A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India
5th March 2018

Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.
Exercise 1

- Sir,
 What exactly is the definition of downward closed sets - is it the complement of upward closed sets or is it the intuitive notion?
- How do we define its basis?
- Other questions?
Exercise 2

- Find a picture for representing Pre^*-coverability semi-algorithm.

- Find a picture for representing $Post^*$-coverability semi-algorithm.
Exercise 3

- $T(w) = \text{length of a longest computation starting from } w \in \Sigma^*$.
- $T(w) \in \mathbb{N}_\omega$.
- $w \leq_T w'$ if $T(w) \leq T(w')$.
Exercise 3

- $T(w) =$ length of a longest computation starting from $w \in \Sigma^*$.

- $T(w) \in \mathbb{N}_\omega$.

- $w \leq_T w'$ if $T(w) \leq T(w')$.

Prove the following theorem

Theorem

Turing machines are WSTS with strict and strong monotony wrt \leq_T.
Exercise 4

\(y \) is not coverable from \(x \) iff \(y \not\in \downarrow \text{Post}^*(x) \).

Let \((S_i)_i\) be an enumeration of finite sets of ideals, \(\downarrow \text{Post}^*(x) = S_m \), for some \(m \) and \((F_i)_i\) an enumeration of finite sets \(F_i \subseteq X \).

procedure 2: non coverability certificate of \(y \) from \(x \)

```plaintext
while \( \neg (\downarrow \text{Post}(S_i) \subseteq S_i \land x \in S_i \land y \not\in S_i) \) do
    \( i \leftarrow i + 1 \)
return false
```

procedure 2: non coverability certificate of \(y \) from \(x \)

```plaintext
while \( \neg (\text{Pre}(\uparrow F_i) \subseteq \uparrow F_i \land x \not\in \uparrow F_i \land y \in \uparrow F_i) \) do
    \( i \leftarrow i + 1 \)
return false
```
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define $x < y$ if $x \leq y$ and $x \neq y$. Define $x < y$ when \leq is a wqo.
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define $x < y$ if $x \leq y$ and $x \neq y$.
 Define $x < y$ when \leq is a wqo.
- Give a definition of $\text{Min}(X)$.
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define \(x < y \) if \(x \leq y \) and \(x \neq y \).
 Define \(x < y \) when \(\leq \) is a wqo.
- Give a definition of \(\text{Min}(X) \).
 \[\text{Min}(X) = \{ x | \forall y, y \leq x \implies x \leq y \neq x \} \]
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define \(x < y \) if \(x \leq y \) and \(x \neq y \).
 Define \(x < y \) when \(\leq \) is a wqo.
- Give a definition of \(\text{Min}(X) \).
 \[\text{Min}(X) = \{ x \mid \forall y, y \leq x \implies x \leq y \neq x \} \]
- Prove that if \((X, \leq)\) is WF then for all \(x \) there is a \(m \in \text{Min}(X) \) s.t. \(x \geq m \).
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define $x < y$ if $x \leq y$ and $x \neq y$.
 Define $x < y$ when \leq is a wqo.
- Give a definition of $\text{Min}(X)$.
 $$\text{Min}(X) = \{x \mid \forall y, y \leq x \implies x \leq y \not\leq x\}$$
- Prove that if (X, \leq) is WF then for all x there is a $m \in \text{Min}(X)$ s.t. $x \geq m$.
- For $U = \uparrow U$, prove that $\text{Min}(U)$ is a (infinite) basis of U when \leq is WF. Why it is not the case if \leq is not WF?
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define $x < y$ if $x \leq y$ and $x \neq y$.
 Define $x < y$ when \leq is a wqo.
- Give a definition of $\text{Min}(X)$.
 $\text{Min}(X) = \{x \mid \forall y, y \leq x \implies x \leq y \nless x\}$
- Prove that if (X, \leq) is WF then for all x there is a $m \in \text{Min}(X)$ s.t. $x \geq m$.
- For $U = \uparrow U$, prove that $\text{Min}(U)$ is a (infinite) basis of U when \leq is WF. Why it is not the case if \leq is not WF?
- For $U = \uparrow U$, prove that $\text{Min}(U)$ is finite ($\neq \emptyset$) when \leq is a WF+FAC wpo.
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define $x < y$ if $x \leq y$ and $x \neq y$. Define $x < y$ when \leq is a wqo.
- Give a definition of $\text{Min}(X)$.
 \[\text{Min}(X) = \{x \mid \forall y, y \leq x \implies x \leq y \neq x \} \]
- Prove that if (X, \leq) is WF then for all x there is a $m \in \text{Min}(X)$ s.t. $x \geq m$.
- For $U = \uparrow U$, prove that $\text{Min}(U)$ is a (infinite) basis of U when \leq is WF. Why it is not the case if \leq is not WF?
- For $U = \uparrow U$, prove that $\text{Min}(U)$ is finite ($\neq \emptyset$) when \leq is a WF+FAC wpo.
- For $U = \uparrow U$, prove that $\text{Min}(U)/\equiv$ is finite ($\neq \emptyset$) when \leq is WF+FAC wqo.
Exercises 5

