Linear algebra + Petri nets

Piotr Hofman
University of Warsaw

Petri Nets.

@ Places.

@ Transitions.

Petri Nets.

@ Places.
@ Transitions.

@ Tokens, a Marking.

Petri Nets.

Places.
Transitions.
Tokens, a Marking.

Firing a transition.

Petri Nets.

Places.
Transitions.
Tokens, a Marking.

Firing a transition.

Petri Nets.

Places.
Transitions.
Tokens, a Marking.

Firing a transition.

Questions and tools.

We focus on analysis of systems modelled with Petri nets.

Most important questions:
© Place coverability,
© Reachability,
© Liveness,
© Death of a transition,

@ Deadlock-freeness.

Most important tools:
© Coverability: ExpSpace complete,
@ Boundedness: ExpSpace complete,
© Reachability: at least ExpSpace Hard.

Two solutions:

Do not try to be precise (approximations).
© Place invariant.
@ State equation.
© Continuous reachability.
@ Traps and siphons.

Do not try to be general (sub-classes).
© Free-choice Petri Nets.
@ Conflict free Petri nets.
© One counter systems.
@ 2-dimensional VASS.
© Flat systems.

Linear algebra

Integer programming.

Input: An integer matrix M and a vector y.

Question: If there is a vector X € N9 such that

M-%=y?

Theorem
The integer programming problem is NP-complete.

Linear algebra.

Linear programming.

Input: An integer matrix M and a vector y.

Question: If there is a vector X € Q¢ such that
>0

M-%=y?

Theorem
The linear programming problem is P-complete.

Description of the net, three matrices.

L o]
Pre(N') = 8 1
0 0
:0 1:
Post(N) = i 8
01

A= I;ost(J_\/') — Pre(N)
-1 1

O = =
=

Description of the net, three matrices.

0[] = 0 for all i

fp[i]:{l if p=i

0 otherwise

10
Pre(N') = 8 1
0 0
:O 1:
Post(N) = i 8
01
A= I;ost(J_\/') — Pre(N)
-1 1

O = =
=

State equation.

Let Reach(N,1i) be a set of
configurations reachable from i

in \V.

State equation.

configurations reachable from i | {y: Jzcnye M- X =y —i}.

Let Reach(N,1i) be a set of Let LyRS(N, i) =
in V. J

State equation.

Let Reach(N,1i) be a set of
configurations reachable from i

in \V.

Hard to describe.

Let LNRS(N, 1) =
{Y:El;eNd M)?:y

Easier to describe
(NP-complete).

State equation.

Let Reach(N,1i) be a set of Let LyRS(N, i) =

configurations reachable from i | {y: Jzcnye M- X =y —i}.
in \V.
Hard to describe. Easier to describe

(NP-complete).

Let LzRS(N 1) =
{V:3geze M-X=y—i}.

State equation.

Let Reach(N,1i) be a set of
configurations reachable from i

in \V.

Hard to describe.

Let LNRS(N, 1) =
{7 Feeme M- =7~ i}

Easier to describe
(NP-complete).

Let LzRS(N, 1) =

Easy to describe
(PTime).

State equation.

Let Reach(N,1i) be a set of
configurations reachable from i

in \V.

Hard to describe.

Lemma

Let LNRS(N, 1) =
{Y:ngNd M)_(:}_/'—l} J

Easier to describe
(NP-complete).

Let LzRS(N, 1) = }

Easy to describe
(PTime).

Reach(N,i) C LyRS(N,i) C LzRS(N,1). J

An application.

Algorithm 1 for reachability.

Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one.
o if you find f then return 1,

@ if you can not visit any new configuration then return 0;

@ if you run out of memory then return | don't know.

An application.

Algorithm 1 for reachability.

Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one.
o if you find f then return 1;

@ if you can not visit any new configuration then return 0;

e if you run out of memory then return | don't know.

Algorithm 2 for reachability.

