
July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

Chapter 1

The Theory of Message Sequence Charts

K. Narayan Kumar

Chennai Mathematical Institute

H1 SIPCOT IT Park, Siruseri, India.

Message Sequence Charts or MSCs are a visual formalism used in the specification
of systems in many domains including telecommunications, object oriented design
and forms a part of the UML language. Consequently, the formal study of MSCs
has received considerable attention over the last decade. We survey some of the
key results in this area with particular emphasis on the notion of regularity and
its relationship to automata, logics and model-checking.

1.1. Message sequence charts

Message Sequence Charts (MSCs) [37] are an appealing visual formalism used in

a number of software engineering notational frameworks such as SDL [58] and

UML [16]. An MSC is a representation of a single behaviour or run of a system con-

sisting of a collection of processes communicating with each other asynchronously

via buffered channels. In this paper we shall restrict ourselves to systems with

first-in-first-out (FIFO) channels. Fig. 1.1 shows an MSC involving three processes

p, q and r and three messages. An MSC is to be read from top to bottom, the

vertical lines denote processes and the arrows represent messages. Formally, MSCs

are defined as labelled partial orders.

Let P = {p, q, r, . . .} be a finite set of processes that communicate with each

other through messages via reliable FIFO channels using a finite set of message

types M. For p ∈ P , let Σp = {p!q(m), p?q(m) | p 6= q ∈ P ,m ∈ M} be the

set of communication actions in which p participates. The action p!q(m) is read

as p sends the message m to q and the action p?q(m) is read as p receives the

message m from q. We set Σ =
⋃

p∈P Σp. We also denote the set of channels by

Ch = {(p, q) ∈ P2 | p 6= q}. Whenever the set of processes P is clear from the

context, we write Σ instead of ΣP , etc. Observe that our notation restricts us to a

single channel from a process p to any other process q, however this is merely for

notational convenience and the results do not change if we permit multiple channels

between pairs of processes.

Labelled posets A ΣP -labelled poset is a structure M = (E,≤, λ) where (E,≤)

1

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

2 K. Narayan Kumar

is a partially ordered set and λ : E → ΣP is a labelling function. For e ∈ E, let

↓e = {e′ | e′ ≤ e}. For p ∈ P and a ∈ ΣP , we set Ep = {e | λ(e) ∈ Σp} and

Ea = {e | λ(e) = a}, respectively. For (p, q) ∈ Ch, we define the relation <pq:

e <pq e
′ def
= ∃m ∈ M such that λ(e) = p!q(m), λ(e′) = q?p(m) and

|↓e ∩ Ep!q(m)| = |↓e′ ∩Eq?p(m)|

The relation e <pq e
′ says that channels are FIFO with respect to each message—if

e <pq e
′, the message m read by q at e′ is the one sent by p at e.

Finally, for each p ∈ P , we define the relation ≤pp= (Ep × Ep) ∩ ≤, with

<pp standing for the largest irreflexive subset of ≤pp. We write Chn(e) = p!q if

λ(e) = p!q(m) and Chn(e) = p?q if λ(e) = p?q(m).

Definition 1.1. An MSC over P is a finite ΣP -labelled posetM = (E,≤, λ) where:

(1) Each relation ≤pp is a linear (total) order.

(2) If p 6= q then for each m ∈ M, |Ep!q(m)| = |Eq?p(m)|.

(3) If e <pq e
′, then |↓e ∩

(
⋃

m∈MEp!q(m)

)

| = |↓e′ ∩
(
⋃

m∈MEq?p(m)

)

|.

(4) The partial order ≤ is the reflexive, transitive closure of
⋃

p,q∈P <pq.

The second condition ensures that every message sent along a channel is received.

The third condition says that every channel is FIFO across all messages.

p q r

p1

p2

q1

q2 r1

r2

m1

m2

m3

Fig. 1.1. An MSC

In diagrams, the events of an MSC are presented in visual

order. The events of each process are arranged in a vertical

line and messages are displayed as horizontal or downward-

sloping directed edges. Fig. 1.1 shows an example with three

processes {p, q, r} and six events {p1, p2, q1, q2, r1, r2} corre-

sponding to three messages—m1 from p to q, m2 from q to r

and m3 from p to r.

For an MSC M = (E,≤, λ), we let Lin(M) =

{λ(π) | π is a linearization of (E,≤)}. For instance,

p!q(m1) q?p(m1) q!r(m2) p!r(m3) r?q(m2) r?p(m3) is one lin-

earization of the MSC in Fig. 1.1. We write Lin(M) for the set of linearizations of

an MSC M .

Note that under the FIFO assumption an MSC can be reconstructed from any

one linearization — the relation <pp is determined by the order of the p events in

the linearization while <pq is determined by matching the ith p!q event with the ith

q?p event.

Definition 1.2. Let M be an MSC and B ∈ N. We say that w ∈ Lin(M)

is B-bounded if for every prefix v of w and for every channel (p, q) ∈ Ch,
∑

m∈M |v↾{p!q(m)}| −
∑

m∈M |v↾{q?p(m)}| ≤ B, where v↾Γ denotes the projec-

tion of v on Γ ⊆ ΣP .

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 3

p q r

Fig. 1.2. A 3-bounded MSC

This means that along the sequential execution ofM described by w, no channel

ever contains more than B-messages. Consider the MSC in Fig. 1.2. The lineariza-

tion p!q q?p p!r p!q q?p q!r r?q p!q q?p r?p is 1-bounded while the linearization

p!q p!r p!q p!q q?p q?p p!r q?p r?q r?p is 3-bounded.

Definition 1.3. We say that M is universally B-bounded if every w ∈ Lin(M) is

B-bounded and that M is existentially B-bounded if there is a w ∈ Lin(M) which

is B-bounded. (We sometimes write B-bounded to mean universally B-bounded.)

The MSC in Fig. 1.2 is universally 3-bounded. The 1-bounded linearization

listed earlier shows that this MSC is also existentially 1-bounded. The follow-

ing proposition (paraphrased) from [34] characterizes universal B-boundedness for

MSCs.

Proposition 1.1. An MSC M is not B-bounded if and only if there are processes

p, q and p!q labelled events e1 <pp e2, . . . <pp eB+1 such that the q?p labelled event

e′ with e1 <pq e
′ is not below eB+1.

Optimal linearizations: Given an MSC M the smallest B for which it is B-

bounded can be computed in linear time as shown in [27]. In particular, an optimal

linearization w.r.t. boundedness can be computed by the following greedy strategy

— at each step, extend the linearization, if possible, by a receive event; otherwise

extend it by picking from the set of candidate send events the one that minimizes

the maximum number of undelivered messages in any channel. Applying this greedy

strategy to the MSC in Fig. 1.2 we get p!q q?p p!r p!q q?p q!r r?q r?p p!q q?p which

is a 1-bounded linearization.

1.1.1. Concatenation of MSCs

The concatenation of M1 and M2 written as M1 ◦M2 denotes the behaviour where

each process participates in its events in M1 and then follows it by participating in

its events in M2. It is not necessary for all processes to complete the events in M1

before any process enters M2.

Formally, the (asynchronous) concatenation of MSCs is defined as follows.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

4 K. Narayan Kumar

A1

p q r

A2

p q r

A1 ◦A2

p q r

Fig. 1.3. MSC Concatenation

Definition 1.4. Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair of MSCs

such that E1 and E2 are disjoint. The (asynchronous) concatenation of M1 and

M2 yields the MSC M1 ◦M2 = (E,≤, λ) where E = E1∪E2, λ(e) = λi(e) if e ∈ Ei,

i ∈ {1, 2}, and <pp = <1
pp ∪<

2
pp ∪ (E1

p ×E2
p) and for (p, q) ∈ Ch , <pq = <1

pq ∪<
2
pq.

MSCs over a given alphabet form a monoid with the empty MSC as the identity

(i.e. concatenation is an associative operation). Fig. 1.3 describes the concatenation

of two MSCs. In the linearization p!r p!q q?p q!r r?q p!q q?p r?p of A1 ◦A2 observe

that the last event of A1 occurs after both the events of A2.

We can repeatedly decompose MSCs into the concatenation of smaller (nontriv-

ial) MSCs till we are left with MSCs that cannot be decomposed.

Definition 1.5. An MSC M is said to be an atom if it cannot be expressed as

the concatenation of two nontrivial MSCs.

The MSCs A1 and A2 in Fig. 1.3 are atoms. The MSC M in Fig. 1.2 is the

concatenation A2 ◦ A1 ◦ A2. In this case, the decomposition of M into atoms is

unique. In general this need not be the case. To understand the exact nature of

the decomposition of MSCs into atoms we need some terminology from the theory

of traces.

1.1.2. MSCs and Traces

A dependence alphabet is a pair (Σ, D) where the alphabet Σ is a finite set of

actions and the dependence relation D ⊆ Σ × Σ is reflexive and symmetric. The

independence relation I is the complement of D. For A ⊆ Σ, the set of letters

independent of A is denoted by I(A) = {b ∈ Σ | (a, b) ∈ I for all a ∈ A} and the

set of letters depending on (some action in) A is denoted by D(A) = Σ \ I(A).

A Mazurkiewicz trace is a labelled partial order t = (V,≤, λ) where V is a set

of vertices labelled by λ : V → Σ and ≤ is a partial order over V satisfying the

following conditions: For all x ∈ V , the downward set ↓x = {y ∈ V | y ≤ x} is

finite, (λ(x), λ(y)) ∈ D implies x ≤ y or y ≤ x, and x⋖ y implies (λ(x), λ(y)) ∈ D,

where ⋖ = < \ <2 is the immediate successor relation in t.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 5

Let ≡I be the equivalence relation on Σ∗ given by the reflexive transitive closure

of the relation uabv ∼ ubav whenever (a, b) ∈ I. The set of linearizations of a trace

t is an equivalence class of ≡I . Conversely, it is possible to reconstruct the trace

from any given linearization. For a more detailed introduction to Trace theory, the

reader is referred to ??.

We are now in a position to characterize the different decompositions of an MSC

into atoms. Let A be any finite collection of atoms over the set of processes P . One

can equip A with natural dependence alphabet structure (A,D) where (a, b) ∈ D if

and only if there is a process p that is active in both a and b.

Proposition 1.2. Let M be an MSC, A be a finite set of atoms that contains

the atoms that appear in M and (A,D) be the corresponding dependence alphabet.

Then, if M = a1 ◦ a2 ◦ . . . ak and M = a′1 ◦ a
′
2 ◦ . . . a

′
l then a1a2 . . . ak ≡I a

′
1a

′
2 . . . a

′
l.

Thus, the decomposition of an MSC into atoms is unique up to commutations of

independent atoms. In particular, the set of atoms that are necessary to decompose

an MSC M , denoted by A(M), is unambiguously defined. We shall write At(M)

to denote the trace (or equivalently the linearizations of the trace) over atoms

associated with M .

There is a second dependence alphabet associated with MSCs which yields an

alternative characterization of B-bounded MSCs. Let ΣB = ΣP × {0, 1, . . . , B − 1}

for some natural number B. Let D be the dependence relation given by (x, i)D(y, j)

if either x and y occur in the same process or if Chn(x) = p!q, Chn(y) = q?p and

i = j. In a B-bounded MSC, the ith receive on a channel must necessarily occur

before the (i+B)th send on the same channel justifying the demand for an ordering

between them in the dependency alphabet.