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define \(x < y \) if \(x \leq y \) and \(x \neq y \).
 Define \(x < y \) when \(\leq \) is a wqo.
- Give a definition of \(\text{Min}(X) \).
 \[
 \text{Min}(X) = \{ x \mid \forall y, y \leq x \implies x \leq y \neq x \}
 \]
- Prove that if \((X, \leq)\) is WF then for all \(x \) there is an \(m \in \text{Min}(X) \) s.t. \(x \geq m \).
- For \(U = \uparrow U \), prove that \(\text{Min}(U) \) is a (infinite) basis of \(U \) when \(\leq \) is WF. Why it is not the case if \(\leq \) is not WF ?
- For \(U = \uparrow U \), prove that \(\text{Min}(U) \) is finite (\(\neq \emptyset \)) when \(\leq \) is a WF+FAC wpo.
- For \(U = \uparrow U \), prove that \(\text{Min}(U)/\equiv \) is finite (\(\neq \emptyset \)) when \(\leq \) is WF+FAC wqo.
- Conclude that \(\leq \) is wqo iff \(\leq \) is WF + FAC.
The language $L(M) \subseteq \Sigma^*$ of a Turing machine M is the set of words $w \in \Sigma^*$ that are on the tape when M reaches a terminal control state.

A Turing machine M is regular if $L(M)$ is regular.
Exercises 6

- The language $L(M) \subseteq \Sigma^*$ of a Turing machine M is the set of words $w \in \Sigma^*$ that are on the tape when M reaches a terminal control state.
- A Turing machine M is regular if $L(M)$ is regular.
- Prove that regular Turing machines are recursive.
Exercises 6

- The language \(L(M) \subseteq \Sigma^* \) of a Turing machine \(M \) is the set of words \(w \in \Sigma^* \) that are on the tape when \(M \) reaches a terminal control state.
- A Turing machine \(M \) is regular if \(L(M) \) is regular.
- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether \(w \in L(M) \)?
Exercises 6

- The language $L(M) \subseteq \Sigma^*$ of a Turing machine M is the set of words $w \in \Sigma^*$ that are on the tape when M reaches a terminal control state.

- A Turing machine M is regular if $L(M)$ is regular.

- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?

- Give an algorithm to decide $w \in L(M)$ for regular and context-free Turing machines.
Exercises 6

- The language $L(M) \subseteq \Sigma^*$ of a Turing machine M is the set of words $w \in \Sigma^*$ that are on the tape when M reaches a terminal control state.

- A Turing machine M is regular if $L(M)$ is regular.

- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?

- Give an algorithm to decide $w \in L(M)$ for regular and context-free Turing machines.

- Give an algorithm for deciding reachability for Petri nets having (unknown) semilinear/Presburger reachability sets.
The language $L(M) \subseteq \Sigma^*$ of a Turing machine M is the set of words $w \in \Sigma^*$ that are on the tape when M reaches a terminal control state.

A Turing machine M is regular if $L(M)$ is regular.

Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?

Give an algorithm to decide $w \in L(M)$ for regular and context-free Turing machines.

Give an algorithm for deciding reachability for Petri nets having (unknown) semilinear/Presburger reachability sets.

Motivation

Verification of infinite-state models

- counter machines with reset-transfer-affine-ω extensions
- Lossy fifo systems and variants with time, data and priority
- Parameterized broadcast protocols and other
- CFG, graph rewriting
- Systems with pointers, graph memory (Well-Structured Graph Transformation Systems (CONCUR 2014))
- Fragments of the π-calculus, depth bounded processes
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine-ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π-calculus,....)

Example of WSTS: Petri nets
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine-ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π-calculus,....)

Example of WSTS: Petri nets
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine-ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π-calculus, ...)

Example of WSTS: Petri nets
Multiple decidability results are known for (finitely branching) WSTS.

Example of WSTS: Petri nets

\[
\text{Post}(\bullet \circ \circ \circ) = \circ \circ \circ \circ
\]
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN'13)
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: \(\omega \)–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: \(\omega \)-Petri nets \((\text{Geeraerts, Heußner, Praveen & Raskin PN'13})\)
And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: \(\omega \)-Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

\[
\begin{align*}
\text{Post}(\text{□ □ □}) & = \text{□ □ □} , \text{□ □ □} , \text{□ □ □} , \ldots
\end{align*}
\]
Well structured transition system (F, ICALP’87)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X\) set,
- \(\rightarrow \subseteq X \times X\),
- monotony,
- well-quasi-ordered.

\[\forall x_0, x_1, ... \exists i < j \text{ s.t. } x_i \leq x_j. \]

\[\forall x \rightarrow y \geq x' y' \exists x' \text{ s.t. } x' \rightarrow y'. \]
Well structured transition system \((F, ICALP'87) \)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(\mathbb{N}^3 \),
- \(\rightarrow \subseteq X \times X \),
- monotony,
- well-quasi-ordered.

