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Exercise 1

Sir,
What exactly is the definition of downward closed sets- is it
the complement of upward closed sets or is it the intuitive
notion?
How do we define its basis?
Other questions ?
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Exercise 2

Find a picture for representing Pre∗-coverability
semi-algorithm.

Find a picture for representing Post∗-coverability
semi-algorithm.
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Exercise 3

T (w) = length of a longest computation starting from
w ∈ Σ∗.

T (w) ∈ Nω.

w≤T w ′ if T (w) ≤ T (w ′).

Prove the following theorem

Theorem
Turing machines are WSTS with strict and strong monotony wrt
≤T .
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Exercise 4
y is not coverable from x iff y 6∈ ↓Post∗(x).
Let (Si )i be an enumeration of finite sets of ideals,
↓Post∗(x) = Sm, for some m and (Fi )i an enumeration of finite
sets Fi ⊆ X .
procedure 2: non coverability certificate of y from x
while ¬(↓Post(Si ) ⊆ Si and x ∈ Si and y 6∈ Si ) do

i ← i + 1
return false

procedure 2: non coverability certificate of y from x
while ¬(Pre(↑Fi ) ⊆ ↑Fi) and x 6∈ ↑Fi and y ∈ ↑Fi ) do

i ← i + 1
return false

5 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 5

Find a direct proof of Erdös Tarski Theorem avoiding wqo.

For wpo, we define x < y if x ≤ y and x 6= y .
Define x < y when ≤ is a wqo.
Give a definition of Min(X ).
Min(X ) = {x | ∀y , y ≤ x =⇒ x ≤ y 6≤ x}
Prove that if (X ,≤) is WF then for all x there is a
m ∈ Min(X ) s.t. x ≥ m.
For U = ↑U, prove that Min(U) is a (infinite) basis of U
when ≤ is WF. Why it is not the case if ≤ is not WF ?
For U = ↑U, prove that Min(U) is finite (6= ∅) when ≤ is a
WF+FAC wpo.
For U = ↑U, prove that Min(U)/ ≡ is finite (6= ∅) when ≤ is
WF+FAC wqo.
Conclude that ≤ is wqo iff ≤ is WF + FAC.
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Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.

Prove that regular Turing machines are recursive. Can you
deduce an algorithm for deciding whether w ∈ L(M) ?
Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.
Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.
Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.
Prove that regular Turing machines are recursive.

Can you
deduce an algorithm for deciding whether w ∈ L(M) ?
Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.
Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.
Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.
Prove that regular Turing machines are recursive. Can you
deduce an algorithm for deciding whether w ∈ L(M) ?

Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.
Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.
Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.
Prove that regular Turing machines are recursive. Can you
deduce an algorithm for deciding whether w ∈ L(M) ?
Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.

Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.
Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.
Prove that regular Turing machines are recursive. Can you
deduce an algorithm for deciding whether w ∈ L(M) ?
Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.
Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.

Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Exercises 6

The language L(M) ⊆ Σ∗ of a Turing machine M is the set of
words w ∈ Σ∗ that are on the tape when M reaches a
terminal control state.
A Turing machine M is regular if L(M) is regular.
Prove that regular Turing machines are recursive. Can you
deduce an algorithm for deciding whether w ∈ L(M) ?
Give an algorithm to decide w ∈ L(M) for regular and
context-free Turing machines.
Give an algorithm for deciding reachability for Petri nets
having (unknown) semilinear/Presburger reachability sets.
Jan K. Pachl: Protocol Description and Analysis Based on a State
Transition Model with Channel Expressions. PSTV 1987: 207-219.

7 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Motivation

Verification of infinite-state models

counter machines with reset-transfer-affine-ω extensions
Lossy fifo systems and variants with time, data and priority
Parameterized broadcast protocols and other
CFG, graph rewriting
Systems with pointers, graph memory (Well-Structured Graph
Transformation Systems (CONCUR 2014))
Fragments of the π-calculus, depth bounded processes
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Overview
WSTS
Reachability problems

Well Structured Transition Systems (WSTS) encompass a large
number of infinite state systems (PN and reset-transfer-affine-ω extensions, lossy fifo

systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π-calculus,....)

