A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India 5th March 2018

 Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.

Exercise 1

Sir,

What exactly is the definition of downward closed sets- is it the complement of upward closed sets or is it the intuitive notion?

- How do we define its basis?
- Other questions ?

- Find a picture for representing *Pre**-coverability semi-algorithm.
- Find a picture for representing *Post**-coverability semi-algorithm.

- T(w) = length of a longest computation starting from w ∈ Σ*.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq T w'$ if $T(w) \leq T(w')$.

Exercise 3

- T(w) = length of a longest computation starting from w ∈ Σ*.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq T w'$ if $T(w) \leq T(w')$.

Prove the following theorem

Theorem

Turing machines are WSTS with strict and strong monotony wrt \leq_{T} .

Exercise 4

y is not coverable from x iff $y \notin \downarrow \text{Post}^*(x)$.

Let $(S_i)_i$ be an enumeration of finite sets of ideals, $\downarrow \text{Post}^*(x) = S_m$, for some *m* and $(F_i)_i$ an enumeration of finite sets $F_i \subseteq X$.

procedure 2: non coverability certificate of y from x

while
$$\neg(\downarrow \text{Post}(S_i) \subseteq S_i \text{ and } x \in S_i \text{ and } y \notin S_i)$$
 do
 $i \leftarrow i + 1$
return false

procedure 2: non coverability certificate of y from x

while
$$\neg(\operatorname{Pre}(\uparrow F_i) \subseteq \uparrow F_i)$$
 and $x \notin \uparrow F_i$ and $y \in \uparrow F_i$) do
 $i \leftarrow i + 1$
return *false*

Find a direct proof of Erdös Tarski Theorem avoiding wqo.

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if $x \le y$ and $x \ne y$. Define x < y when \le is a wqo.

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if $x \le y$ and $x \ne y$. Define x < y when < is a wgo.
- Give a definition of Min(X).

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$
- Prove that if (X, ≤) is WF then for all x there is a m ∈ Min(X) s.t. x ≥ m.

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$
- Prove that if (X, ≤) is WF then for all x there is a m ∈ Min(X) s.t. x ≥ m.
- For U = ↑ U, prove that Min(U) is a (infinite) basis of U when ≤ is WF. Why it is not the case if ≤ is not WF ?

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$
- Prove that if (X, ≤) is WF then for all x there is a m ∈ Min(X) s.t. x ≥ m.
- For U = ↑ U, prove that Min(U) is a (infinite) basis of U when ≤ is WF. Why it is not the case if ≤ is not WF ?
- For $U = \uparrow U$, prove that Min(U) is finite $(\neq \emptyset)$ when \leq is a WF+FAC wpo.

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$
- Prove that if (X, ≤) is WF then for all x there is a m ∈ Min(X) s.t. x ≥ m.
- For U = ↑ U, prove that Min(U) is a (infinite) basis of U when ≤ is WF. Why it is not the case if ≤ is not WF ?
- For $U = \uparrow U$, prove that Min(U) is finite $(\neq \emptyset)$ when \leq is a WF+FAC wpo.
- For $U = \uparrow U$, prove that $Min(U) / \equiv$ is finite $(\neq \emptyset)$ when \leq is WF+FAC wqo.

- Find a direct proof of Erdös Tarski Theorem avoiding wqo.
- For wpo, we define x < y if x ≤ y and x ≠ y.
 Define x < y when ≤ is a wqo.
- Give a definition of Min(X). $Min(X) = \{x \mid \forall y, y \le x \implies x \le y \le x\}$
- Prove that if (X, ≤) is WF then for all x there is a m ∈ Min(X) s.t. x ≥ m.
- For U = ↑ U, prove that Min(U) is a (infinite) basis of U when ≤ is WF. Why it is not the case if ≤ is not WF ?
- For $U = \uparrow U$, prove that Min(U) is finite $(\neq \emptyset)$ when \leq is a WF+FAC wpo.
- For $U = \uparrow U$, prove that $Min(U) / \equiv$ is finite $(\neq \emptyset)$ when \leq is WF+FAC wqo.
- Conclude that < is woo iff < is WF + FAC.

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine M is regular if L(M) is regular.

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine M is regular if L(M) is regular.
- Prove that regular Turing machines are recursive.

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine M is regular if L(M) is regular.
- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine M is regular if L(M) is regular.
- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?
- Give an algorithm to decide w ∈ L(M) for regular and context-free Turing machines.

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine *M* is *regular* if L(M) is regular.
- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?
- Give an algorithm to decide w ∈ L(M) for regular and context-free Turing machines.
- Give an algorithm for deciding reachability for Petri nets having (unknown) semilinear/Presburger reachability sets.