![Diagram of a well-structured transition system](image-url)
Well structured transition system \((F, \text{ICALP'87})\)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X\) set,
- \(\rightarrow \subseteq \mathbb{N}^3 \times \mathbb{N}^3\),
- monotony,
- well-quasi-ordered.

Additionally, the following inequalities hold:

\[\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j. \]

\[\forall x \rightarrow y \geq x' \rightarrow y' \exists 10/42 \]
Well structured transition system \((F, ICALP'87)\)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X\) set,
- \(\rightarrow \subseteq X \times X\),
- monotony,
- well-quasi-ordered.
Well structured transition system \((F, \text{ICALP}'87)\)

\[S = (X, \rightarrow, \leq) \] where

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- monotony,
- well-quasi-ordered.
Well structured transition system (F, ICALP’87)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- monotony,
- well-quasi-ordered.
Well structured transition system (F, ICALP’87)

\[S = (X, \rightarrow, \leq) \]

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- monotony,
- well-quasi-ordered.
Well structured transition system (F, ICALP’87)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- transitive monotony,
- well-quasi-ordered.

\[\forall x \rightarrow y \implies \exists x' \rightarrow y' \]
Well structured transition system (F, ICALP’87)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- **strong** monotony,
- well-quasi-ordered.

\[
\begin{align*}
&\forall x \rightarrow y \bigwedge x' \rightarrow y' \\
&\exists
\end{align*}
\]
Well structured transition system \((F, ICALP'87) \)

\[S = (X, \rightarrow, \leq) \text{ where} \]

- \(X \) set,
- \(\rightarrow \subseteq X \times X \),
- monotony,
- well-quasi-ordered:
 \[\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j. \]
The magical theorem of wqo

\[(X, \preceq) \text{ is a wqo if and only if every upward closed set } U = \uparrow U \subseteq X \text{ has a finite basis, i.e., it is equal to a finite union of elements } \uparrow u_i \text{ with } u_i \in U.\]

Many caracterisations of wqo

\[\preceq \text{ is a wqo if and only if } \preceq \text{ is FAC + WF.}\]
WSTS Everywhere! (F, Schnoebelen LATIN’98, TCS’01)

- \(T(w) \) = length of a longest computation starting from \(w \in \Sigma^* \).
- \(T(w) \in \mathbb{N}_\omega \).
- \(w \leq_T w' \) if \(T(w) \leq T(w') \).
- \(\leq_T \) is a wqo on \(\Sigma^* \).
WSTS Everywhere! (F, Schnoebelen LATIN’98, TCS’01)

- \(T(w) \) = length of a longest computation starting from \(w \in \Sigma^* \).
- \(T(w) \in \mathbb{N}_\omega \).
- \(w \leq_T w' \) if \(T(w) \leq T(w') \).
- \(\leq_T \) is a wqo on \(\Sigma^* \).

Theorem

Turing machines are WSTS with strict and strong monotony wrt \(\leq_T \).
≤_T is not decidable.

Hence TM are non-effective WSTS.

This also proves that there is no (non-trivial) decidability result for non-effective WSTS (not surprising!).
Objective

We want to study the usual reachability problems, e.g.,

- Reachability...but it is **undecidable for general WSTS :((**
Objective

We want to study the usual reachability problems, e.g.,

- Reachability...but it is **undecidable for general WSTS** :((
- Termination
Objective

We want to study the usual reachability problems, e.g.,

- Reachability...but it is **undecidable for general WSTS :(**
- Termination
- Coverability (the most used property)
Objective

We want to study the usual reachability problems, e.g.,

- Reachability...but it is **undecidable for general WSTS :(**
- Termination
- Coverability (the most used property)
- Boundedness
Objective

We want to study the usual reachability problems, e.g.,

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)
- Boundedness
- And other properties like eventuality, simulation by finite automaton...
Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?
Termination

- **Decidable** for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
Termination

- **Decidable** for post-effective finitely branching WSTS with transitive monotony (F, ICALP’87)

- **Undecidable** for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).
Termination

- **Decidable** for post-effective finitely branching WSTS with transitive monotony (F, ICALP’87)

- **Undecidable** for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).

- **Undecidable** for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP’99).
Termination

- **Decidable** for post-effective finitely branching WSTS with transitive monotony (F, ICALP’87)

- **Undecidable** for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).

