r to the transitions of N u is obtained from ~ by cancellation 
of all transitions that  are not in U. Now it is easy to verify that  there is an 
occurrence sequence 

m~ ~m]ofN' 
if and only if there are occurrence sequences 

mo o mt of N and 

m° ~ ,,__~u m~ t of N u . 

(Notice that  N and N I have identical sets of transitions.) 
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The net N u is a simple circle. Therefore, its initial marldng m0 v (associating 
k tokens to every place) can be reached again from m~. Let 

be an according occurrence sequence of the net N u. 
We show that the marking ml of the net N enables an occurrence sequence 

rl such that  its projection r lv  is u l . . . un .  To this end, we choose a minimal 
occurrence sequence enabled at mi such that the reached marking enables a 
transition in U (this might be the empty sequence). Since m0 is live, ml  is 
live, too. So, such an occurrence sequence exists. Since all transitions in U have 
identical pre-sets in N, they all are enabled at mr. Now extend the occurrence 
sequence by tile transition ul.  Starting with the marking reached after ul, choose 
again a minimal occurrence sequence enabling tile transitions of U, and then 
continue with u~.. By the minimality of tile occurrence sequences, these sequences 
do not contain any transition of U. After n repetitions of this procedure, an 
occurrence sequence ml r, ,  rn2 is gained such that  the projection of rl to tile 
set U is tile sequence ut . . . .u , .  

The sequence rl is enabled at ml in N and leads to m2. Its restriction 
rt v = u l . . .  u ,  is an occurrence sequence of Nu leading from m v to mv.  Hence 
the occurrence sequence rl is also enabled at m~ in tile net N' .  It leads to the 
marking m~ which coincides with m~ on the places of N and with m~ on the 
places of N v. 

Tile marking rn2 is again a live marking of N. So, m_~ enables a minimal 
occurrence sequence r2 that contains the transition t. By minimality, no marking 
is reached more than once during this occurrence sequence. So the length of r~ is 
smaller than k, tile nmnber of all reachable markings. Since, in N u, the marking 
m0 v associates k tokens to each place, it enables all sequences with length up to 
k and in particular the sequence ~v. Therefore, the sequence r~_ is enabled at 
m~ in N'.  Finally, the composition ri r,., is enabled at m~ and contains t. t:3 

For a net N, the set PN = {'t  t t  E TN } denotes all pre-sets of transitions of 
N (TN is the set of transitions of N). If two transitions have identical pre-sets, 
they only contribute to the set PN once. 

T l m o r e m 4 9 .  Let N be a net with positive place and transition invariants. If 
N has a live marking then the rank of N is smaller than the value IPNI. 

Proof. Assume that N has a live marldng m0. We proceed by induction on 
k = ITNI- IPNI. 

Base. Assunae k = 0. Tile matrix N has [TN] cohmms. The rank of N is at most 
ITNI -  I because N has a positive transition invariant. Since k = 0 we have 
ITNt = IPNI. So the rank of N is smaller than IPNI 

Step. Assume k > 0. Let U be a maximal set of transitions with identical pre-sets. 
We have IU[ >_ 2 because k = ITN[-  [PN[ > O. 
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Let N u be the regulation circle of U and let N '  be the composition of N 
and N u. By Lemnaas 47 and 48, N ~ has a positive place invariant and can be 
marked lively. So it has a live and bounded marking. As shown in [DeRe98], it 
has a positive transition invariant. 

The set of transitions of N ~ is also TN. Each transition in T~ \ U has the 
same pre-set in N and in N ~. In N ~, two distinct transitions of U have different 
pre-sets, since this is the case in the regulation circle. So we get 

IP ,l = I P . I  + Iv l  - 1 .  

This implies that  the number [T/v[ -  [PN,[ is smaller than [T/v[ -  [P/v[. Itence, 
with the induction hypotheses applied to the net N ~, the rank of N I does not 
exceed [P/v , [ -  I. So we [lave 

rank(N)  + [U[ - 1 ~ rank(N' )  <_ IPlv, I - 1 = IPNI + IUI - 2 .  

It remains to show 

rank(N) + IUI - 1 < rank(N' ) ,  

i.e. the rank of N '  exceeds the rank of N by at least [ U [ -  1. W.l.o.g. assume 
U = { Q , . . . , t n } .  The n rows in N t of the places of the regulation circle are 
shaped: 

( - 1  0-- .  0 l O . . . O )  
( 1 - 1  0 . . -  0 0 . . . 0 )  
° . . . . .  

( 0 .. 1 - 1  0 0 . . . 0 )  
( 0 .. 0 1 - 1 0 . . . 0 )  

Clearly, every subset of this set containing n - 1 vectors is linearly indepen- 
dent. We show that  none of this rows is a linear combination of other rows of 

i s a  N ~, i.e. of rows of N. We proceed indirectly and assunle that  the row s/ 
k N,  let ti be the unique tran- linear combination of the rows of N. L c t s  i = • 

and let tj be the unique transition in the post-set of sition in the pre-set of si, 
By assumption, there exists a live marking m0 of N. Since N has a positive 8i" 

place invariant, m0 is a bounded marking and only finitely many markings can 
be reached. Let m be reachable from mo such that  k • m has a maximal value. 
Define 

k : = k . m - k - m o  • 

Since, in N,  the transitions ti and t3 have identical pre-sets, there exists an 
a 

occurrence sequence m0 , ml such that  the transition ti occurs A + 1 times 
in o" and tj does not occur in a. The corresponding Parikh vector po satisfies 

t s i • po > A. By m0 + N .  po = m l  and by the choice of m follows 

k . N . p o  = k . m t - k . m 0 _ < A ,  

in contradiction to 
I k ' N ' p q  = sl . pa  > ),. 

t:2 
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Bibliographic Remarks 

The rank conditions were first introduced for free.choice nets. There the sufficient 
and the necessary condition coincide. 

The rank conditions for free-choice nets were developed in [Espa90], [CaCSgl] 
and [Dese92] (see also [DeEs95]). They were generalized to free-choice nets with 
arc weights (equal-conflict nets) in [ReTS95, TeSi96]. 

The necessary rank condition for general nets is from [CoCS90]; see also 
[DeEs95] and [TeSi96]. The sufficient condition is from [Dese94]. 

In [Reis79], conflict areas were introduced. 
The paper [MuraT7] provides fllrther bounds for the rank of the incidence 

matrix: If each marking of a net is reachable from some initial marking then the 
row rank is maximal and equals the number of places. A net with this property 
has no place invariant except the vector 0. 
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