Example of WSTS:

ω–

Petri nets

(Geeraerts, Heußner, Praveen & Raskin PN’13)

Post( ) =
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Overview
WSTS
Reachability problems

Multiple decidability results are known for (finitely branching)
WSTS.

Example of WSTS:

ω–

Petri nets

(Geeraerts, Heußner, Praveen & Raskin PN’13)

Post( ) =
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Overview
WSTS
Reachability problems

And also for (infinitely branching) WSTS such as systems with
infinitely many initial states and parametric systems

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post( ) =
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Overview
WSTS
Reachability problems

Well structured transition system (F, ICALP’87)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃
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Overview
WSTS
Reachability problems

Well structured transition system (F, ICALP’87)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
transitive monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ +−→ y ′ ∃
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Overview
WSTS
Reachability problems

Well structured transition system (F, ICALP’87)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
strong monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ −→ y ′ ∃
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Overview
WSTS
Reachability problems

The magical theorem of wqo
(X ,≤) is a wqo if and only if every upward closed set U =↑ U ⊆ X
has a finite basis, i.e., it is equal to a finite union of elements ↑ ui
with ui ∈ U.

Many caracterisations of wqo
≤ is a wqo if and only if ≤ is FAC + WF.
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Overview
WSTS
Reachability problems

WSTS Everywhere! (F, Schnoebelen LATIN’98, TCS’01)

T (w) = length of a longest computation starting from
w ∈ Σ∗.

T (w) ∈ Nω.

w≤T w ′ if T (w) ≤ T (w ′).

≤T is a wqo on Σ∗.

Theorem
Turing machines are WSTS with strict and strong monotony wrt
≤T .
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≤T .
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≤T is not decidable.

Hence TM are non-effective WSTS.

This also proves that there is no (non-trivial) decidability
result for non-effective WSTS (not surprising !).
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Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?
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Termination

Decidable for post-effective finitely branching WSTS with
transitive monotony (F, ICALP’87)

Undecidable for post-effective finitely branching WSTS with
non-transitive monotony (Blondin-F-McKenzie, 2016).

Undecidable for post-effective infinitely branching WSTS with
strict and strong monotony (deduced from Dufourd, Jančar &
Schnoebelen, ICALP’99).

Undecidable for non-effective finitely branching WSTS with
strict and strong monotony (F-Schnoebelen, TCS’01), since
every TM is a WSTS for ≤T .
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Proposition (2016)

Termination is undecidable for post-effective finitely branching
WSTS with non-transitive monotony.

Proof
We give a reduction from the halting problem.
Let Mi be a TM, and let Si = (N,−→i ,≤) defined by:
x −→i x + 1 if Mi does not halt in ≤ x steps. Let C = {Si | i ≥ 0}.
Si is finitely branching, post-effective, monotone but not transitive
and ≤ is a wpo.

Now, ∃ infinite run x0 = 0 −→i x1 −→i . . . iff Mi does not halt.
Hence termination for C is undecidable.
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The survey for termination
Post-effective Finitely branching Transitive Decidability
Yes Yes Yes Decidable [F87]
non effective Yes Yes + strict-strong Undecidable [FS01]
Yes Yes NO Undecidable [BFM16]
Yes NO Yes + strict-strong Undecidable [BFM14]
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Boundeness

Decidable for post-effective finitely branching WSTS (with
wpo) with strict transitive monotony (F, ICALP’87)

Decidable for post-effective infinitely branching WSTS (with
wpo) with strict non-transitive monotony
(Blondin-F-McKenzie, 2016).

Undecidable for post-effective finitely branching WSTS (with
wpo) with strong monotony (deduced from Dufourd, Jančar
& Schnoebelen, ICALP’99).