- **Undecidable** for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP’99).

- **Undecidable** for non-effective finitely branching WSTS with strict and strong monotony (F-Schnoebelen, TCS’01), since every TM is a WSTS for \leq_T.
Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.
Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem. Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by: $x \rightarrow_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$. S_i is finitely branching, post-effective, monotone but not transitive and \leq is a wpo.
Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem. Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by:

$x \rightarrow_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$. S_i is finitely branching, post-effective, monotone but not transitive and \leq is a wpo.

Now, \exists infinite run $x_0 = 0 \rightarrow_i x_1 \rightarrow_i \ldots$ iff M_i does not halt. Hence termination for C is undecidable.
The survey for termination

<table>
<thead>
<tr>
<th>Post-effective</th>
<th>Finitely branching</th>
<th>Transitive</th>
<th>Decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Decidable [F87]</td>
</tr>
<tr>
<td>non effective</td>
<td>Yes</td>
<td>Yes + strict-strong</td>
<td>Undecidable [FS01]</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>NO</td>
<td>Undecidable [BFM16]</td>
</tr>
</tbody>
</table>
Boundeness

- **Decidable** for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP’87)
Boundeness

- **Decidable** for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP’87)

- **Decidable** for post-effective *infinitely* branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).
Boundeness

- **Decidable** for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP’87)

- **Decidable** for post-effective *infinitely* branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).

- **Undecidable** for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP’99).
Boundeness

- **Decidable** for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP’87).

- **Decidable** for post-effective **infinitely** branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).

- **Undecidable** for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP’99).

- **Undecidable** for non-effective finitely branching WSTS (with wpo) with strict and strong monotony (F-Schnoebelen, TCS’01), since every TM is a WSTS for \leq_T.
The survey for boundedness

<table>
<thead>
<tr>
<th>Post-effective</th>
<th>Finitely branching</th>
<th>Strict monotony</th>
<th>wpo</th>
<th>Decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>D [F87]</td>
</tr>
<tr>
<td>non effective</td>
<td>Yes</td>
<td>Yes + strong</td>
<td>Yes</td>
<td>U [FS01]</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>NO but strong</td>
<td>Yes</td>
<td>U [ICALP’98]</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>D [BFM’16]</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>wqo</td>
<td>???</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>wqo</td>
<td>???</td>
</tr>
</tbody>
</table>

Exercise: Is the boundedness problem decidable for WSTS with strict monotony?
A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India

5th March 2018

- Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.
Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. $i < j$ and $x_i \leq x_j$
Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. $i < j$ and $x_i \leq x_j$.

- What is the maximal length of bad sequences beginning with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq), and with (n, n, n) in (\mathbb{N}^3, \leq)?
Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. $i < j$ and $x_i \leq x_j$.
- What is the maximal length of bad sequences beginning with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq), and with (n, n, n) in (\mathbb{N}^3, \leq)?
- Let us prove that
 \[\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies} \]
Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. $i < j$ and $x_i \leq x_j$

- What is the maximal length of bad sequences beginning with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq), and with (n, n, n) in (\mathbb{N}^3, \leq)?

- Let us prove that

 $\forall x_0, x_1, \ldots \exists i < j$ s.t. $x_i \leq x_j$ implies $\forall x_0, x_1, \ldots \exists i_1 < i_2 < \ldots < i_n < \ldots$ s.t. $x_{i_1} \leq x_{i_2} \leq \ldots \leq x_{i_n} \leq$.
Coming back with exercises

- Say that a sequence \(x_0, x_1, \ldots \) is **bad** if there are no \(i, j \) s.t. \(i < j \) and \(x_i \leq x_j \)

- What is the maximal length of bad sequences beginning with \(n \) in \((\mathbb{N}, \leq)\) with \((n, n)\) in \((\mathbb{N}^2, \leq)\), and with \((n, n, n)\) in \((\mathbb{N}^3, \leq)\) ?

- Let us prove that
 \[\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies } \forall x_0, x_1, \ldots \exists i_1 < i_2 < \ldots < i_n < \ldots \text{ s.t. } x_{i_1} \leq x_{i_2} \leq \ldots \leq x_{i_n} \leq . \]

- PROOF: Define the set \(A = \{ i \mid \forall j > i; x_i \not\leq x_j \} \). \(A \) is finite else contradiction; let \(k \) the largest index of \(x_k \) in \(A \), hence for all \(i > k \), one may construct an infinite non-decreasing sequence from \(x_i \).
A quick story of coverability in WSTS
Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \geq y$ (this is the definition !) iff

\[
\text{Pre}^\ast(\uparrow y) = \uparrow \text{Pre}^\ast(\uparrow y)
\]

\[
\text{Post}^\ast(x) = \downarrow \text{Post}^\ast(\downarrow x)
\]
Coverability

For monotone transition systems, \(y \) is **coverable** from \(x \) if

- \(\exists x' \mid x \xrightarrow{*} x' \geq y \) (this is the definition!) iff
- \(x \in \text{Pre}^*(\uparrow y) \) (this could be the definition!) iff
Coverability

For monotone transition systems, \(y \) is coverable from \(x \) if

- \(\exists x' \mid x \xrightarrow{*} x' \geq y \) (this is the definition!) iff
- \(x \in \text{Pre}^*(\uparrow y) \) (this could be the definition!) iff
- \(y \in \downarrow \text{Post}^*(x) \) (this could be the definition!).