Start from the initial configuration i and exhaustively build a
graph of reachable configurations adding nodes one by one; but
whenever you want to add a new node X to the graph you check if
f € LySR(N, X). You add the node if and only if the answer is yes.
@ if you find § then return 1;
@ if you can not add any new node then return 0;

@ if you run out of memory then return "I don't know".

P-flows

y is called a P-flow iff y - M = 0.
If y > 0 then we call it
P-semiflow.

P-flows

y is called a P-flow iff y - M = 0.
If y > 0 then we call it
P-semiflow.

Lemma
If § is reachable from i then y - f=y -i.

P-flows

y is called a P-flow iff y - M = 0.
If y > 0 then we call it
P-semiflow.

Lemma

If § is reachable from i then y - f=y -i.

Question

How do we test a boundedness of a place using
P-semiflows?

P-flows

y is called a P-flow iff y - M = 0.
If y > 0 then we call it
P-semiflow.

Lemma

If § is reachable from i then y - f=y -i.

Question

How do we test a boundedness of a place using
P-semiflows?

Lemma

Let y be a P-semiflow of the net \/, then the number of
tokens is bounded for all 1 < i < d such that y[i] > 0.

Structural boundedness

A place p in a net \ is structurally bounded if for every initial marking i
the -
max{1l, -m:me RS(N,i)} is finite.

Structural boundedness

A place p in a net \ is structurally bounded if for every initial marking i
the -
max{1l, -m:me RS(N,i)} is finite.

Theorem

A following conditions are equivalent:
Q a place p in the net NV is structurally bounded,
@ there exists y > 17, such that y - A < 0,
© there does not exist X > 0 such that A - % > 1:,.

Proof

Theorem

A following conditions are equivalent:
© a place p in the net AV is structurally bounded,
Q there exists y > 1 such that y - A < 0,
© there does not exist X > 0 such that A - X >

Proof

Theorem

A following conditions are equivalent:
© a place p in the net AV is structurally bounded,
Q there exists y > 1 such that y - A < 0,
© there does not exist X > 0 such that A - X >

Q1= 3by-3 = -1

Proof

Theorem

A following conditions are equivalent:
© a place p in the net AV is structurally bounded,
@ there exists y > 1_;, such that y - A < 0,
@ there does not exist X > 0 such that A - X > 1,,.

Q1= 3by-3 = -1

e 3 = 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

VvV
(ST <TE

AR >b. J

<

SR

CYEE S
I

<i
v
e

Proof

Theorem

A following conditions are equivalent:
© a place p in the net AV is structurally bounded,
@ there exists y > 1_;, such that y - A < 0,
@ there does not exist X > 0 such that A - X > 1,,.

Q1= 3by-3 = -1

e 3 = 2 by a theorem related to dual programs theorem called alternative theorem.

Theorem

Exactly one of the following systems of equations has a solution:

VvV
(ST <TE

AR >b. J

<

SR

CYEE S
I

<i
v
e

9 2 =—> 1 Direct.

Continuous reachability.

Linear programming + If formula.

Input: A r X c- integer matrix M and a vector y € Z" and a set of
predicates of a form x[i] >0 = X][j] > 0.

Question: If there is a vector X € Q;O such that M- X = y and all
predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Linear programming + If formula.

Input: A r X c- integer matrix M and a vector y € Z" and a set of
predicates of a form x[i] >0 = X][j] > 0.

Question: If there is a vector X € Q;O such that M- X = y and all
predicates are satisfied?

Theorem

The Linear programming + If formula problem is in PTime.

Proof
@ The set of solutions is convex.

@ If for every i there is a solution such that X[i] > 0 then there is a
solution such that X[j] > 0 for all j.

Linear programming + If formula (the algorithm).

solve(Matrix A, Vector y, set_of_implications S, set_of_zeros X)

{

If there is no solution A - X =y in Q;’O,

where x; = 0 for all x; € X then return false;
If there is a solution A -X =y in @go,

where x; = 0 iff x; € X then return true;
Find a new coordinate x;

which has to be equal 0 in every solution;
Add x; to X;
Add to X all x; that has to be added due to implications;
return solve(M, y, S, X);

Continuous Petri Nets.