Given an MSC M = (E,≤, λ) we transform it into a ΣB-labelled partial order

tr(M). Let tr(M) = (E,≤, λ′) where λ′(e) = (λ(e), i) where i = |{e′ | e′ <

e, Chn(e′) = Chn(e)}|. That is, we tag each event by its channel count modulo B.

Does this yield a trace w.r.t the alphabet (ΣB , D)?

(p!q, 0)

(p!r, 0)

(p!q, 1)

(p!q, 0)

(q?p, 0)

(q?p, 1)

(q!r, 0)

(q?p, 0)

(r?q, 0)

(r?p, 0)

Fig. 1.4.

There are two kinds of dependencies in

the definition of the relation D. A depen-

dency of the first kind, within a process,

is also enforced in the MSC. An event la-

belled p!q is guaranteed to be below the cor-

responding receive event labelled q?p in the

MSC. However, no ordering is necessary be-

tween other occurrences of events labelled

by these two letters. Thus, the second kind

of dependency demanded by D is in gen-

eral stronger than the ordering in the MSC.

Fig. 1.4 describes the trace tr(M) over the

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

6 K. Narayan Kumar

alphabet ΣP × {0, 1} corresponding to the MSC in Fig. 1.2. Observe that there

is no ordering between the first q?p and the third p!q in the MSC whilst they are

ordered in the trace.

However, for B-bounded MSCS we have the following result.

Proposition 1.3. [38; 39] Let M be an MSC. Then tr(M) is a trace over the

alphabet ΣB if and only if M is a universally B-bounded MSC.

Thus, universally B-bounded MSCs are traces over the aforementioned depen-

dence alphabet. This allows us to exploit the well-developed theory of traces in the

study of B-bounded MSCs.

Finally, let us examine existentially B-bounded MSCs and their relationship

to traces. By definition, an MSC is not existentially B-bounded iff it cannot be

linearized into a B-bounded word, and what rules out such a linearization is the

following scenario — a p!q event whose associated receive is above the next B p!q-

labelled events under ≤. This can be formalized as follows.

Definition 1.6. Let (E,≤, λ) be a given MSC and B a natural number. The

relation <rev on E, defined below, relates the ith receive on a channel with the

(i+B)th send on the same channel.

e <rev e
′ def

= ∃f. f <pq e & λ(f) = λ(e′) & |{e′′|f < e′′ ≤ e′, λ(e′′) = λ(f)}| = B

Existentially B-bounded MSCs are precisely those that do not violate <rev.

Proposition 1.4. [43] Let M = (E,≤, λ) be an MSC and <rev be as defined above.

M is existentially B-bounded if and only if ≤ ∪ <rev is acyclic. Existential B-

boundedness of an MSC M can be decided in linear-time.

p q r

Fig. 1.5.

In the MSC in Fig. 1.5, with B = 2, we find that the <rev edge

marked with the dotted line induces a cycle. For B = 3, <rev is

consistent with the ordering of this MSC implying that this MSC

is existentially 3-bounded.

LetM = (E,≤, λ) and ≤B= (≤ ∪ <rev)
∗. IfM is existentially

B-bounded then (E,≤B, λ) is a labelled partial order. Let tr′(M)

be the labelled partial order (E,≤B, λ
′) where λ′ is the labelling

function described earlier.

Proposition 1.5. [43] If an MSC M is existentially B-bounded

then the labelled partial order tr′(M) is a trace over the alphabet

(ΣB, D). (If M is not existentially B-bounded then tr′(M) is not

even a partial order, leave alone a trace.)

It worth noting that for a universally B-bounded MSC M ,

<rev⊆≤ and therefore tr′(M) = tr(M). Thus, Prop. 1.5 can be thought of as a

generalization of Prop. 1.3.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 7

1.1.3. MSC Languages and regularity

An MSC language is a (finite or infinite) collection of MSCs over a given set of

processes P and messages M. Given the correspondence between MSCs and their

linearizations, we may also regard a language of MSCs as a collection of words over

ΣP given by the linearizations of the MSCs in the language. In what follows we

shall use these two notions interchangeably.

Definition 1.7. [36] A language of MSCs is said to be regular if the word language

of its linearizations is a regular language.

In any prefix of a linearization of an MSC the number of p!q events is at least as

many as the number of q?p events for any pair of processes p and q. We say that a

word over ΣP is proper if it satisfies this property. In any linearization of an MSC,

there are as many p!q events as there are q?p events for every pair of processes p

and q. We use complete to denote this property. Thus linearizations of MSCs are

proper and complete words while their prefixes are proper words.

Let (Q,Σ, δ, s, F) be a deterministic finite automaton accepting a regular MSC

language L. We further assume that every state is reachable and that a final state is

reachable from every state. Suppose, u and v are two proper words that lead to the

same state q from s. Let w be any word that leads from q to some final state. Thus,

uw and vw are both complete words. Thus |#p!q(v)| − |#q?p(v)| = |#p!q(v)| −

|#q?p(v)| for each pair of processes p and q (where #a(w) denotes the number of

a’s in the word w). This leads to the following result from [36] which assures us

that regular languages are bounded.

Lemma 1.1. Every regular MSC language L is B-bounded for some B. In particu-

lar, B can be chosen to be smaller than the size of the minimal automaton accepting

the linearizations of L.

The converse of this lemma is obviously false — for instance, consider the lan-

guage {(p!q q?p)i (r!s s?r)i | i ≥ 0}. We end this section with the definition of

finitely generated MSC languages.

Definition 1.8. A language L of MSCs is said to be finitely generated if
⋃

M∈L A(M) is a finite set.

The MSC language given by the complete words p!q (q!p p?q)∗ q?p is not finitely

generated. As a matter of fact, every word in this language is an atom.

1.2. Message Sequence Graphs

The ITU standard Z.120 describing MSCs also proposes a mechanism to describe

collections of MSCs. This mechanism called HMSC (or High-level Message Sequence

Charts) or Message Sequence Graphs (MSGs) allows branching, concatenation and

iteration.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

8 K. Narayan Kumar

Definition 1.9. A Message Sequence Graph is a structure G = (Q,→, Qin, F,Φ),

where Q is a finite and nonempty set of states, → ⊆ Q × Q, Qin ⊆ Q is a set of

initial states, F ⊆ Q is a set of final states and Φ labels each state with an MSC.

A path π through an MSG G is a sequence q0 → q1 → · · · → qn such that

(qi−1, qi) ∈ → for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π) =M0 ◦M1 ◦

M2 ◦ · · · ◦Mn, where Mi = Φ(qi). A path π = q0 → q1 → · · · → qn is a run if

q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is L(G) = {M(π) |

π is a run through G}. We say that an MSC language L is MSG-definable if there

exists an MSG G such that L = L(G).

An example of an MSG is depicted in Fig. 1.6. The initial state is marked

⇒ and the final state has a double line. The MSC M corresponding to the path

q0 → q1 → q0 → q2 → q0 is also given in the figure.

q0
m

m′

q1
m q2

m′

⇓ m -
m′�
m -
m -
m′�
m′�
m -
m′�

Fig. 1.6. A message sequence graph

It can be verified that the language generated by the MSG in Fig. 1.6 is a regular

language. However, this need not always be the case. There are two reasons why

MSGs can generate non-regular languages.

The first reason, as illustrated in Fig. 1.7, is its combination of concurrency

and iteration. The language L generated by this MSG is {(M1 ◦M2)
n | n ≥ 0}.

The events in M1 and M2 are completely independent (concurrent) of each other.

Thus, we may choose to linearize an MSC of the form (M1 ◦M2)
n by first listing

all the events involving p and q and then listing the events involving r and s. As

a consequence, L projected to {p!q(m), r!s(m)}∗ consists of σ ∈ {p!q(m), r!s(m)}∗

such that |σ↾p!q(m)| = |σ↾r!s(m)|, which is not a regular string language. Hence L is

not a regular MSC language.

The second reason, as illustrated by the producer-consumer example in Fig. 1.8,

is that the buffers can be unbounded. The linearized language of this MSG is

{w | #p!qw = #q?pw & ∀v ≤ w. #p!qv ≥ #q?pv}.

However, the language of an MSG is always finitely generated since every MSC

in the language can be decomposed using the MSCs that label the nodes of the

MSG.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 9

⇒

p q r sm

m

p q r s

m

m

Fig. 1.7.

Proposition 1.6. [35] Let G be a MSG. Let LN be the set of MSCs that label the

nodes of G and let L be the language generated by G. Then, L is a finitely generated

MSC language and in particular, A(L) = A(LN).

q0

Fig. 1.8.

This also means that MSGs are not sufficient to describe

every regular MSC language. For example, the language

p!r p!q q?p (q!r r?q r!q q?r)∗ r?p is a regular MSC language that

is not finitely generated and hence not MSG definable.

1.2.1. Communication Graph

The key to understanding the non-regularity of MSGs lies in studying

their communication graphs.

Definition 1.10. For an MSC M = (E,≤, λ), CGM , the communication graph of

M , is the directed graph (P , 7→) where:

• P is the set of processes of the system.

• (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q(m).

p q r

Fig. 1.9.

The communication graph of the MSC M in Fig. 1.2 is in

Fig. 1.9. This graph is not strongly connected. This means

that M∗, the iteration of M , is not a bounded language. The

reasoning goes as follows: After participating in the events in

the first copy of M , the process p can go ahead and participate

in its events in the second copy and then the third copy and so on, before q or r

participate in any event at all, forcing the channel from p to q to be unbounded.

Suppose we modify the MSC M by adding a message from q to p. The iteration

of M would still be unbounded — now the processes p and q can participate in all

their events in copy one, and then copy two and so on before process r completes

any event, forcing the channel from q to r to be unbounded. However the addition

of an event from r to p would force the iteration of M to be bounded. But, this

also makes the communication graph strongly connected.

Definition 1.11. A (communication) graph is locally strongly connected if the

graph is the disjoint union of a collection of strongly connected components. An

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

10 K. Narayan Kumar

MSG G is locally strongly connected if the communication graph of the MSC gen-

erated by every cycle (simple loop) in G is locally strongly connected.

The communication graph of every word in the language generated by the MSG in

Fig. 1.7 is the same and is described in the Fig. 1.10. It is locally strongly connected

and thus the MSG is locally strongly connected.

p q r s

Fig. 1.10.

Suppose that the communication graph of an MSC

M is locally strongly connected and let X ⊆ P be one

of the strongly connected components. Let p, q ∈ X .

Since there is a path from q to p in the communication

graph of length at most |X |, in any MSC of the form

M |X| (i.e. M ◦M ◦ . . . ◦M , |X | times), there is p event which is above the q events

in the first M . Thus, p can at most be in the (|X |+ 1)st copy before q completes

its events in the first copy, ensuring that the channel from p to q is bounded. This

argument does not rely on the fact that all the “copies” are identical but only uses

the fact that all the copies have the same communication graph. Extending this

argument gives

Lemma 1.2. [48; 43] Let G be an MSG and M be an MSC.