Remark

- \(\text{Pre}^*(\uparrow y) = \uparrow \text{Pre}^*(\uparrow y) \)
Coverability

For monotone transition systems, \(y \) is **coverable** from \(x \) if

- \(\exists x' \ | \ x \xrightarrow{*} x' \geq y \) (this is the definition!)
- \(x \in \text{Pre}^*(\uparrow y) \) (this could be the definition!)
- \(y \in \downarrow \text{Post}^*(x) \) (this could be the definition!).

Remark

- \(\text{Pre}^*(\uparrow y) = \uparrow \text{Pre}^*(\uparrow y) \)
- \(\downarrow \text{Post}^*(x) = \downarrow \text{Post}^*(\downarrow x) \).
A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.
A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y, x \rightarrow x'$, one finally will find x'.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.
A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non-coverability certificate.

- **Coverability is semi-decidable:**
 - If $\exists x' \geq y, x \rightarrow x'$, one finally will find x'.

- **Non-coverability is also semi-decidable:**
 - $\neg(\exists x' \geq y, x \rightarrow x')$ iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.
A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non-coverability certificate.

- **Coverability is semi-decidable:**
 - if \(\exists x' \geq y, x \rightarrow^* x' \), one finally will find \(x' \).

- **Non-coverability is also semi-decidable:**
 - \(\neg(\exists x' \geq y, x \rightarrow^* x') \) iff \(x \notin Pre^*(\uparrow y) = \uparrow J_m \) for some \(m \).
 - One enumerates all the finite sets \((*) J \subseteq X \) such that \(y \in \uparrow J \) and \(Pre(\uparrow J) \subseteq \uparrow J \) (hence \(Pre^*(\uparrow J) = \uparrow J \)) and \(x \notin \uparrow J \), hence \(Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J) \).

Enumeration of upward closed sets by their finite basis is a consequence of \((X, \leq) \) is WQO.
A conceptual coverability algorithm, not the original

 Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non-coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y, x \rightarrow x'$, one finally will find x'.

- Non-coverability is also semi-decidable:
 - $\neg(\exists x' \geq y, x \rightarrow x')$ iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.
 - One enumerates all the finite sets $(\star) J \subseteq X$ such that $y \in \uparrow J$ and $Pre(\uparrow J) \subseteq \uparrow J$ (hence $Pre^*(\uparrow J) = \uparrow J$) and $x \notin \uparrow J$, hence $Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J)$.
 - Since we are sure that at least one J exists (J_m !), one finally will find one. May be we find a large J_p s.t. $\uparrow J_m = Pre^*(\uparrow y) \subsetneq \uparrow J_p$ but $x \notin \uparrow J_p \implies x \notin Pre^*(\uparrow y)$.

 Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.
The story of the backward coverability algorithm

- 1978: coverability for reset VAS is decidable (Arnold and Latteux published in French in CALCOLO’78). Their algorithm is an instance of the backward algorithm (LICS’96).

- 1993: decidability of coverability for LCS (Abdulla, Cerans, Jonsson, Tsay, LICS’93)

- 1996: decidability of coverability for strong WSTS assuming $\text{Pre}(\uparrow x)$ is computable (Abdulla, Cerans, Jonsson, Tsay, LICS’96)

- 1998: decidability of coverability for WSTS assuming $\uparrow \text{Pre}(\uparrow x)$ is computable (F., Schnoebelen LATIN’98)
Remarks on the backward coverability algorithm

- It computes $\text{Pre}^*(\uparrow y)$ that is more than solving coverability.

- It is often but not always computable, ex: depth-bounded processes (Wies, Zufferey, Henzinger, FOSSACS’10)

- Backward algorithms are often less efficient than forward algorithms.
The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS’04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS’04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).

- Simplified and extended with Goubault-Larrecq (STACS’09): ADL is not an hypothesis, it always exists.
The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS’04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS’09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP’14): ideal completion for infinitely branching.
The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS’04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS’09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP’14): ideal completion for infinitely branching.
- Still simplified and extended with Blondin, McKenzie: WQO is not necessary. Decidable for more than WSTS. (arxiv, august 2016, in LMCS’2017).
y is not coverable from x iff $y \not\in \downarrow \text{Post}^*(x)$.