@ Marking: M :P—Q

@ Transitions: T

Ty
\CD\D @ Firing a transition t € T with a
O—' %O coefficient a € Q.

Continuous Petri Nets.

@ Marking: M :P—Q

@ Transitions: T

Ty
\@D\D @ Firing a transition t € T with a
@—' %@ coefficient a € Q.

Continuous Petri Nets.

@ Marking: M :P—Q

@ Transitions: T

T
\@D\B @ Firing a transition t € T with a
®—> —*@ coefficient a € Q.
1

3

Continuous Petri Nets.

@ Marking: M :P—Q

@ Transitions: T

T
\@\T2 @ Firing a transition t € T with a
@—> —*@ coefficient a € Q.
1

3

Continuous Petri Nets.

@ Marking: M :P—Q

@—*I @ Transitions: T
\ @ Firing a transition t € T with a

. coefficient a € Q.

Wi

Continuous Petri Nets Reachability.

Input: Two configurations i and f

Question: If there is a run form i to § under continuous semantics.

A simpler variant of the problem.

Suppose, that
V; (i[]] > 0 and f[i] > 0).

f is reachable from i iff

f—i=A-% where X € QY.

Continuous Petri Nets Reachability.

Lemma
f is reachable from i if

o
f—i=A-% where X € Q%
2]
X[i] >0 and Pre[j,i] >0 = i[j] >0,
o

X[i] >0 and Post[j,i]>0 = f{[j]>0.

Continuous Petri Nets Reachability.

Lemma

f is reachable from i if
Q@ f—i=A-Xwhere X € Q%
@ X[i{] >0 and Pre[j,i] >0 = i[j] >0,
© X[i] >0 and Post[j,i] >0 = f[j] >0.

Theorem

f is reachable from i iff there are two configurations i’ and §' such that
@ there is a run form i to i that is using at most d steps.
@ there is a run form § to f that is using at most d steps.

© There is a run form i’ to f due to Lemma.

Translation to a formula (linear + If).

Lemma

For a given Petri net A/ and two configurations i and f in PTime one can
compute a formula (linear programming + if) such that it is satisfiable if
and only if § is continuously reachable from i in the net V.

We use:

Theorem

f is reachable from i iff there are two configurations i’ and §' such that
@ there is a run form i to i that is using at most d steps.
@ there is a run form § to f that is using at most d steps.

© There is a run form i’ to f due to Lemma.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

What is the main obstacle?

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

J

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

J

How to cut the upward-closed set?

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up. J

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big. J

IDEA: Let X € M 1, if there is no y > X such that y € RS(N, 1) then we
can throw X away.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

IDEA: Let X € M 1, if there is no y > X such that y € RS(N, 1) then we
can throw X away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015

SOLUTION: Let X € M 1, if there is no ¥ > X such that y € CRS(N, 1)
then we can throw X away.

Q-cover 2015.

IDEA: Take a backward coverability algorithm, and speed it up.

CHALLENGE: Size of the representation of the representation of the
upward-closed set may get too big.

IDEA: Let X € M 1, if there is no y > X such that y € RS(N, 1) then we
can throw X away.

M. Blondin, A. Finkel, Ch. Haase, S. Haddad, 2015

SOLUTION: Let X € M 1, if there is no ¥ > X such that y € CRS(N, 1)
then we can throw X away.

Thomas Geffroy, Jérome Leroux, Grégoire Sutre, 2017
Actually, any over-approximation will work: LRS instead of CRS.

Advertisement.

Internships at the University of Warsaw.

Possibilities:

Prof. Mikotaj Bojanczyk

Logic, Automata, Formal Languages.

Email: bojan@mimuw.edu.pl

¢

=

UNIVERSITY 4 WARSAW irs

e PO SANKOWSK

Prof. Piotr Sankowski
Algorithms.

Email: sank@mimuw.edu.pl

Prof. Stefan Dziembowski
Cryptography.

Email: S.Dziembowski®crypto.edu.pl

	Intro
	Serge