(1) If the communication graph of M is locally strongly connected then M∗ is a

B-bounded MSC language for B ≥ |M | × |P|.

(2) If G is locally strongly connected then L(G) is a B-bounded language for any

B ≥ |G|.|P|.Max where Max is the maximum number of send events in a MSC

labelling any one node of G.

(3) If every node in G is reachable from an initial node and in turn can reach an

accepting node and L(G) is a bounded MSC language then G is locally strongly

connected.

Boundedness, a necessary condition for regularity, by itself does not guarantee

regularity — the MSG in Fig 1.7 has a locally strongly connected communication

graph yet generates a non-regular language (In particular iterating M1 ◦M2 gener-

ates a non-regular language). A further structural restriction on MSGs is needed to

rule out the other reason for non-regularity in MSG definable languages — iterations

of concurrent behaviours.

Intuitively, the reason for the non-regularity of (M1 ◦M2)
∗ is that (M1◦M2)

N =

MN
1 ◦MN

2 , due to the independence of the events in M1 and M2, thus implicitly

maintaining a counter.

Suppose the communication graph of an MSC M consists of a single nontrivial

(i.e. of size at least 2) strongly connected component and a collection of trivial

components (corresponding to each process that does not participate in any event

in M). If p and q are two processes that participate in M , then in any segment

of MN of the form M |P|+1 there is a p event that depends on a previous q event

within the segment and vice versa. Thus all independence is within small segments

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 11

(of size M |P|+1 or less) and the buffers are also bounded. This is sufficient ([6]) to

ensure that M∗ is a regular MSC language. This leads to the following definition.

Definition 1.12. An MSC M is said to be locally synchronized if its commu-

nication graph contains only one nontrivial strongly connected component and a

collection of isolated vertices.

An MSG is said to be locally synchronized if the communication graph of the

MSC generated by any loop in the MSG is locally synchronized. (Locally syn-

chronized MSGs have also been called bounded MSGs or com-connected MSGs in

literature.)

The following result shows that local synchronization is sufficient to guarantee

regularity.

Lemma 1.3. [5; 54] The language of any locally synchronized MSG is regular.

Note that the definition of locally synchronized MSGs places a demand on all

loops in the MSG and not just the cycles. Consider the MSG in Fig 1.11, adapted

from [54]. The states q0 and q2 are labelled by the empty MSC. The states q1,

q3 and q4 are labelled by the MSCs M1,M3 and M4 (described in the figure) re-

spectively. Observe that every cycle in this MSG generates a locally synchronized

MSC, however, the language accepted by this MSG is not regular. Every time the

processes p and q switch from exchanging the messagem to exchanging the message

n (or vice versa) the processes r and s exchange a pair of messages. It is easy to

derive the non-regularity from this observation.

⇓

q4 q0 q1 q2 q3

p q r s
m m

M4

p q r s

M1

p q r s
n n

M3

Fig. 1.11.

Interestingly, if we prohibit the labelling of nodes by the empty MSC, then the

definition of a locally synchronized MSG can be weakened.

Proposition 1.7. Let G be an MSG in which every node is labelled by a nontrivial

MSC. If every cycle in G describes a locally synchronized MSC then G is locally

synchronized.

This can be seen as follows: Note that every loop that is not a cycle must

properly contain a cycle. Let p0p1 . . . pk=q0q1 . . . qm = pk+m . . . p0 be a loop that

contains the cycle q0q1 . . . qm. The loop p0p1 . . . pkpk+m+1 . . . p0 is smaller and by

the induction hypothesis generates a locally synchronized MSC. So does the cycle

q0q1 . . . qm. Any process that participates in the MSC labelling q0 (and there is at

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

12 K. Narayan Kumar

least one such process) is in the single nontrivial SCC of the communication graph

of the smaller loop as well as the single nontrivial SCC of the communication graph

of the cycle. Thus, the communication graph of the union of the loop and the cycle

is also locally synchronized. Thus,

Lemma 1.4. Let G be an MSG in which every node is labelled by a nontrivial MSC.

If every cycle in G generates a locally synchronized MSC then the language of G is

regular.

Earlier, we remarked that not all regular MSC languages can be described using

MSGs. The following result characterizes the collection of MSG definable regular

MSC languages.

Lemma 1.5. [35; 48] A regular MSC language L is definable using MSGs if and

only if it is finitely generated. Any such language can also be described using a

locally synchronized MSG.

The proof in [48] (which incidentally defines MSGs as regular expressions con-

structed using MSCs) exploits the translation from MSCs to traces over the under-

lying set of atoms and pulls back the corresponding result for traces ([57]).

We have seen that locally strongly connected MSGs are guaranteed to be

bounded but place no restrictions on independent iterations. Interestingly, we can

also exclude the complications of independent iterations without forcing bounded-

ness (or regularity).

Definition 1.13. [28; 49] An MSC is said to be globally cooperative if the symmetric

closure of its communication graph is the union of a single strongly connected

component and a collected of isolated vertices.

An MSG G is said to be globally cooperative if the MSC generated by any loop in

G is globally cooperative. (In [49], globally cooperative MSGs are called c-HMSCs.)

The motivation for this definition comes from trace theory. A word w over a

dependence alphabet (Σ, D) is said to be connected if the graph (Σw, D ↓Σw), on

the letters that appear in w and the dependency relation restricted to these letters,

consists of a single connected component. Fix a dependence alphabet (Σ, D). A

finite automaton over Σ in which every loop generates a connected word is said to

be loop connected. Let the language L be the language of a loop connected finite

automaton. Then, the language {tr(w) | w ∈ L} of traces represented by words

in L is a regular trace language. Equivalently the trace-closure of L, {w′ | ∃w ∈

L.w′ ∼ w}, is a regular language ([18]).

We can easily transform an MSG into an equivalent one where every state is

labelled by an atom— simply replace each node labelled by the MSC A1◦A2 . . .◦Ak,

by a sequence of k nodes each labelled by an atom. (This transformation takes a

globally cooperative MSG to a globally cooperative MSG.) Thus, MSGs can be

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 13

thought of as finite automata over the alphabet of atoms where the states are

labelled by letters instead of transitions.

Lemma 1.6. Let G be an MSG labelled by atoms and let A(G) be the set of atoms

labelling the nodes of G. Then, G is globally cooperative if and only if it is loop

connected as a finite automaton over the dependency alphabet (A(G), D) where aDb

whenever there is a process that is active in both a and b.

This leads to the following regularity theorem for a globally cooperative MSGs.

This proves to be a very useful tool in resolving a number of decision problems for

globally cooperative MSGs.

Theorem 1.1. [29] Let G be a globally cooperative MSG. Then, the language

{At(M) | M ∈ L(G)} is a regular language and a finite automaton accepting this

language with size at most 2|G|.|P| can be constructed.

The following result from [29] shows that the if you take away independent

iteration what is needed to ensure regularity is the boundedness of channels.

Proposition 1.8. An MSG G is locally synchronized if and only if it is globally

cooperative and accepts a bounded language.

1.2.2. Decision problems

The language of an MSG is nonempty if and only if there is a path in the MSG

from a start state to a final state. Thus, emptiness is decidable.

By Lemma 1.2, to decide whether a MSG accepts a universally bounded lan-

guage it suffices to check if it is locally strongly connected. Every MSG accepts an

existentially bounded language: in particular, if all the MSCs labelling the nodes of

an MSG G are existentially B-bounded, then the language of G is also existentially

B-bounded. The paper by Lohrey and Muscholl [43] establishes a comprehensive

collection of the decidability results for a variety boundedness problems for MSGs

and MSCs. Most importantly they demonstrate lower bounds for a variety of prob-

lems.

Theorem 1.2. Let G be an MSG.

(1) G is always existentially bounded.

(2) Given G and B we can check whether G is existentially B-bounded in linear

time ([43]).

(3) Checking whether G is universally bounded is decidable ([48]). This problem is

co-NP complete ([43]).

(4) Given G and B checking whether G is universally B-bounded is co-NP complete.

This problem is co-NP complete even if B is fixed to the constant 1 ([43]).

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

14 K. Narayan Kumar

There are many factors that contribute to the size of an MSC or an MSG — the

number of processes in P , the size of the message alphabet M and the number of

events. Theorem 1.2 holds as it is even if M is a singleton set ([43]). More often

than not, the number of events is likely to be several orders of magnitude larger

than the number of processes. Fortunately, if we fix the size of P , all the above

problems become efficiently solvable.

Theorem 1.3. [43] Fix a set P of processes. The problem of checking whether a

MSG over P is universally bounded (universally B-bounded for a given B) is in NL.

The following lower-bound for checking structural properties of MSGs is from

in [29]. Note that this result uses the assumption that the number of processes is

part of the input.

Proposition 1.9. Deciding whether a given MSG is locally synchronized (globally

cooperative) is co-NP complete.

Local synchronization provides a sufficient condition for regularity. However,

there is no hope of obtaining an exact characterization.

Proposition 1.10. [34; 48] Checking whether an MSG accepts a regular language

is an undecidable problem.

The reason for this undecidability is the following: It is easy to translate a de-

pendency alphabet (Σ, D) into a collection of atoms A over a set of processes

P by assigning an atom A(a) for each letter a ∈ Σ in such a way that aDb if

and only if A(a) and A(b) share an active process. For instance, the MSCs M1,

M3 and M4 (from Fig. 1.11) can be used to represent the dependence alpha-

bet ({a, b, c}, (b, c)). Using this representation we can transform finite automata

over Σ into MSGs over (A, D). The language of this MSG is regular if and only

if the trace-closure of the original language is regular. However, checking the

regularity of trace-closure is in general an undecidable problem (see for eg. [56;

59]).

Model-checking: A specification describes a collection of behaviours. These

could be a set of allowed behaviours that the system should conform to, or a set of

disallowed behaviours that the system must avoid. This results in two versions of

the model checking problem, the positive and negative model checking problems. In

the positive model checking problem the task is to verify that the set of behaviours

of the system, Lsy, is a subset of the set of behaviours, Lsp, described by the

specification. In the negative model checking problem, the task is to verify that

Lsy ∩ Lsp = ∅.

Suppose the specification as well as the system are described by MSGs.

Theorem 1.4. [55; 5] For MSGs the following problems are undecidable:

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 15

(1) Given G1 and G2, is L(G1) ⊆ L(G2)?

(2) Given G1 and G2, is L(G1) ∩ L(G2) = ∅?

Once again, translations from the corresponding problems in trace theory suffices

to prove the undecidability. As a matter of fact if we rule out independent iterations

these problems become decidable.

Theorem 1.5. [55] For globally cooperative MSGs the following problems are de-

cidable:

(1) Given G1 and G2, is L(G1) ⊆ L(G2)?

(2) Given G1 and G2, is L(G1) ∩ L(G2) = ∅?

The proofs exploit the regular representation via atoms provided by Theorem 1.1

— L(G1) ⊆ L(G2) if and only if At(L(G1)) ⊆ At(L(G2)) and L(G1) ∩ L(G2) = ∅ if

and only if At(L(G1)) ∩ At(L(G2)) = ∅. Theorem 1.1 makes globally cooperative

MSGs perhaps the most general of the classes of MSGs amenable to algorithmic

analysis.