Let $(D_i)_i$ be an enumeration of dcs, hence $\downarrow \text{Post}^*(x) = D_m$, for some m.

procedure 2: enumerates dcs to find **non coverability** certificate of y from x

```plaintext
i \leftarrow 0;
while \neg(\downarrow \text{Post}(D_i) \subseteq D_i \text{ and } x \in D_i \text{ and } y \not\in D_i) \text{ do }
  i \leftarrow i + 1
return false
```

Effective hypotheses

- dcs are recursive.
- Union of dcs is computable
- $\downarrow \text{Post}(D)$ is computable.
- Inclusion between dcs is decidable.
- Works for post effective infinitely branching systems.
Theorem

Let $S = (X, \rightarrow, \leq)$ be a monotone transition system + there exists an enumeration of downward closed sets of X, and let $x, y \in X$.

1. y is coverable from x iff Procedure 1 terminates.
2. y is not coverable from x iff Procedure 2 terminates.

This theorem does not provide an algorithm.

Remark

WSTS, hence WQO implies possible enumeration of downward closed sets (by minimal elements of upward closed sets) but the converse is false: (\mathbb{Z}, \leq) is not WQO but one may enumerate the D_i as follows: $D_i = \downarrow x_i$ for $x_i \in \mathbb{Z}$ or $D_i = \mathbb{Z}$.
Question

How to enumerate downward closed sets?

Answer

By enumerating ideals! (come to the next seminar tomorrow)
With the 2nd magical theorem of wqo

If \leq is a wqo then every downward closed set $D = \downarrow D$ has a finite basis, i.e., it is equal to a finite union of ideals. (ideal = downward closed set + directed).

Remark

It is an if then but not an if and only if.

We will see a more magical theorem of FAC = "half wqo"

Come tomorrow!
We are tomorrow!

\(\preceq \) is FAC if and only if every downward closed set \(D = \downarrow D \) has a finite basis, i.e., it is equal to a finite union of ideals.

The proof is in the paper WBTS in LMCS’2017.
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(x \xrightarrow{*} x' \geq y?\)
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^\ast(x)\)?
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:

- Enumerate executions \(\downarrow x \xrightarrow{*} D\),
- Accept if \(y \in D\).
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:
- Enumerate executions \(\downarrow x \xrightarrow{*} D\),
- Accept if \(y \in D\).

Non coverability:
- Enumerate
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:
- Enumerate executions \(\downarrow x \xrightarrow{*} D\),
- Accept if \(y \in D\).

Non coverability:
- Enumerate \(D \subseteq X\) downward closed, \(x \in D\) and \(\downarrow \text{Post}(D) \subseteq D\)
- Reject if \(y \notin D\).
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^\ast(x)\)?

Forward method

Coverability:

- Enumerate executions \(\downarrow x \rightarrow^* D\),
- Accept if \(y \in D\).

Non coverability:

- Enumerate \(D = I_1 \cup \ldots \cup I_k\)
- Reject if \(y \notin D\).
Coverability

Input: (X, \to, \leq) a WSTS, $x, y \in X$.

Question: $y \in \downarrow \text{Post}^*(x)$?

Forward method

Coverability:
- Enumerate executions $\downarrow x \to^* D$,
- Accept if $y \in D$.

Non coverability:
- Enumerate $D \subseteq X$ downward closed
- Reject if $y \notin D$.
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:
- Enumerate executions \(\downarrow x \xrightarrow{*} D\),
- Accept if \(y \in D\).

Non coverability:
- Enumerate \(D \subseteq X\) downward closed, \(x \in D\)
- Reject if \(y \not\in D\).
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:
- Enumerate executions \(\downarrow x \rightarrow D\),
- Accept if \(y \in D\).

Non coverability:
- Enumerate \(D \subseteq X\) downward closed, \(\downarrow x \subseteq I_1 \cup \ldots \cup I_k\)
- Reject if \(y \notin D\).
Coverability

Input: \((X, \rightarrow, \leq)\) a WSTS, \(x, y \in X\).

Question: \(y \in \downarrow \text{Post}^*(x)\)?

Forward method

Coverability:
- Enumerate executions \(\downarrow x \rightarrow D\),
- Accept if \(y \in D\).

Non coverability:
- Enumerate \(D \subseteq X\) downward closed, \(\exists j\) s.t. \(\downarrow x \subseteq l_j\)
- Reject if \(y \notin D\).
Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x, y \in X$.

Question: $y \in \downarrow \text{Post}^*(x)$?

