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Questions and tools.
We focus on analysis of systems modelled with Petri nets.

Most important questions:
1 Place coverability,
2 Reachability,
3 Liveness,
4 Death of a transition,
5 Deadlock-freeness.

Most important tools:
1 Coverability: ExpSpace complete,
2 Boundedness: ExpSpace complete,
3 Reachability: at least ExpSpace Hard.



Two solutions:

Do not try to be precise (approximations).
1 Place invariant.
2 State equation.
3 Continuous reachability.
4 Traps and siphons.

Do not try to be general (sub-classes).
1 Free-choice Petri Nets.
2 Conflict free Petri nets.
3 One counter systems.
4 2-dimensional VASS.
5 Flat systems.



Linear algebra

Integer programming.

Input: An integer matrix M and a vector ~y .
Question: If there is a vector ~x ∈ Nd such that

M · ~x = ~y?

Theorem
The integer programming problem is NP-complete.
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>0 such that

M · ~x = ~y?

Theorem
The linear programming problem is P-complete.



Description of the net, three matrices.

P1 T1 P2

P3 T2 P4

~0[i ] = 0 for all i

~1p[i ] =
{

1 if p = i
0 otherwise

Pre(N ) =


1 0
0 1
0 1
0 0



Post(N ) =


0 1
1 0
1 0
0 1


∆ = Post(N )− Pre(N )
−1 1
1 −1
1 −1
0 1
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State equation.

Let Reach(N , i) be a set of
configurations reachable from i
in N .

Hard to describe.

Let LNRS(N , i) =
{~y : ∃~x∈Nd M · ~x = ~y − i}.

Easier to describe
(NP-complete).

Let LZRS(N , i) =
{~y : ∃~x∈Zd M · ~x = ~y − i}.

Easy to describe
(PTime).

Lemma
Reach(N , i) ⊆ LNRS(N , i) ⊆ LZRS(N , i).
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An application.
Algorithm 1 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one.

if you find f then return 1;
if you can not visit any new configuration then return 0;
if you run out of memory then return I don’t know.

Algorithm 2 for reachability.
Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one; but
whenever you want to add a new node ~x to the graph you check if
f ∈ LNSR(N , ~x). You add the node if and only if the answer is yes.

if you find f then return 1;
if you can not add any new node then return 0;
if you run out of memory then return ”I don’t know”.
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P-flows

~y is called a P-flow iff ~y ·M = 0.
If ~y > 0 then we call it

P-semiflow.

Lemma
If f is reachable from i then ~y · f = ~y · i.

Question
How do we test a boundedness of a place using
P-semiflows?

Lemma
Let ~y be a P-semiflow of the net N , then the number of
tokens is bounded for all 1 6 i 6 d such that ~y [i ] > 0.
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Structural boundedness

A place p in a net N is structurally bounded if for every initial marking i
the

max{ ~1p
T · ~m : ~m ∈ RS(N , i)} is finite.

Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists ~y > ~1p such that ~y ·∆ 6 ~0,

3 there does not exist ~x > ~0 such that ∆ · ~x > ~1p.
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Proof
Theorem
A following conditions are equivalent:

1 a place p in the net N is structurally bounded,
2 there exists ~y > ~1p such that ~y ·∆ 6 ~0,

3 there does not exist ~x > ~0 such that ∆ · ~x > ~1p.

1 1 =⇒ 3 by ¬3 =⇒ ¬1
2 3 =⇒ 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem
Exactly one of the following systems of equations has a solution:

A~x >~b. ~y >~0

~yT · A =~0

~yT ·~b >0.

3 2 =⇒ 1 Direct.
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Continuous reachability.



Linear programming + If formula.

Input: A r × c- integer matrix M and a vector ~y ∈ Zr and a set of
predicates of a form ~x [i ] > 0 =⇒ ~x [j] > 0.

Question: If there is a vector ~x ∈ Qc
>0 such that M · ~x = ~y and all

predicates are satisfied?

Theorem
The Linear programming + If formula problem is in PTime.