At this point we turn our attention to a regularity property that holds for all

MSG definable languages.

Definition 1.14. A set X of linearizations is a set of representatives for an MSC

language L if {M | Lin(M) ∩X 6= ∅} = L.

Languages that have a regular set of representatives are needless to say interest-

ing. If L is a regular MSC language then Lin(L) is a regular set of representatives for

L. However, as we shall see, the class of languages with regular set of representatives

is much larger.

Let G be an MSG. For each state q ∈ G, fix a linearization wq of the MSC

labelling q. For any path π = q1 → q2 → . . .→ qk, let w(π) = wq1wq2 . . . wqk . Then,

{w(π) | π is a run through G } is a regular set as well as a set of representatives for

L(G).

Proposition 1.11. [44] Every MSG definable language has a regular set of repre-

sentatives.

As such regular representations for Lsy and Lsp by themselves do not render the

model-checking problems effective (as is clear from Theorem 1.4). Even if L1 ⊆ L2,

it is easy to find representative sets X1 and X2 respectively in such a way that

X1 ∩X2 = ∅. However,

Theorem 1.6. [25] Suppose Lsy is given by a regular set of representatives Xsy

and Lsp is a regular MSC language. Then, the positive and negative model checking

problems are decidable. Thus, MSGs can be model-checked w.r.t. regular MSG

specifications.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

16 K. Narayan Kumar

In proof note that the positive model-checking problem boils down to checking

if Xsy ⊆ Lin(Lsp) which is merely the containment of regular languages, and the

negative model-checking involves deciding if Xsy ∩ Lin(Lsp) = ∅.

An argument identical to the one used to prove Lemma 1.1 ensures that all the

words in any regular representation of an MSC language are B-bounded for some

B. Thus,

Proposition 1.12. If L has a regular set of representatives then L is existentially

B-bounded for some B.

Let LinB(L) be the set of linearizations of L that are B-bounded. Theorem 1.6

can be strengthened as follows: from a regular set of representatives Xsy for the

system we can derive a bound B such that every word in Xsy is B-bounded. Now,

Xsy ⊆ Lin(Lsp) if and only if Xsy ⊆ LinB(Lsp) and Xsy ∩ Lin(Lsp) = Xsy ∩

LinB(Lsp). Thus, it suffices that LinB(Lsp) be an (effectively constructible) regular

set.

Theorem 1.7. [25] Let Lsy be given by a regular set of representatives Xsy and let

Lsp be such that LinB(Lsp) is effectively regular for some B such that every word

in Xsy is B-bounded. Then, the positive and negative model-checking problems are

decidable.

Later in this section we shall see that B-bounded linearizations of any glob-

ally cooperative MSG language is a regular language. Moreover, as we shall see

in Section 1.4 there is another natural class of systems for which B-bounded lin-

earizations are regular for any B. These results, drawn from [25; 26] and [29] show

that the model-checking problem for MSGs is decidable for a fairly generous class

of specifications.

1.2.3. Compositional MSGs

There have been several attempts at extending the definition of MSGs to increase

their expressive power. For instance, the netcharts model ([52; 9]) attempts at

combining the features of MSGs and petri-nets to obtain a model that can generate

all regular MSC languages. In this section we consider a natural weakening of the

definition of MSCs and MSGs that results in a richer specification language and yet

retains most of the useful properties of MSGs.

A compositional MSC is essentially a segment of an MSC, and thus may contain

receive events without matching send events and send events without matching

receive events. Any association between sends and receives included must satisfy

the FIFO assumption. Formally,

Definition 1.15. [30] A CMSC over P is a finite ΣP -labelled poset M =

(E,≤, λ,msg) (with the notation defined in section 1.1) where

(1) Each relation ≤pp is a linear (total) order.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 17

p q
q

p

q

p

Fig. 1.12. A CMSC M and two elements of M ◦M

(2) msg is a partial injective mapping from S to R where

• S = {e ∈ E | λ(e) = p!q(m) for some p, q,m}

• R = {e ∈ E | λ(e) = p?q(m) for some p, q,m}

satisfying

(a) if msg(s) = r then s = p!q(m) and r = q?p(m) for some p, q,m. We write

s <pq msg(s) in that case.

(b) if s1 ≤pp s2, Ch(s1) = Ch(s2) = p!q and msg(s1) and msg(s2) are defined

then msg(s1) ≤qq msg(s2).

(3) ≤= (∪p∈P ≤pp ∪ ∪(p,q)∈Ch <pq)
∗.

In Fig. 1.12 we have a CMSC with one unmatched send and one unmatched receive

events.

Every MSC is a CMSC. It is easy to check that a CMSC is an MSC if and

only if msg is total and onto. Following [26], we define the concatenation of two

CMSCs M1 and M2 as a set of CMSCs: for each process, the events in M1 precede

its events in M2, further send events in M1 may be matched with receive events in

M2, as long as it does not violate the FIFO condition. The result is a set as we are

not obliged to match up unmatched sends in M1 with unmatched receives in M2

and there may be more than one way to match up unmatched sends in M1 with

unmatched receives in M2.

Definition 1.16. LetMi = (Ei,≤i, λi,msgi), i = 1, 2 be CMSCs with E1∩E2 = ∅.

The concatenationM1 ◦M2 is the collection of CMSCs of the formM = (E1∪E2,≤

, λ,msg) where

(1) M ↓Ei
= Mi for i = 1, 2, where M ↓F is the restriction of ≤, λ and msg to the

events in F .

(2) For each e ∈ E2, if e ≤ e′ then e′ ∈ E2 (i.e.) send events of E2 cannot be

matched with receive events in E1.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

18 K. Narayan Kumar

Figure 1.12 illustrates CMSC concatenation by listing two CMSCs that belong

to M ◦M . The FIFO assumption ensures that if M1 ◦M2 contains an MSC then

it is unique. The operation ◦ can be extended to sets of CMSCs, S ◦ T = {M ◦

M ′ | M ∈ S & M ′ ∈ T }. On sets of MSCs, the operation ◦ is associative, i.e.,

S ◦ (T ◦ U) = (S ◦ T) ◦ U . We generalize MSGs to CMSGs in the obvious manner.

Definition 1.17. [30] A Compositional Message Sequence Graph is a structure

G = (Q,→, Qin, F,Φ), where Q is a finite and nonempty set of states, → ⊆ Q×Q,

Qin ⊆ Q is a set of initial states, F ⊆ Q is a set of final states and Φ labels each

state with a CMSC.

A path π = q0 → q1 → · · · → qn is an accepting run if q0 ∈ Qin and qn ∈ F .

The language of MSCs accepted by G, L(G), is the set of MSCs in the set

{Φ(q0) ◦ Φ(q1) ◦ . . . ◦ Φ(qk) | q0 → q1 → . . . qk is an accepting run of G}

We say that an CMSC language L is CMSG-definable if there exists an CMSG G

such that L = L(G).

First of all note that some CMSGs may generate an empty MSC language even

though there are paths from the initial state to final states. For instance, a CMSG

with a single state that is initial and final, a self-loop, and labelled by the CMSC

M from Fig. 1.12 is one such CMSG. Any CMSC generated by this CMSG has

unmatched sends (and receives).

Observe that the CMSC M1 ◦M i ◦M2, where M is the CMSC from Fig 1.12,

M1 is the CMSC with just a single p!q event and M2 is the CMSC with a single

q?p event, is an atom for all i ≥ 0. Thus, CMSG recognizable languages need not

be finitely generated. As a matter of fact, as shown in [30], it is quite easy to show

that any regular MSC language is CMSG-definable — roughly speaking, we may

replace each edge labelled p!q (or q?p) in the finite automaton for this language

by a node labelled by an MSC with a single p!q (or q?p) event. This construction

actually implies something stronger:

Proposition 1.13. If L is an MSC language with a regular set of representatives

then L is a CMSG-definable language.

Interestingly, since every path in this CMSG corresponds to a valid linearization

of an MSC in L, every path in this CMSG generates at least one MSC. Checking

whether a CMSG generates any MSC or not is undecidable ([30]). Thus, CMSGs

are somewhat unrestrained for a specification language.

Definition 1.18. [26] A CMSG G is said to be safe if for any accepting path

q0 → q1 → . . .→ qk the set Φ(q0) ◦ Φ(q1) ◦ . . . ◦ Φ(qk) contains at least one MSC.

Every MSG is a safe CMSG. The property of being safe is decidable and safety

gives a sufficient condition to ensure analyzability of CMSGs. Fix a lineariza-

tion wq for each node q of a safe CMSG G. It is easy to see that the language

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 19

{wq0wq1 . . . wqk | q0 → q1 → . . . qk is an accepting run } is regular and a set of rep-

resentatives of the language of G. Combining this with the observation following

Proposition 1.13 gives

Proposition 1.14. [45] An MSC language L has a regular set of representatives if

and only if it is the language of a safe CMSG. Thus, every safe CMSG language is

existentially B-bounded for some B.

Safe CMSGs should be as analyzable as the class of MSGs; after all, they enjoy

the only regularity property that we have been able to associate with MSGs! To

verify this, let us generalize some of the structural restrictions on MSGs to CMSGs.

Definition 1.19. [26] The communication graph of a CMSC is the directed graph

whose vertices are the elements of P and there is an edge from p to q whenever

there is a p!q event and a q?p event (the two need not necessarily be matched) in

the CMSC.

The communication graph of the CMSC M in Fig. 1.12 is the complete directed

graph on two vertices. The notions of locally synchronized CMSCs and globally

cooperative CMSCs is defined as before. Finally, a CMSG G is locally synchronized

if it is safe and every CMSC generated by every loop in G is locally synchronized.

A CMSG G is globally cooperative if it is safe and every CMSC generated by every

loop in G is globally cooperative.

Theorem 1.8. [26] Let G be a globally cooperative CMSG and let B be an integer

such that B ≥ |G|. Then, the set of B-bounded linearizations of L(G) is a regular

language (recognized by a finite automaton whose size is O(|G|Poly(|G|,B,|P|)).)

The proof relies on the relationship to Mazurkiewicz traces. Combining this

with Theorem 1.7 we get

Theorem 1.9. [26] The positive and negative model checking problems are decidable

when Lsy is the language of a safe CMSG and Lsp is the language of a globally

cooperative CMSG.

The essence of this story, which took some time to develop and culminate in

the papers [29; 26], is the following: of the two suspected reasons for the non-

analyzability of MSG (CMSG) based specifications, the culprit is independent (con-

current) iterations and eliminating that via a structural restriction (globally coop-

erative MSGs) delivers a generous decidability result for model-checking.

1.3. Monadic second order logic over MSCs

Monadic second order logic (or MSO) is the logical counter part to automata. Büchi

and Elgot ([17; 22]) showed that MSO over finite words has the same expressive

power as finite automata, Büchi then extended this to MSO over infinite words

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

20 K. Narayan Kumar

and automata over infinite words that bear his name. These connections are not

isolated and a host of similar connections have been established between MSO and

automata. The most relevant of these results to our context is the one relating

regular trace languages and MSO over traces due to Wolfgang Thomas ([61]) and

extended to infinite traces by Ebinger and Muscholl ([21]).