Forward method

Coverability:
- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:
- Enumerate $D \subseteq X$ downward closed, $x \in D$ and $\downarrow \text{Post}(D) \subseteq D$
- Reject if $y \notin D$.
The survey/story of coverability for WSTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Mathematical hyp.</th>
<th>Effectivity hyp.</th>
<th>back/forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>Arnold & Latteux</td>
<td>reset VAS</td>
<td>YES</td>
<td>backward</td>
</tr>
<tr>
<td>1987</td>
<td>F.</td>
<td>very WSTS (strong+strict, ω^2-wqo,...)</td>
<td>effective very WSTS</td>
<td>forward</td>
</tr>
<tr>
<td>1996</td>
<td>Abdulla & CJT</td>
<td>strong monotony</td>
<td>$\text{Pre}_S(\uparrow x)$ comp.</td>
<td>backward</td>
</tr>
<tr>
<td>1998</td>
<td>F. Schnoebelen</td>
<td>monotony</td>
<td>$\uparrow \text{Pre}_S(\uparrow x)$ comp.</td>
<td>backward</td>
</tr>
<tr>
<td>2004</td>
<td>Geeraets & RV</td>
<td>strong monotony, ADL</td>
<td>effective ADL</td>
<td>forward</td>
</tr>
<tr>
<td>2006</td>
<td>Geeraets & RV</td>
<td>monotony, ADL</td>
<td>effective ADL</td>
<td>forward</td>
</tr>
<tr>
<td>2009</td>
<td>F. & Goubault-Larrecq</td>
<td>strong monotony, weak ADL, fltable</td>
<td>effective WADL</td>
<td>forward</td>
</tr>
<tr>
<td>2009</td>
<td>F. & Goubault-Larrecq</td>
<td>strong monotony, fltable</td>
<td>ideally effective</td>
<td>forward</td>
</tr>
<tr>
<td>2014</td>
<td>Blondin & FM</td>
<td>monotony,</td>
<td>ideally effective</td>
<td>forward</td>
</tr>
<tr>
<td>2016</td>
<td>Blondin & FM</td>
<td>monotony, no wqo but FAC</td>
<td>ideally effective</td>
<td>forward</td>
</tr>
<tr>
<td>2017</td>
<td>Trivial</td>
<td>no monotony, wqo (Minsky machines)</td>
<td>ideally effective</td>
<td>Undec.</td>
</tr>
<tr>
<td>2017</td>
<td>Sutre</td>
<td>monotony, no wqo but WF</td>
<td>ideally effective</td>
<td>Undec.</td>
</tr>
</tbody>
</table>
A survey (to complete) of KM algorithms for WSTS

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Model</th>
<th>Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>Karp & Miller</td>
<td>VASS</td>
<td>YES</td>
</tr>
<tr>
<td>1978</td>
<td>Valk</td>
<td>post self-modifying PN</td>
<td>YES</td>
</tr>
<tr>
<td>1978</td>
<td>Valk</td>
<td>self-modifying PN</td>
<td>NO</td>
</tr>
<tr>
<td>1994</td>
<td>Abdulla & Jonsson</td>
<td>LCS</td>
<td>NO</td>
</tr>
<tr>
<td>1998</td>
<td>Dufourd & F. & Schnoebelen</td>
<td>3-dim reset/transfer VASS</td>
<td>NO</td>
</tr>
<tr>
<td>1998</td>
<td>Emerson & Namjoshi</td>
<td>WSTS model checking</td>
<td>NO</td>
</tr>
<tr>
<td>1999</td>
<td>Esparza & F. & Mayr</td>
<td>broadcast protocols & transfer PN</td>
<td>NO</td>
</tr>
<tr>
<td>2000</td>
<td>F. & Sutre</td>
<td>2-dim reset/transfer VASS</td>
<td>YES</td>
</tr>
<tr>
<td>2004</td>
<td>F. & McKenzie & Picaronny</td>
<td>strongly increasing ω-recursive nets</td>
<td>YES</td>
</tr>
<tr>
<td>2004</td>
<td>Raskin & Van Begin</td>
<td>PN+NBA</td>
<td>NO</td>
</tr>
<tr>
<td>2005</td>
<td>Goubault-Larrecq & Verma</td>
<td>BVASS</td>
<td>YES</td>
</tr>
<tr>
<td>2009</td>
<td>F. & Goubault-Larrecq</td>
<td>ω²-WSTS, cover-flattable</td>
<td>YES</td>
</tr>
<tr>
<td>2010</td>
<td>F. & Sangnier</td>
<td>PN+0-test</td>
<td>YES</td>
</tr>
<tr>
<td>2011</td>
<td>Acciai, Boreale, Henzinger, Meyer,...</td>
<td>depth-bounded processes, ν-PN</td>
<td>NO</td>
</tr>
<tr>
<td>2011</td>
<td>Chambard & F. & Schmitz</td>
<td>trace-bounded ω²-WSTS</td>
<td>YES</td>
</tr>
<tr>
<td>2013</td>
<td>Geeraerts & Heußner & Praveen & Raskin</td>
<td>ω-PN</td>
<td>YES</td>
</tr>
<tr>
<td>2013</td>
<td>Hüchting & Majumdar & Meyer</td>
<td>name-bounded π-calculus processes</td>
<td>YES</td>
</tr>
<tr>
<td>2016</td>
<td>Hofman & Lasota & Lazic & Leroux & ST</td>
<td>unordered PN</td>
<td>YES</td>
</tr>
</tbody>
</table>
ICALP’87 (F)
- WSTS definitions
- decidability of termination
- decidability of boundedness
- computation of the coverability set hence decidability of coverability (under stronger hyp.)
- **ICALP’87 (F)**
 - WSTS definitions
 - decidability of termination
 - decidability of boundedness
 - computation of the coverability set hence decidability of coverability (under stronger hyp.)