Proof
1 The set of solutions is convex.
2 If for every i there is a solution such that ~x [i ] > 0 then there is a

solution such that ~x [j] > 0 for all j .
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Linear programming + If formula (the algorithm).

solve( Matrix ∆, Vector ~y , set of implications S, set of zeros X)
{

If there is no solution ∆ · ~x = ~y in Qd
>0,

where xi = 0 for all xi ∈ X then return false;
If there is a solution ∆ · ~x = ~y in Qd

>0,
where xi = 0 iff xi ∈ X then return true;

Find a new coordinate xi
which has to be equal 0 in every solution;

Add xi to X;
Add to X all xj that has to be added due to implications;
return solve(M, ~y , S, X);

}



Continuous Petri Nets.

T1

T2

Marking: M : P → Q
Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q.



Continuous Petri Nets.

T1

1

1

T2

3
2

Marking: M : P → Q
Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q.



Continuous Petri Nets.

T1

1

1

T2

1
3

3
2

Marking: M : P → Q
Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q.



Continuous Petri Nets.

T1

2
3

2
3

T2

1
3

3
2

Marking: M : P → Q
Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q.



Continuous Petri Nets.

1
3

T1

2
3

2
3

T2

1
3

10
6

Marking: M : P → Q
Transitions: T
Firing a transition t ∈ T with a
coefficient a ∈ Q.



Continuous Petri Nets Reachability.

Input: Two configurations i and f

Question: If there is a run form i to f under continuous semantics.

A simpler variant of the problem.
Suppose, that

∀i (i[i ] > 0 and f[i ] > 0) .

f is reachable from i iff

f− i = ∆ · ~x where ~x ∈ Qd
>0.



Continuous Petri Nets Reachability.

Lemma
f is reachable from i if

1

f− i = ∆ · ~x where ~x ∈ Qd
>0

2

~x [i ] > 0 and Pre[j , i ] > 0 =⇒ i[j] > 0,

3

~x [i ] > 0 and Post[j , i ] > 0 =⇒ f[j] > 0.



Continuous Petri Nets Reachability.

Lemma
f is reachable from i if

1 f− i = ∆ · ~x where ~x ∈ Qd
>0

2 ~x [i ] > 0 and Pre[j , i ] > 0 =⇒ i[j] > 0,

3 ~x [i ] > 0 and Post[j , i ] > 0 =⇒ f[j] > 0.

Theorem
f is reachable from i iff there are two configurations i′ and f′ such that

1 there is a run form i to i′ that is using at most d steps.
2 there is a run form f′ to f that is using at most d steps.
3 There is a run form i′ to f′ due to Lemma.



Translation to a formula (linear + If).

Lemma
For a given Petri net N and two configurations i and f in PTime one can
compute a formula (linear programming + if) such that it is satisfiable if
and only if f is continuously reachable from i in the net N .

We use:

Theorem
f is reachable from i iff there are two configurations i′ and f′ such that

1 there is a run form i to i′ that is using at most d steps.
2 there is a run form f′ to f that is using at most d steps.
3 There is a run form i′ to f′ due to Lemma.



Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

IDEA: Let ~x ∈ M ↑, if there is no ~y > ~x such that ~y ∈ RS(N , i) then we
can throw ~x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let ~x ∈ M ↑, if there is no ~y ≥ ~x such that ~y ∈ CRS(N , i)
then we can throw ~x away.

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.
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Actually, any over-approximation will work: LRS instead of CRS.



Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

IDEA: Let ~x ∈ M ↑, if there is no ~y > ~x such that ~y ∈ RS(N , i) then we
can throw ~x away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015
SOLUTION: Let ~x ∈ M ↑, if there is no ~y ≥ ~x such that ~y ∈ CRS(N , i)
then we can throw ~x away.
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Advertisement.



Internships at the University of Warsaw.
Possibilities:

Prof. Miko laj Bojanczyk
Logic, Automata, Formal Languages.
Email: bojan@mimuw.edu.pl

Prof. Piotr Sankowski
Algorithms.
Email: sank@mimuw.edu.pl

Prof. Stefan Dziembowski
Cryptography.
Email: S.Dziembowski@crypto.edu.pl
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