Definition 1.20. Fix a set P of processes and messages. The formulas of the

monadic second order logic over MSCs (MSO) are as follows:

ϕ ::= a(x) | x ∈ X | x ≤ y | x ≤pp y | x⋖p y | x <pq y | ¬ϕ | ϕ ∧ ϕ | ∃X.ϕ | ∃x.ϕ

where a ∈ ΣP and (p, q) ∈ Ch.

We will also be interested in the fragment of existential monadic second-order

formulas (EMSO) which are of the form ∃X1∃X2 . . . ∃Xk. ϕ where ϕ is a first order

formula. We will also be interested in restricted versions of these logics obtained by

permitting only a subset of the 4 relational symbols in the syntax, and this will be

made explicit by listing the allowed subset: for eg. MSO(⋖p, <pq) to stand for the

fragment that does not use ≤ and ≤pp.

An MSO formula is interpreted over an MSC. The first order variables range over

the events in the MSC, second order variables over sets of events and the relational

operators have the obvious interpretation: ≤ is the ordering on the events of the

MSC, ≤pp is the ordering on events in process p, ⋖p is the immediate successor

relation within a process p, and <pq is the message induced ordering between a

send from p and the corresponding receive in q. Observe that the first two relations

are ordering relations while the latter two are not. Finally a(x) is true with x = e if

λ(e) = a. The interpretation of the logical operators and quantifiers is as usual. It

is quite easy to see that ≤pp and ⋖p can be defined using ≤, but it turns out that

<pq cannot be so defined. Sentences in MSO define languages of MSCs, L(ϕ) =

{M | M |= ϕ} and in this case we say that L is MSO-definable.

Here is a sentence that characterises universally 2-bounded MSCs.
∧

(p,q)∈Ch

∀x.∀y.∀z. (p!q(x) ∧ p!q(y) ∧ p!q(z) ∧ (x < y) ∧ (y < z)) =⇒

∃w. (x <pq w) ∧ (w < z))

It asserts that in any sequence of 3 sends, the receive corresponding to the first

send must be in the past of the third send (see Prop. 1.1). This can be generalized

to describing universally B-bounded MSCs for any fixed B.

It is well-known that the transitive closure of a relation is definable in any

monadic second order logic: xR∗y if and only if the smallest set containing x and

closed under R also contains y. However, such a definition makes essential use of

universal quantification over sets and consequently, such a translation is not always

possible in the existential fragment of monadic second order logic. Since ≤ and

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 21

≤pp can be defined as transitive closure of ⋖p∪ <pq and ⋖p respectively, MSO over

MSCs is equivalent to MSO(⋖p, <pq).

In [36; 34] the following characterization theorem is presented.

Theorem 1.10. A B-bounded language L is regular if and only if L = L(ϕ) ∩

{M | M is universally B-bounded} for some MSO(≤) formula ϕ.

The result holds even if the logic is restricted to be EMSO(≤). The proof ([36;

34]) is based on the ideas used in similar results for MSO over traces in [61; 60]. In

one direction, given a MSO(≤) formula ϕ, we construct a formula ψ in MSO over

words such that w |= ψ if and only if (i) w is a B-bounded complete and proper

word and (ii) the MSC Mw generated by w satisfies ϕ and (iii) Mw is universally

B-bounded. Establishing (i) and (ii) shows that the set of B-bounded linearizations

of L(ϕ) is a regular language (which implies Theorem 1.11 below).

Part (i) is easy as the set of B-bounded proper and complete words is a regular

language and one may appeal to the Büchi-Elgot theorem. For part (ii), the proof

proceeds by defining, in MSO over words, a binary relation � on the positions of

the word in such a way that for any B-bounded w and positions i and j in w, i � j

if and only if the corresponding events (say ei and ej) are ordered under ≤ in Mw.

Clearly, ei ≤pp ej in Mw if and only if i < j and i and j are p events in w. We still

have to show that <pq is definable. This makes essential use of the B-boundedness

of w. The formula asserts that there is a k ∈ {0, 1, . . . , B−1} such that i is labelled

by p!q, the number of positions to its left labelled by p!q is k(modulo B), j is to

the right of i, it is a labelled by q?p and the number of positions to its left labelled

by q?p is k(modulo B) and there is no position between i and j labelled by q?p

for which the number of positions to its left labelled q?p is k(modulo B). Since

transitive closure is definable in MSO the result follows. (The transitive closure can

be avoided by a slightly more elaborate argument using the fact that one has to

hop across processes at most |P| number of times.) Finally, part (iii) follows from

the fact that with � and ≤, universally B-boundedness can be defined as explained

in the example above.

The other direction is somewhat more involved. Given a regular MSC language

and B, use Büchi-Elgot theorem to pick a formula ψ in MSO over words describing

the linearizations of this language. Then show that in MSO(≤) one can define a

relation � over the MSC that fixes a canonical linearization of the MSC (using

techniques from [60]), and then interpret ψ over this linearization.

This result generalizes to MSO over infinite MSCs and regular languages of

infinite MSCs as shown by D. Kuske ([39]). As a matter of fact, [39] provides a

complete theory of regular languages of infinite MSCs. For the relationship between

existentially B-bounded languages and MSO we have the following theorem:

Theorem 1.11. [45] For any MSO formula ϕ and any B, LinB(L(ϕ)) is a regular

language.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

22 K. Narayan Kumar

An immediate consequence is that any existentially B-bounded language de-

scribed by an MSO formula has a regular set of representatives. As a corollary to

the previous two theorems we have

Corollary 1.1. The problem of checking whether an MSO(≤) formula (or a MSO

formula) is satisfiable over universally B-bounded MSCs is decidable. Similarly,

checking satisfiability over existentially B-bounded MSCs is decidable.

The natural question then is to ask “Can we model check safe CMSGs (or MSGs)

w.r.t. to MSO?”. The answer is affirmative. In proof note that, any safe CMSG has

a regular set of representatives, Theorem 1.11 implies that LinB(L(ϕ)) is regular

for any B and any ϕ in MSO and thus Theorem 1.7 is applicable.

Theorem 1.12. [44; 45] The problem of deciding whether every MSC generated by

a safe CMSG (or MSG) satisfies a MSO formula is decidable.

B.Bollig and M. Leucker [15] study the expressiveness of MSO and EMSO over

MSCs and using techniques from [46] show that

Theorem 1.13.

(1) The monadic quantifier alternation hierarchy of the logic MSO (over MSCs) is

infinite. Thus, MSO(⋖p, <pq) is strictly more expressive than EMSO(⋖p, <pq).

(2) The logics MSO(≤) and EMSO(⋖p, <pq) are incomparable.

We shall return to the expressive power of MSO over MSCs a little later after

we introduce an implementation model for MSCs.

1.4. Message Passing Automata

Safe CMSGs, MSGs and MSO are elegant and expressive languages to describe

collections of MSCs. However, they are far removed from an execution model where

each process is situated at a different location and there are limitations on what each

process actually knows of the global state. The natural execution model for MSCs

is that of message passing automata (also referred to as communicating finite-state

machines).

A message passing automaton consists of a collection of finite state processes

which communicate with each other by sending messages on FIFO channels. Each

transition in a process involves either sending a message to some process or con-

suming a message from one of its input channels. It is possible to enrich these

automata with local moves, however since it has no effect on the results in this

section, we work without them. Fig. 1.13 illustrates a message passing automaton

implementing a producer-consumer system and an MSC accepted by it. Formally,

an MPA is defined as follows:

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 23

p q

p!q(m) q?p(m)
p q

-
-
-

m

m

m
...

-m

Fig. 1.13. An MPA

Definition 1.21. [13] Let ΣP be the communication alphabet over the set of

processes P and message alphabet M. A message-passing automaton (MPA) over

ΣP is a structure A = ({Ap}p∈P ,∆, sin, F) where:

• ∆ is a finite alphabet of auxiliary messages.

• Each component Ap is of the form (Sp,→p) where Sp is a finite set of p-local

states and →p ⊆ Sp × Σp ×∆× Sp is the p-local transition relation.

• sin ∈
∏

p∈P Sp is the global initial state.

• F ⊆
∏

p∈P Sp is the set of global final states.

Observe that our definition allows the tagging of each message with auxiliary con-

tents drawn from the set ∆.

The local transition relation →p specifies how the process p sends and receives

messages. The transition (s, p!q(m), x, s′) says that in state s, p can send the mes-

sage m to q tagged with auxiliary information x and move to state s′. Similarly,

the transition (s, p?q(m), x, s′) signifies that at state s, p can receive the message

m from q tagged with information x and move to state s′.

A global state of A is an element of
∏

p∈P Sp. For a global state s, sp denotes

the pth component of s. A configuration is a pair (s, χ) where s is a global state

and χ : Ch → (M×∆)∗ is the channel state describing the message queue in each

channel c. The initial configuration of A is (sin, χε) where χε(c) is the empty string

ε for every channel c. The set of final configurations of A is F ×{χε}. Observe that

in a final configuration all the channels must be empty.

A global move of the automaton involves one of the process depositing a mes-

sage into a channel (sending a message) or consuming a message from the channel

(receiving a message) according to its local transition relation. Suppose, (s, χ) is

a configuration and (sp, p!q(m), x, s′p) ∈ →p. Then, (s, χ)
p!q(m)
=⇒ (s′, χ′) where for

r 6= p, sr = s′r, for each r ∈ P , χ′((p, q)) = χ((p, q)) · (m,x), and for c 6= (p, q),

χ′(c) = χ(c). Similarly, if (s, χ) is a configuration and (sp, p?q(m), x, s′p) ∈ →p,

then there is a global move (s, χ)
p?q(m)
=⇒ (s′, χ′) where for r 6= p, sr = s′r, for each

r ∈ P , χ((q, p)) = (m,x) · χ′((q, p)), and for c 6= (q, p), χ′(c) = χ(c).

A run of the automaton is a sequence of such global moves and we write ConfA

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

24 K. Narayan Kumar

s1

s2

s3

t1

t2 t3

p!q(m)

p!q(m)p?q(m)

q!p(m)q?p(m)

q?p(m)

p q

HHHHHj
HHHHHj
HHHHHj

m

m

m

�
�

�
��	 �

�
�

��	

m

m

Fig. 1.14. An MPA accepting infinite number of atoms

for the set of reachable configurations of A. A run is accepting if it ends in a final

configuration. For instance

((p, q), ε)
p!q(m)
=⇒ ((p, q),m)

p!q(m)
=⇒ ((p, q),mm)

q?p(m)
=⇒ ((p, q),m)

q?p(m)
=⇒ ((p, q), ε)

is an accepting run the automaton in Fig. 1.13 on the word

p!q(m)p!q(m)q?p(m)q?p(m).

We define L(A) = {σ | A has an accepting run over σ}. Since all channels are

empty in the initial and final configurations and a message can be received only if

it has already been sent, it is easy to check that any word accepted by an MPA is

proper and complete. It is not difficult to see that if L(A) contains one linearization

of an MSC M then it contains all the linearizations of the MSC M . As a matter

of fact, it is quite easy to define runs of MPAs directly on MSCs as a mapping

from events on the MSC to global states of the automaton. Thus L(A) is the set of

linearizations of an MSC language. As usual we shall use L(A) to denote the MSC

language accepted by A as well as its linearizations.