- **LICS’96 (Abdulla, Cerans, Jonsson, Tsay)**
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).
- ICALP’87 (F)
 - WSTS definitions
 - decidability of termination
 - decidability of boundedness
 - computation of the coverability set hence decidability of coverability (under stronger hyp.)

- LICS’96 (Abdulla, Cerans, Jonsson, Tsay)
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).

- LICS’98 (Emerson, Namjoshi), LICS’99 (Esparza, F, Mayr)
 - broadcast protocols are WSTS
 - model checking of WSTS (with procedures)

- WSTS everywhere, TCS’01 (F, Schnoebelen)
FSTTCS’04 (Geeraerts, Raskin and Van Begin):
- The first forward coverability algorithm for WSTS (with ADL).

STACS’09, ICALP’09 (F, Goubault-Larrecq), ICALP’14 (Blondin, F, McKenzie)
- ADL is not an hypothesis.
- Ideal completion of any WSTS
- Computation of the clover for flattable WSTS
- ω^2-WSTS are completable and robust....
FSTTCS’04 (Geeraerts, Raskin and Van Begin):
- The first forward coverability algorithm for WSTS (with ADL).

STACS’09, ICALP’09 (F, Goubault-Larrecq), ICALP’14 (Blondin, F, McKenzie)
- ADL is not an hypothesis.
- Ideal completion of any WSTS
- Computation of the clover for flattable WSTS
- ω^2-WSTS are completable and robust....

2015-2016: Use of ideals decomposition in:
- RP’15: The Ideal View on Rackoff’s Coverability Technique (Lazić, Schmitz)
- FOSSACS’16: Coverability Trees for Petri Nets with Unordered Data (Schmitz and a lot of authors...)
- LICS’16: ν-Petri nets (Lazić, Schmitz).
WSTS Everywhere!

- $S = (\mathbb{N}^k, \leq)$.
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.
SSTS Everywhere!

- \(S = (\mathbb{N}^k, \leq) \).
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.

- \(S = (Q \times \Sigma^*k, = \times \sqsubseteq^k) \).
 - LCS: WSTS with non-strict monotony.
WSTS still verywhere!

- **Data nets:** \(S = (Q \times \mathbb{N}^k)^* \)
 - Lazic, Newcomb, Ouaknine, Roscoe, Worrell (PN’07)
 - Hofman, Lasota, Lazić, Leroux, Schmitz, Totzke (FOSSACS’16).
 - Lasota (PN’16)

- **\(\nu \)-Petri nets:** \(S = (Q \times \mathbb{N}^k)^\oplus \).
 - Rosa-Velardo, de Frutos-Escrig (PN’07)
 - Lazić and Schmitz (LICS’16).

- **Pi-calculus:** Depth-Bounded Processes (trees).
 - Wies, Zufferey, Henzinger (FOSSACS’10, VMCAI’12).

- **Timed Petri nets:** \(\text{Regions} = ((Q \times \mathbb{N}^k)^\oplus)^* \)
 - Bonnet, F, Haddad, Rosa-Velardo (FOSSACS’10)
 - Haddad, Schmitz, Schnoebelen (LICS’12).

- **Process algebra** (BPP,...).
Further work

- Explore more in details WBTS and find applications of WBTS (como tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω²-WSTS (FSTTCS’2017).
- Go to model checking.
- Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD
- Different topics: theoretical and/or applied subjects.
- Developing the WSTS theory and a prototype for finding bugs in web services and choreographies.
- Make the first efficient prototype for reachability for Petri nets.
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2-WSTS (FSTTCS’2017).
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2-WSTS (FSTTCS’2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2-WSTS (FSTTCS’2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2-WSTS (FSTTCS’2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developing the WSTS theory and a prototype for finding bugs in web services and choreographies.
Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2-WSTS (FSTTCS’2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developing the WSTS theory and a prototype for finding bugs in web services and choreographies.
- Make the first efficient prototype for reachability for Petri nets.
Thank you!