Undecidable for non-effective finitely branching WSTS (with
wpo) with strict and strong monotony (F-Schnoebelen,
TCS’01), since every TM is a WSTS for ≤T .
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The survey for boundedness
Post-effective Finitely branching Strict monotony wpo Decidability
Yes Yes Yes Yes D [F87]
non effective Yes Yes + strong Yes U [FS01]
Yes Yes NO but strong Yes U [ICALP’98]
Yes NO Yes Yes D [BFM’16]
Yes Yes Yes wqo ???
Yes NO Yes wqo ???

Exercise: Is the boundedness problem decidable for WSTS with
strict monotony ?
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A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India
5th March 2018

Based on joint works with Michael Blondin, Jean Goubault-Larrecq &
Pierre McKenzie.
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Coming back with exercises

Say that a sequence x0, x1, . . . is bad if there are no i , j s.t.
i < j and xi ≤ xj

What is the maximal length of bad sequences begining with n
in (N,≤) with (n, n) in (N2,≤), and with (n, n, n) in (N3,≤) ?
Let us prove that
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj implies ∀x0, x1, . . . ∃i1 < i2 <
... < in < .. s.t. xi1 ≤ xi2 ≤ ... ≤ xin ≤ .
PROOF: Define the set A = {i | ∀j > i ; xi 6≤ xj}. A is finite
else contradiction; let k the largest index of xk in A, hence for
all i > k, one may construct an infinite non-decreasing
sequence from xi .
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A quick story of coverability in WSTS

23 / 42



Exercises
Preambule

Introduction
A (partial) survey

News on coverability
Still coverability

Conclusion

Coverability
A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

Coverability
For monotone transition systems, y is coverable from x if

∃x ′ | x ∗−→ x ′ ≥ y ( this is the definition !) iff

x ∈ Pre∗(↑ y) ( this could be the definition !) iff
y ∈ ↓Post∗(x) ( this could be the definition !).

Remark

Pre∗(↑ y) = ↑Pre∗(↑ y)
↓Post∗(x) = ↓Post∗(↓ x).
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Coverability
A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original
Execute two procedures in parallel, one looking for a coverability
certificate and one looking for a non coverability certificate.

Coverability is semi-decidable:
if ∃x ′ ≥ y , x ∗−→ x ′, one finally will find x ′.

Non-coverability is also semi-decidable:
¬(∃x ′ ≥ y , x ∗−→ x ′) iff x 6∈ Pre∗(↑ y) =↑ Jm for some m.
One enumerates all the finite sets (*) J ⊆ X such that y ∈↑ J
and Pre(↑ J) ⊆↑ J (hence Pre∗(↑ J) =↑ J) and x 6∈↑ J , hence
Pre∗(↑ y) =↑ Jm ⊆↑ J = Pre∗(↑ J).
Since we are sure that at least one J exists (Jm !), one finally
will find one. May be we find a large Jp s.t. ↑ Jm = Pre∗(↑ y) (↑ Jp

but x 6∈↑ Jp =⇒ x 6∈ Pre∗(↑ y).
Enumeration of upward closed sets by their finite basis is a consequence of
(X ,≤) is WQO.
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The story of the backward coverability algorithm

1978: coverability for reset VAS is decidable (Arnold and
Latteux published in French in CALCOLO’78). Their
algorithm is an instance of the backward algorithm (LICS’96).

1993: decidability of coverability for LCS (Abdulla, Cerans,
Jonsson, Tsay, LICS’93)

1996: decidability of coverability for strong WSTS assuming
Pre(↑ x) is computable (Abdulla, Cerans, Jonsson, Tsay,
LICS’96)
1998: decidability of coverability for WSTS assuming
↑Pre(↑ x) is computable (F., Schnoebelen LATIN’98)
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Remarks on the backward coverability algorithm

It computes Pre∗(↑ y) that is more than solving coverability.

It is often but not always computable, ex: depth-bounded
processes (Wies, Zufferey, Henzinger, FOSSACS’10)

Backward algorithms are often less efficient than forward
algorithms.
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The downward approach for coverability

Initially presented by Geeraerts, Raskin, and Van Begin
(FSTTCS’04) for strongly monotone WSTS with Adequate
Domain of Limits (ADL).