Each configuration of an MPA records the messages sent and as yet undelivered.

For B ∈ N, a configuration (s, χ) is B-bounded if |χ(c)| ≤ B for every channel c ∈ Ch

and A is a B-bounded automaton if every reachable configuration (s, χ) ∈ ConfA
is B-bounded. Clearly a B-bounded automaton accepts a universally B-bounded

language. The global state space of any B-bounded MPA is therefore finite and

consequently, everyB-bounded MPA accepts a regular MSC language. The converse

is also true but we shall get to that a little later. The MPA in Fig. 1.13 accepts a

unbounded language.

From any MPA A and a natural number B we can generate a finite automaton

accepting precisely those B-bounded words that are accepted by A and thus

Proposition 1.15. For any MPA A and any natural number B, the language

LinB(L(A)) is a regular language.

The language of an MPA need not be finitely generated. Fig. 1.14 describes an

MPA and one of the MSCs it accepts. This MPA accepts a regular MSC language

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 25

s1

s2

t2

t1

r1

r2 r3

p!q

p!r q?r

q?p

r?p

r!q

Fig. 1.15. An MPA with an existentially unbounded language

and every MSC accepted by this automaton is an atom. Thus, there are MPA

acceptable languages that cannot be described by MSGs.

Finally, MPAs can also accept languages that are not existentially bounded (for

any B), thus MPAs are capable of accepting languages that cannot be described

using safe CMSGs. The MPA in Fig. 1.15 accepts the language of MSCs generated

by the words (p!q)n p!r r?p r!q q?r (q?p)n and it is easy to verify that this is not

an existentially bounded language.

Definition 1.22. An MPA is said have local accepting states if F =
∏

p∈P Fp for

some Fp ⊆ Sp.

1.4.1. MPAs without auxiliary messages

We first examine the power of MPAs without auxiliary message alphabets (i.e.)

MPAs whose auxiliary alphabet is singleton.

Definition 1.23. An MSC language L is said to be weakly realizable if it is the

language of an MPA with a singleton auxiliary message alphabet and with local

accepting states.

Consider the language {M1,M2} of MSCs (from Fig. 1.16). This set is not

weakly realizable — Suppose A is an MPA accepting this language. From the

accepting run onM1, we know that there are runs p0
p!q(m)
−→ p1

p!s(m)
−→ p2 and q0

q?p(m)
−→

q1 for p and q ending in accepting states. Similarly, from the accepting run on M2,

we know that there are runs r0
r!s(m)
−→ r1 and s0

s?r(m)
−→ s1

s?p(m)
−→ s2 ending in

accepting states. This means that the MSC M is also accepted, since p and q may

behave exactly as they do in accepting M1 and r and s may behave exactly as they

do in accepting M2 and all four processes end up in an accepting states on M .

The language of an MPA with local accepting states and over a singleton aux-

iliary message alphabet is merely the shuffle or free product of the local languages

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

26 K. Narayan Kumar

p q r s

M1

-m

-m

p q r s

M2

-m

-m

p q r s

M

-m -m

-m

Fig. 1.16. An implied scenario

of the processes and this is formalized as follows:

Given an MSC M (or any linearization w of M) and a process p, M↾p is the

word over Σp consisting of the projection of M (or equivalently w) to the events

in process p. For eg. M1↾p = p!q(m)p!s(m) for the MSC M1 in Fig. 1.16. For a

language L, Lp = {M↾p | M ∈ L}. Finally, given word languages Lp over Σp for

each p ∈ P , let
∏

p∈P Lp = {M | M↾p ∈ Lp} (the usual free product).

Definition 1.24. Given a set L of MSCs its implied closure Imp(L) is defined as

follows

Imp(L) = {M | ∀p ∈ P . ∃Mp ∈ L. M↾p =Mp↾p}

If M ∈ Imp(L) \ L then we say that L has an implied scenario and that M is an

implied scenario of L.

In Fig 1.16, M is an implied scenario of {M1,M2}. The following characteriza-

tion (albeit non-effective) is easy to prove.

Proposition 1.16. [6] If L is weakly realizable then L = Imp(L). Conversely,

suppose L is an MSC language and L↾p is a regular language for each p, then L is

weakly realizable only if L = Imp(L).

p M1 q

p M2 q

M1

M1

M1

M1

M2

M2

M2

M2

M1

M1

M1

M1

Fig. 1.17.

Implied scenarios are of practical inter-

est. Often, a designer specifies a system as a

collection of MSCs using say an MSG. The

existence of an implied scenario indicates

that an implementation by MPAs (w/o aux-

iliary tagging) would result in behaviours

not foreseen by the designer (these might

or might not be bad). So it would be use-

ful to check if a given MSC language L has

any implied scenarios at all, and construct

a representation for Imp(L). The implied

closure of a B-bounded language may contain MSCs that are not B-bounded. As

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 27

a matter of fact, the implied closure of a B-bounded regular language need not be

bounded at all.

In Fig. 1.17 observe that the two MSCs M1 and M2 have complete commu-

nication graphs. Therefore, the language (M1 +M2)
∗ is a regular MSG-definable

language. On the other hand, for each k ∈ N, the MSC in which the p-projection

matches M2k
1 Mk

2 and the q-projection matches Mk
2M

2k
1 has a global cut where the

channel (p, q) has capacity k + 1. The figure shows the case k = 2. The dotted

line marks the global cut where the channel (p, q) has maximum capacity. Thus,

Imp(L) need not be a regular MSC language when L is a regular MSC language.

It gets worse.

Theorem 1.14. [7] The problem of checking whether Imp(L) = L is undecidable

even for regular MSC languages presented as locally synchronized MSGs.

Let us examine this result a little. Let B be the bound on the channels in

L. From the definition of Imp(L) it is not difficult to check that if L is weakly

realizable then an MPA A implementing L can be constructed as follows: For

each process p pick a minimal finite automaton (w/o dead or unreachable states)

accepting the language L↾p as Ap and set F =
∏

p∈P Fp. Thus we have a candidate

implementation. Yet, weak realizability is undecidable because it is not possible to

check whether the language accepted by A equals L. By restricting A to runs where

no channel has more than B messages, we have a finite automaton accepting the

set of B-bounded words in Imp(L). Thus, checking if there is a B-bounded implied

scenario for L is decidable. The difficulty is in finding if there are implied scenarios

violating the B-bound. In particular, the existence of a partial run reaching a

configuration where some channel has more than B messages does not mean that

there are implied scenarios. This is because such a partial run may not be extendable

to an accepting run. (However, this means that this partial run has ended in a

configuration from where no final configuration is reachable. We shall return to this

point a little later.)

Theorem 1.14 has been strengthened [12] to show that this problem is undecid-

able even when L is a 1-bounded language and undecidability holds even with just

2 processes. These undecidability arguments make essential use of the fact that the

channels are FIFO (and therefore requires the message alphabet to have at least

two messages.) Restriction to the trivial message alphabet yields the first positive

result.

Proposition 1.17. [49] The problem of checking whether the language of a locally

synchronized MSG over a singleton message alphabet is weakly realizable is decid-

able.

Since weak realizability is impossible to analyze, it is natural to look for stronger

notions of implementability. Alur et al. propose a notion called safe realizability

which is amenable to algorithmic analysis.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

28 K. Narayan Kumar

Definition 1.25. A configuration χ of an MPA A is a deadlock if there are no

reachable final configurations. An MPA is said to be deadlock-free if it has no

reachable deadlock configurations. A language is said to be safely realizable if it is

the language of a deadlock-free MPA with local accepting states and over a singleton

auxiliary message alphabet.

It is also possible to characterize safely realizable languages as a closure property

akin to Prop. 1.16 (see [6; 42]).

Proposition 1.18. L is safely realizable if and only if it is weakly realizable and

satisfies the following closure property:

{w | ∀p.∃up ∈ L. w↾p ≤ up} ⊆ {w | ∃u ∈ L.w ≤ u}

The closure condition demands that any partial MSC (or proper word) whose pro-

jections on every process is consistent with some accepting run of the process must

be extendable to an MSC (or proper complete word) in L. Fortunately, safe realiz-

ability is analyzable.

Theorem 1.15. The problem of checking whether a given globally cooperative MSG

generates a safely realizable language or not is decidable in EXPSPACE and the

problem is EXPSPACE-complete even for locally synchronized MSGs. However,

the safe realizability problem for arbitrary MSGs is undecidable.

We go back to our analysis of why the availability of a candidate implementa-

tion does not suffice to ensure decidability of weak implementation. The analysis

there ends with a conclusion placed within parenthesis. This conclusion stated in

our recently acquired terminology states that the candidate implementation A has

deadlocks or implied scenarios whenever it reaches a configuration violating the

B-bound on some channel. Thus, if A ever reaches a configuration violating the

B-bound on some channel, it cannot be a safe implementation of L. Finally, it is

not difficult to verify, using Prop. 1.18 that if at all L is safely realizable then A is

such a realization. That completes our sketch of the decidability argument.

The decidability for locally synchronized MSGs appears in [7], that for globally

cooperative MSGs in [49] and the exact complexity result as well as the undecid-

ability result is from [42].

1.4.2. MPAs with auxiliary messages

In this section we study the expressive power of MPAs with no restriction on the use

of auxiliary message contents. We begin by showing that the collection {M1,M2}

from Fig. 1.16 can be implemented using auxiliary messages. An MPA with auxiliary

messages drawn from the set {1, 2} is described in figure 1.18 The process p signals

the process s using the auxiliary information regarding the identity of the MSC

(The auxiliary information in all the other messages can be ignored.)

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 29

p1

p2 p3

q1

q2

r1

r2

s1

s2 s3

(p!s(m,2)

(p!q(m,1)

p!s(m,1)

q?p(m,1) r!s(m,2) s?r(m,2)

s?p(m,2)

s?p(m,1)

Fig. 1.18. An MPA accepting {M1,M2}

This example illustrates the use of auxiliary information: it allows a process to

convey information about its past (in this case p conveys the information “I sent a

message to q” to s by tagging the message with a 1 instead of a 2.) However, since

the auxiliary message alphabet is a finite set, it only allows a bounded amount of

information about the past to be conveyed in any message. It turns out that this

ability to forward bounded amount of information is very powerful.

Theorem 1.16. [36; 34] An MSC language L over a set of process P and messages

M is regular if and only if there is an an MPA A, over the same alphabet and with

an auxiliary message alphabet ∆, such that L = L(A).

The proof of this theorem is beyond the scope of this paper. However we provide

a brief sketch of the difficulties and main ideas involved.

This theorem is an example of a distributed synthesis theorem — it states that

given the global description of a regular MSC language, it is possible to construct a

distributed implementation as an MPA. The key ingredients that go into the proof

are drawn from the celebrated result of W. Zielonka [64] showing that every regular

trace language is recognized by an asynchronous automaton.

Let us examine the main difficulty in proving such a result. Suppose the global

description is a finite automaton G. We can equip each local process with a copy

of G if necessary. Yet, after a sequence of events w, which process is to keep

track of the current state of G? Observe that every event takes place only in one

process and each process directly observes only the events that it participates in,

so it is not possible for any one process to maintain the state of G correctly. For

the moment assume that we may tag the messages with unbounded amount of

auxiliary information. Then, every process can send the entire history of all the

events it has participated in as well as all the events about which it has learnt from

others through messages it has received. So, whenever a message is received, the

receiving process knows the entire set of events that are below this event in the

MSC order. However, an MSC could have up to |P| maximal events and thus even

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

30 K. Narayan Kumar

with this passing around of unbounded amount of information, no one process has

information about the entire MSC.

Suppose the processes are 1, 2, . . .K. Process 1 has with it all the events that

occur below the maximal 1 event in the MSC. Now, we would like process 2 to

provide us with not all the events in its past, but only those that appear in its past

but not in the past of process 1. For this, we need information about the events

in each process j ∈ {2, 3, 4, . . . ,K}, that are in the past of 2 but not in the past of

1 (called the 1 residue at 2). With this information we can piece together all the

events in the past of 1 and 2 without any ambiguity. Then, we need to obtain from

process 3 information about events in {3, 4, . . . ,K} that do not appear in the past

of 1 and 2 (the {1, 2} residue at 3) and so on. Then, the MSC can be reconstructed

from the residues available at 1, 2, . . .K.

The reduction from unbounded to bounded information hinges on the fact that

instead of keeping any partial MSC M (or a linearization w) of the history of a

process, we might as well keep the transition function that this word or partial

MSC defines on the state space of G.

The ability to program each process to maintain its residues w.r.t. to other

processes requires a sophisticated time stamping algorithm from [51] which can

perform comparisons such as “is my information about j more recent than

i’s information about j?”. Most importantly this time-stamping algorithm re-

quires each process to maintain only a bounded amount of information and tags

each message with only a bounded amount of information. The proof in [50;

34] proceeds along these lines.

An alternative is to use the connection to regular trace languages, then use

Zielonka’s construction to obtain an asynchronous automaton and then translate

back such an automaton into an MPA. This is the structure of the proof in [38].

The above theorem can be strengthened.

Definition 1.26. [50] An MPA is said to deterministic if

• If (s, p!q,m1, s
′
1) ∈ −→p and (s, p!q,m2, s

′
2) ∈ −→p then

m1 = m2 and s′1 = s′2.

• If (s, p?q,m, s′1) ∈ −→p and (s, p?q,m, s′2) ∈ −→p then s′1 = s′2.

Determinacy requires that the nature of the message sent from p to q depends only

on the local state of the sender p. Note, however, that from the same state, p may

have the possibility of sending messages to more than one process. When receiving

a message, the new state of the receiving process is fixed uniquely by its current

local state and the content of the message. Once again, a process may be willing

to receive messages from more than one process in a given state. This definition

ensures that a deterministic automaton has at most one run on any w ∈ Σ∗
P . Now,

we are in a position to state the main characterization theorem for regular MSC

languages.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 31

Theorem 1.17. [34] Let B be any integer and L be a language of universally B-

bounded MSCs. Then the following are equivalent:

(1) L is a regular MSC language

(2) L is definable in MSO(≤) (or EMSO(≤))

(3) L is the language of a deterministic B-bounded MPA.

(4) L is the language of a B-bounded MPA.

This theorem has been generalized to infinite MSCs by D.Kuske (see [39]). There

are couple of other points worth noting: first of all the definition of MPAs uses

a global set of final states and the physical realizability of such a global set of

acceptance states is debatable. Secondly, the automata constructed in the proof of

the above theorem may deadlock, and once again this makes its usability some what

limited. In a recent series of papers, N. Baudru and R. Morin [8; 10], have shown

that every regular MSC language can be implemented using (nondeterministic)

MPAs that are deadlock free and whose acceptance set is local (i.e. F =
∏

p∈P Fp

for some collection (Fp)p∈P .)

1.4.3. Implementing existentially bounded languages

The characterization in Theorem 1.17 shows that every regular MSC language can

be implemented using a deterministic MPA. The corresponding question for MSC

languages with a regular set of representatives was solved by Genest, Kuske and

Muscholl [25; 26]. An earlier paper [29] set the stage for such a result through a host

of results on the virtues of existentially bounded languages including the analyzabil-

ity of globally cooperative CMSGs (Theorem 1.7) and efficient implementability (as

MPAs) for a subclass (locally cooperative MSGs) of globally cooperative CMSGs.

The proof of this characterization uses the translation to traces from existentially

B-bounded MSCs (described in Section 1.1) to Mazurkiewicz traces.

Theorem 1.18. [26] Let B be an integer and let L be a language of existentially

B-bounded MSCs. Then the following statements are equivalent.

(1) LinB(L) is a regular set of representatives for L.

(2) L is generated by a globally cooperative CMSG.

(3) L is MSO (EMSO) definable.

(4) L is implementable using an MPA.

We have already seen some of the relationships: Theorem. 1.8 shows that one

can go from globally cooperative CMSGs to languages with LinB(L) as a regular set

of representatives. Theorem 1.11 allows us to move from MSO definable languages

to languages with LinB(L) as a regular set of representatives. Prop. 1.13 shows

that any language with a regular set of representatives can be translated to a safe

CMSG and Proposition 1.14 shows that every safe CMSG generates a language with

a regular set of representatives. These relationships are strengthened to restrict the

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

32 K. Narayan Kumar

class of CMSGs to globally cooperative CMSGs in [26] using Ochmanski’s theorem

([57]). Finally by Prop. 1.15 the set LinB(L) is regular for any MPA.

This leaves the difficult part: a decomposition theorem showing that every exis-

tentially B-bounded language has a distributed implementation as an MPA and this

involves a fairly complex argument via Mazurkiewicz trace theory and is beyond the

scope of this article. The automaton constructed is a nondeterministic automaton

and this is unavoidable.

Proposition 1.19. [27] There are existentially bounded languages recognized by

nondeterministic MPAs that cannot be recognized by deterministic MPAs.

Translating MPAs to EMSO is quite routine, but the converse is not. A remark-

able result due to Bollig and Leucker shows the following:

Theorem 1.19. [15] An MSC language L is EMSO(⋖p, <pq) definable if and only

if it is the language of an MPA.

In contrast to Theorems 1.17 and 1.18 this theorem applies to arbitrary MSCs.

This theorem in combination with Theorem 1.13 shows that

Theorem 1.20. [15] The class of languages accepted by MPAs is not closed under

complementation.

1.4.4. Decision Problems

Every channel is a queue and it is quite easy to simulate counter machines with

MPAs. Consequently, general MPAs are too expressive for any sort of analysis:

Theorem 1.21. [27]

(1) The language emptiness problem for deterministic MPAs is undecidable.

(2) Given a B checking whether a deterministic MPA accepts a universally B-

bounded language is undecidable for every B > 0.

(3) Given a deterministic, deadlock-free automaton in which every global state is

accepting, checking whether it accepts a universally bounded language is unde-

cidable.

(4) Given a B checking whether a deterministic MPA accepts a existentially B-

bounded language is undecidable for every B > 0.

(5) Given a deterministic, deadlock-free automaton in which every global state is

accepting, checking whether it accepts a existentially bounded language is unde-

cidable.

Items (3) and (5) become decidable for a fixed B, since for a deadlock-free

automaton it suffices to check if a configuration with B+1 messages in the channel

is reachable.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 33

1.5. Conclusion

In this article we have surveyed a selection of the results from the theory of MSCs.

These are by no means exhaustive. A number of results that have been omitted

here due to lack of space — to name a few, there is a host of decidability (and

undecidability) results for the so called “‘pattern matching” problems on MSCs

(see for instance [53; 24]), the related problem of whether a class of MSCs can

be implemented by MPAs with additional messages (not merely the addition of

auxiliary content to existing messages; see for instance [23]), branching time speci-

fication and analysis (see for instance [19; 32; 33] and finally there have been some

recent results in extending the theory of MSCs with time (see for instance [1; 2;

3]).

Acknowledgments

This work was partially supported by Timed-DISCOVERI, a project under the

Indo-French Networking Project.

References

1. S. Akshay, Benedikt Bollig, Paul Gastin: Automata and Logics for Timed Message
Sequence Charts. Proceedings of the 27th International Conference on Foundations
of Software Technology and Theoretical and Theoretical Computer Science, Lecture
Notes in Computer Science 4855, Springer-Verlag (2007) 290–302

2. S. Akshay, Madhavan Mukund, K. Narayan Kumar: Checking Coverage for Infinite
Collections of Timed Scenarios. Proceedings of the 18th International Conference on
Concurrency Theory (CONCUR’07), Lecture Notes in Computer Science, Springer-
Verlag 4703 (2007) 181–196

3. S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund, K. Narayan Kumar:
Distributed Timed Automata with Independently Evolving Clocks. Proceedings of the
19th International Conference on Concurrency Theory (CONCUR’07), Lecture Notes
in Computer Science, Springer-Verlag 5201 (2008) 82–97

4. Alur, R., Holzmann, G. J., Peled, D.: An analyzer for message sequence charts.
Software Concepts and Tools 17(2) (1996) 70–77

5. Alur, R., Yannakakis, M.: Model checking of message sequence charts. Proceedings
of the 10th International Conference on Concurrency Theory (CONCUR’99), Lecture
Notes in Computer Science 1664, Springer-Verlag (1999) 114–129

6. Alur, R., Etassami, K., Yannakakis, M.: Inference of message sequence graphs. Pro-
ceedings of the 22nd International Conference on on Software Engineering (ICSE
2000), Association for Computing Machinery (2000) 304–313.

7. Alur, R., Etassami, K., Yannakakis, M.: Realizability and Verification of MSC Graphs.
Proceedings Automata, Languages and Programming, 28th International Colloquium
(ICALP 2001), Lecture Notes in Computer Science 2076, Springer-Verlag (2001)
797–808.

8. N.Baudru, R. Morin: Safe Implementability of Regular Message Sequence Chart and
Specifications. Proceedings of the ACIS Fourth International Conference on Software

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

34 K. Narayan Kumar

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
(SNPD’03), (2003) 210–217.