Simplified and extended with Goubault-Larrecq (STACS’09):
ADL is not an hypothesis, it always exists.
Still simplified and extended with Blondin, McKenzie
(ICALP’14): ideal completion for infinitely branching.
Still simplified and extended with Blondin, McKenzie: WQO is
not necessary. Decidable for more than WSTS. (arxiv, august
2016, in LMCS’2017).
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y is not coverable from x iff y 6∈ ↓Post∗(x).

Let (Di )i be an enumeration of dcs, hence ↓Post∗(x) = Dm, for
some m.
procedure 2: enumerates dcs to find non coverability certificate of
y from x
i ← 0;
while ¬(↓Post(Di ) ⊆ Di and x ∈ Di and y 6∈ Di ) do

i ← i + 1
return false

Effective hypotheses
dcs are recursive.
Union of dcs is computable
↓ Post(D) is computable.
Inclusion between dcs is decidable.
Works for post effective infinitely branching systems. 29 / 42
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Theorem
Let S = (X ,−→,≤) be a monotone transition system + there exists
an enumeration of downward closed sets of X , and let x , y ∈ X .

1 y is coverable from x iff Procedure 1 terminates.
2 y is not coverable from x iff Procedure 2 terminates.

This theorem does not provide an algorithm.

Remark
WSTS, hence WQO implies possible enumeration of downward
closed sets (by minimal elements of upward closed sets) but the
converse is false: (Z,≤) is not WQO but one may enumerate the
Di as follows: Di = ↓ xi for xi ∈ Z or Di = Z.
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Question
How to enumerate downward closed sets ?

Answer
By enumerating ideals ! (come to the next seminar tomorrow)
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With the 2nd magical theorem of wqo
If ≤ is a wqo then every downward closed set D = ↓D has a finite
basis, i.e., it is equal to a finite union of ideals.
(ideal = downward closed set + directed).

Remark
It is an if then but not an if and only if.

We will see a more magical theorem of FAC = "half wqo"
Come tomorrow !
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We are tomorrow !
≤ is FAC if and only if every downward closed set D = ↓D has a
finite basis, i.e., it is equal to a finite union of ideals.

The proof is in the paper WBTS in LMCS’2017.
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The survey/story of coverability for WSTS
Year Authors Mathematical hyp. Effectivity hyp. back/forward
1978 Arnold & Latteux reset VAS YES backward
1987 F. very WSTS (strong+strict, ω2-wqo,...) effective very WSTS forward
1996 Abdulla & CJT strong monotony PreS (↑ x) comp. backward
1998 F. Schnoebelen monotony ↑ PreS (↑ x) comp. backward
2004 Geeraerts & RV strong monotony, ADL effective ADL forward
2006 Geeraerts & RV monotony, ADL effective ADL forward
2009 F. & Goubault-Larrecq strong monotony, weak ADL, flattable effective WADL forward
2009 F. & Goubault-Larrecq strong monotony, flattable ideally effective forward
2014 Blondin & FM monotony, ideally effective forward
2016 Blondin & FM monotony, no wqo but FAC ideally effective forward
2017 Trivial no monotony, wqo (Minsky machines) ideally effective Undec.
2017 Sutre monotony, no wqo but WF ideally effective Undec
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A survey (to complete) of KM algorithms for WSTS
Year Authors Model Termination
1969 Karp & Miller VASS YES
1978 Valk post self-modifying PN YES
1978 Valk self-modifying PN NO
1994 Abdulla & Jonsson LCS NO
1998 Dufourd & F. & Schnoebelen 3-dim reset/transfer VASS NO
1998 Emerson & Namjoshi WSTS model checking NO
1999 Esparza & F. & Mayr broadcast protocols & transfer PN NO
2000 F. & Sutre 2-dim reset/transfer VASS YES
2004 F. & McKenzie & Picaronny strongly increasing ω-resursive nets YES
2004 Raskin & Van Begin PN+NBA NO
2005 Goubault-Larrecq & Verma BVASS YES
2009 F. & Goubault-Larrecq ω2-WSTS, cover-flattable YES
2010 F. & Sangnier PN+0-test YES
2011 Acciai, Boreale, Henzinger, Meyer,... depth-bounded processes, ν-PN NO
2011 Chambard & F. & Schmitz trace-bounded ω2-WSTS YES
2013 Geeraerts & Heußner & Praveen & Raskin ω-PN YES
2013 Hüchting & Majumdar & Meyer name-bounded π-calculus processes YES
2016 Hofman & Lasota & Lazic & Leroux & ST unordered PN YES
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WSTS Everywhere!
And now ?