9. N. Baudru, R. Morin: The Synthesis Problem of Netcharts. Proceedings of the 27th
International Conference on Applications and Theory of Petrinets and other Models
of Concurrency, (ICATPN’06), Lecture Notes in Computer Science 4024, Springer-
Verlag (2006) 84–104

10. N. Baudru, R. Morin: Synthesis of Safe Message-Passing Systems. Proceedings of the
27th International Conference on Foundations of Software Technology and Theoretical
and Theoretical Computer Science, (FSTTCS’07), Lecture Notes in Computer Science
4855, Springer-Verlag (2007) 277–289

11. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-local
choice in message sequence charts. Proceedings of the 3rd Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’97), Lecture Notes
in Computer Science 1217, Springer-Verlag (1997) 259–274

12. Puneet Bhateja, Paul Gastin, Madhavan Mukund, K. Narayan Kumar: Local Testing
of Message Sequence Charts Is Difficult 16th International Symposium on the Fun-
damentals of Computation Theory, (FCT’07), Lecture Notes in Computer Science,
Springer-Verlag 4639 (2007) 76–87

13. D. Brand, P. Zafiropulo: On Communicating Finite-state Machines. Journal of the
ACM 30 (2) (1983) 323–342

14. Bollig, B., Leucker, M., Noll, T.: Generalised regular MSC languages. Proceedings of
the 5th International Conference on Foundations os Software Science and Computa-
tion Structures (FOSSACS’02), Lecture Notes in Computer Science 2303, Springer-
Verlag (2002) 52–66

15. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to
EMSO Logic. Theoretical Computer Science 358 (2-3) (2006) 150–172

16. Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User Guide.
Addison-Wesley (1997)

17. Büchi, J. R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6 (1960) 66–92

18. Clerbout, M., Latteux, M.: Semi-commutations. Information and Computation 73(1)
(1987) 59–74

19. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1) (2001) 45–80.

20. Diekert, V., Rozenberg, G. (Eds.): The Book of Traces. World Scientific (1995)
21. Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Com-

puter Science 154(1) (1996) 67–84
22. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.

Transactions of the American Mathematical Society. 98 (1960) 21-52.
23. Blaise Genest: On Implementation of Global Concurrent Systems with Local Asyn-

chronous Controllers. Proceedings of the 16th International Conference on Concur-
rency (CONCUR’05), Lecture Notes in Computer Science, Springer-Verlag 3653
(2005) 443–457

24. Blaise Genest, Anca Muscholl: Pattern Matching and Membership for Hierarchical
Message and Sequence Charts. Proceedings of the 5th Latin Americal Symposium
on Theoretical Computer Science (LATIN’02), Lecture Notes in Computer Science,
Springer-Verlag 2286 (2002) 326–340

25. Blaise Genest, Dietrich Kuske and Anca Muscholl: A Kleene Theorem for a Class
of Communicating Automata with Effective Algorithms. Developments in Language
Theory, Lecture Notes in Computer Science, Springer-Verlag 3340 (2004) 30–48

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 35

26. Blaise Genest, Dietrich Kuske and Anca Muscholl: A Kleene Theorem for a Class of
Communicating Automata with Effective Algorithms. Information and Computation
204 (6) (2006) 920–956

27. Blaise Genest, Dietrich Kuske and Anca Muscholl: On Communicating Automata
with Bounded Channels. Fundamenta Informaticae 80(1-3) (2007) 147–167

28. Blaise Genest, Anca Muscholl, Helmut Seidl, Marc Zeitoun: Infinite-State High-Level
MSCs: Model-Checking and Realizability. Proceedings of the 29th International Col-
loquium on Automata, Languages and Programming (ICALP’02), Lecture Notes in
Computer Science 2380, Springer-Verlag (2002) 657–668

29. Blaise Genest, Anca Muscholl, Helmut Seidl, Marc Zeitoun: Infinite-State High-Level
MSCs: Model-Checking and Realizability. Journal of Computer and System Sciences
72 (4) (2006) 617–647

30. Elsa L. Gunter, Anca Muscholl, Doron Peled: Compositional Message Sequence
Charts. Proceedings of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’01), Lecture Notes in Computer
Science, Springer-Verlag 2031 (2001) 496–511.

31. Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE Computer,
July 1997 (1997) 31–42

32. D. Harel and R. Marelly: Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling (SoSyM) (to appear)

33. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral Re-
quirements. Proceedings Formal Methods in Computer-Aided Design, 4th International
Conference (FMCAD 2002), Lecture Notes in Computer Science 2517 Springer-Verlag
(2002) 378–398.

34. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M.A. Sohoni and P.S. Thiagarajan:
A Theory of Regular MSC Languages. Information and Computation 202(1) (2005)
1–38

35. J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: On Mes-
sage Sequence Graphs and Finitely Generated Regular MSC Languages. Proceed-
ings of the International Colloquium on Automata, Languages and Programming 2000
(ICALP’00), Lecture Notes in Computer Science 1854, Springer-Verlag (2000) 675–
686

36. J.G. Henriksen, M. Mukund, K. Narayan Kumar and P.S. Thiagarajan: Regular Col-
lections of Message Sequence Charts. Proceedings of the Conference on the Mathemat-
ical Foundations of Computer Science 2000 (MFCS’00), Lecture Notes in Computer
Science 1893, Springer-Verlag (2000) 405–414

37. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva
(1997)

38. Kuske, D.: A further step towards a theory of regular MSC languages. Proceedings
of the Symposium on the Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science 2285, Springer-Verlag (2002) 489–500

39. Kuske, D.: Regular sets of infinite message sequence charts. Information and Compu-
tation 187(1) (2003) 80–109

40. Ladkin, P. B., Leue, S.: Interpreting message flow graphs. Formal Aspects of Com-
puting 7(5) (1995) 473–509

41. Levin, V., Peled, D.: Verification of message sequence charts via template matching.
Proceedings of the 7th International Conference on Theory and Practice of Software
Development (TAPSOFT’97), Lecture Notes in Computer Science 1214, Springer-
Verlag (1997) 652–666

42. Lohrey, M.: Realizability of high-level message sequence charts: closing the gaps.

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

36 K. Narayan Kumar

Theoretical Computer Science 309 (1-3) (2003) 529–554
43. M. Lohrey, A. Mushcoll: Bounded MSC communication. Information and Computa-

tion 189(2) (2004) 160–181
44. Madhusudan, P.: Reasoning about sequential and branching behaviours of message

sequence graphs. Proceedings of the 27th International Colloquium on Automata, Lan-
guages and Programming (ICALP’00), Lecture Notes in Computer Science 2076,
Springer-Verlag (2001) 396–407

45. Madhusudan, P., Meenakshi, B.: Beyond message sequence graphs. Proceedings of the
21st Conference on the Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’01), Lecture Notes in Computer Science 2245, Springer-Verlag
(2001) 256–267

46. Matz, O., Thomas, W.: The Monadic Quantifier Alternation Hierarchy over Graphs
is Infinite. Proceedings of the Symposium on Logic in Computer Science (LICS), IEEE
(1997) 236–244

47. Mauw, S., Reniers, M. A.: High-level message sequence charts, Proceedings of the 8th
SDL Forum, SDL’97: Time for Testing — SDL, MSC and Trends, Elsevier (1997).

48. R. Morin: On Regular Message Sequence Chart Languages and Relationships to
Mazurkiewicz Trace Theory. Proceedings of the 4th International Conference on Foun-
dations of Software Science and Computation Structures, FOSSACS’01, Lecture Notes
in Computer Science 2030, Springer-Verlag (2001) 332–346

49. R. Morin: Recognizable Sets of Message Sequence Charts. Proceedings of the 19th An-
nual Symposium on the Theoretical Aspects of Computer Science, STACS’02, Lecture
Notes in Computer Science 2285, Springer-Verlag (2002) 523-534

50. Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing distributed finite-state
systems from MSCs. Proceedings of the 11th International Conference on Concurrency
Theory (CONCUR 2000), Lecture Notes in Computer Science, Springer-Verlag (2000).

51. Mukund, M., Narayan Kumar, K., Sohoni, M.: Bounded time-stamping in message-
passing systems. Theoretical Computer Science 290(1) (2003) 221–239

52. Mukund, M., Narayan Kumar, K., Thiagarajan, P.S.: Netcharts: Bridging the gap
between HMSCs and executable specifications. Proceedings of the 14th International
Conference on Concurrency Theory (CONCUR’03), Lecture Notes in Computer Sci-
ence, Springer-Verlag 2761 (2003) 293–307

53. Muscholl, A.: Matching specifications for message sequence charts. Proceedings of the
2nd International Conference on Foundations of Software Science and Computation
Structures (FOSSACS’99), Lecture Notes in Computer Science 1578, Springer-Verlag
(1999) 273–287

54. Muscholl, A., Peled, D.: Message sequence graphs and decision problems on
Mazurkiewicz traces. Proceedings of the 24th International Symposium on Mathemati-
cal Foundations of Computer Science (MFCS’99), Lecture Notes in Computer Science
1672, Springer-Verlag (1999) 81–91

55. Muscholl, A., Peled, D., Su, Z.: Deciding properties for message sequence charts. Pro-
ceedings of the 1st International Conference on Foundations of Software Science and
Computation Structures (FOSSACS’98), Lecture Notes in Computer Science 1378,
Springer-Verlag (1998) 226–242

56. Mushcoll, A., Petersen, H.: Note on the Commutative Closure of Star-Free Languages.
Information Processing Letters 57 (2) (1996) 71–74

57. Edward Ochmanski: Regular behaviour of concurrent systems. Bulletin of the EATCS
27 (1985) 56–67

58. Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message sequence charts. In
Computer Networks and ISDN Systems — SDL and MSC 28 (1996).

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

The Theory of Message Sequence Charts 37

59. Sakarovitch, J.: The “last” decision problem for rational trace languages. Proceedings
of the 1st Latin American Symposium on Theoretical Informatics (LATIN’92), Lecture
Notes in Computer Science 583, Springer-Verlag (1992) 460–473

60. Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time temporal
logic for Mazurkiewicz traces. Proceedings of the 12th Annual IEEE Symposium on
Logic in Computer Science (LICS’97), IEEE Computer Society Press (1997) 183–194

61. Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.): Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, Elsevier
Science Publishers (1990) 133–191

62. Thomas, W.: Languages, automata, and logic. In Rozenberg, G., Salomaa, A. (Eds.):
Handbook of Formal Language Theory, Volume III, Springer-Verlag (1997) 389–455

63. Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. Proceedings of the 1st Annual IEEE Symposium on Logic in Computer
Science (LICS’86), IEEE Computer Society Press (1986) 332–345

64. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Informatique
Théorique et Applications 21 (1987) 99–135

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

38 K. Narayan Kumar

July 2, 2010 10:59 World Scientific Review Volume - 9.75in x 6.5in iisc-v5

Index

CMSCs, 16
communication graph, 19
concatenation, 17

CMSGs, 18

globally cooperative, 19
locally synchronized, 19

Compositional Message Sequence Graphs,
see CMSGs

Compositional MSCs, see CMSCs

Mazurkiewicz Traces, 4
dependence alphabet, 4

independence relation, 4
Message Sequence Charts, see MSCs
Message Sequence Graphs, see MSGs
Message-passing automata, see MPAs

MPAs, 23
B-bounded, 24
deadlock, 28

MSCs, 2

atom, 4
communication graph, 9

locally strongly connected, 9
concatenation, 3

existentially B-bounded, 3
implied scenario, 26
language, 7

finitely generated, 7

implied closure, 26
regular set of representatives, 15
safely realizable, 28
set of representatives, 15

weakly realizable, 25
linearization

B-bounded, 2
linearizations, 2

optimal, 3

Monadic second order logic, 19
MPAs

local acceptance, 25
MSO, 19

satsifiability, 22
netcharts, 16
regular MSC language, 7
universally B-bounded, 3

MSGs, 8
bounded, 11
com-connected, 11
decidability, 13
globally cooperative, 12
locally synchronized, 11
model-checking, 14

39