ICALP’87 (F)
WSTS definitions
decidability of termination
decidability of boundedness
computation of the coverability set hence decidability of
coverability (under stronger hyp.)

LICS’96 (Abdulla, Cerans, Jonsson, Tsay)
decidability of coverability with a backward algorithm
decidability of simulation with finite-state systems
undecidability of repeated control-state (for LCS).

LICS’98 (Emerson, Namjoshi), LICS’99 (Esparza, F, Mayr)
broadcast protocols are WSTS
model checking of WSTS (with procedures)

WSTS everywhere, TCS’01 (F, Schnoebelen)
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A quick story of WSTS
WSTS Everywhere!
And now ?

FSTTCS’04 (Geeraerts, Raskin and Van Begin):
The first forward coverability algorithm for WSTS (with ADL).

STACS’09, ICALP’09 (F, Goubault-Larrecq), ICALP’14
(Blondin, F, McKenzie)

ADL is not an hypothesis.
Ideal completion of any WSTS
Computation of the clover for flattable WSTS
ω2-WSTS are completable and robust....

2015-2016: Use of ideals decomposition in:
RP’15: The Ideal View on Rackoff’s Coverability Technique
(Lazić, Schmitz)
LICS’15: Demystifying Reachability in Vector Addition
Systems (Leroux, Schmitz).
FOSSACS’16: Coverability Trees for Petri Nets with Unordered
Data (Schmitz and a lot of authors...)
LICS’16: ν-Petri nets (Lazić, Schmitz).
...
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WSTS Everywhere!

S = (Nk ,≤).
Petri nets: WSTS with strict and strong monotony.
Positive Affine nets, Reset/Transfer Petri nets: WSTS with
strong (but not strict) monotony.

S = (Q × Σ∗k ,= × vk).
LCS: WSTS with non-strict monotony.
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WSTS still verywhere!
Data nets: S = (Q × Nk)∗

Lazic, Newcomb, Ouaknine, Roscoe, Worrell (PN’07)
Hofman, Lasota, Lazić, Leroux, Schmitz, Totzke
(FOSSACS’16).
Lasota (PN’16)

ν-Petri nets: S = (Q × Nk)⊕.
Rosa-Velardo, de Frutos-Escrig (PN’07)
Lazić and Schmitz (LICS’16).

Pi-calculus: Depth-Bounded Processes (trees).
Wies, Zufferey, Henzinger (FOSSACS’10, VMCAI’12).

Timed Petri nets: Regions = ((Q × Nk)⊕)∗
Bonnet, F, Haddad, Rosa-Velardo (FOSSACS’10)
Haddad, Schmitz, Schnoebelen (LICS’12).

Process algebra (BPP,...).
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A quick story of WSTS
WSTS Everywhere!
And now ?

Further work

Explore more in details WBTS and find applications of WBTS
(comme tomorrow).
Computing efficiently with ideals (no brut force enumeration).
Design Karp-Miller algorithm for ω2-WSTS (FSTTCS’2017).
Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels:
Bachelor, Master, PhD, post-PhD

Different topics: theoretical and/or applied subjects.
Developping the WSTS theory and a prototype for finding
bugs in web services and choreographies.
Make the first efficient prototype for reachability for Petri nets.
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Design Karp-Miller algorithm for ω2-WSTS (FSTTCS’2017).
Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels:
Bachelor, Master, PhD, post-PhD

Different topics: theoretical and/or applied subjects.
Developping the WSTS theory and a prototype for finding
bugs in web services and choreographies.
Make the first efficient prototype for reachability for Petri nets. 41 / 42
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Thank you!
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