- The language L(M) ⊆ Σ* of a Turing machine M is the set of words w ∈ Σ* that are on the tape when M reaches a terminal control state.
- A Turing machine *M* is *regular* if L(M) is regular.
- Prove that regular Turing machines are recursive. Can you deduce an algorithm for deciding whether $w \in L(M)$?
- Give an algorithm to decide w ∈ L(M) for regular and context-free Turing machines.
- Give an algorithm for deciding reachability for Petri nets having (unknown) semilinear/Presburger reachability sets.
- Jan K. Pachl: Protocol Description and Analysis Based on a State Transition Model with Channel Expressions. PSTV 1987: 207-219.

Motivation

Verification of infinite-state models

- counter machines with reset-transfer-affine- ω extensions
- Lossy fifo systems and variants with time, data and priority
- Parameterized broadcast protocols and other
- CFG, graph rewriting
- Systems with pointers, graph memory (Well-Structured Graph Transformation Systems (CONCUR 2014))
- Fragments of the π -calculus, depth bounded processes

Overview WSTS Reachability problems

Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo

systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)

Example of WSTS: Petri nets

Overview WSTS Reachability problems

Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo

systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)

Example of WSTS: Petri nets

Overview WSTS Reachability problems

Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo

systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)

Example of WSTS: Petri nets

Overview WSTS Reachability problems

Multiple decidability results are known for (finitely branching) WSTS.

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Overview WSTS Reachability problems

And also for (infinitely branching) WSTS such as systems with infinitely many initial states and parametric systems

Example of WSTS: ω -Petri nets (Geeraerts, Heußner, Praveen & Raskin PN'13)

 $\mathsf{Post}(\odot \bigcirc \bigcirc) = \bigcirc \odot \bigcirc, \bigcirc \odot \bigcirc, \bigcirc \odot \bigcirc, \ldots$

Overview WSTS Reachability problems

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\bullet \quad \to \subseteq X \times X,$
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - N³,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\label{eq:stars} \bullet \ \to \subseteq \mathbb{N}^3 \times \mathbb{N}^3,$
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

- $S = (X, \rightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered.

Overview WSTS Reachability problems

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\bullet \rightarrow \subseteq X \times X,$
- monotony,
- well-quasi-ordered.

$$\begin{array}{cccc} \overleftarrow{} & x & \rightarrow & y \\ & & & & \\ & & & \\ & x' & \xrightarrow{} & y' \\ & & & & y' \end{array}$$

Overview WSTS Reachability problems

۴

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\bullet \rightarrow \subseteq X \times X,$
- transitive monotony,
- well-quasi-ordered.

$$\begin{array}{cccc} & x & \rightarrow & y \\ & & & & & \\ & & & & & \\ & x' & & \xrightarrow{+} & y' \\ & & & & \end{bmatrix}$$

Overview WSTS Reachability problems

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - strong monotony,
 - well-quasi-ordered.

$$\begin{array}{cccc} \forall x & \rightarrow y \\ & & & & \\ & & & & \\ & x' & & \rightarrow y' \\ & & & & \end{bmatrix}$$

Overview WSTS Reachability problems

Well structured transition system (F, ICALP'87)

- $S = (X,
 ightarrow, \leq)$ where
 - X set,
 - $\rightarrow \subseteq X \times X$,
 - monotony,
 - well-quasi-ordered:

 $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j.$

Overview WSTS Reachability problems

The magical theorem of wqo

 (X, \leq) is a wqo if and only if every upward closed set $U = \uparrow U \subseteq X$ has a finite basis, i.e., it is equal to a finite union of elements $\uparrow u_i$ with $u_i \in U$.

Many caracterisations of wqo

 \leq is a wqo if and only if \leq is FAC + WF.

Overview WSTS Reachability problems

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)

- T(w) = length of a longest computation starting from w ∈ Σ*.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq T w'$ if $T(w) \leq T(w')$.
- \leq_T is a wqo on Σ^* .

Overview WSTS Reachability problems

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)

- T(w) = length of a longest computation starting from w ∈ Σ*.
- $T(w) \in \mathbb{N}_{\omega}$.

•
$$w \leq T w'$$
 if $T(w) \leq T(w')$.

• \leq_T is a wqo on Σ^* .

Theorem

Turing machines are WSTS with strict and strong monotony wrt \leq_{T} .

Overview WSTS Reachability problems

WSTS Everywhere!

- $\blacksquare \leq_T \text{ is not decidable.}$
- Hence TM are non-effective WSTS.
- This also proves that there is no (non-trivial) decidability result for non-effective WSTS (not surprising !).

Overview WSTS Reachability problems

Objective

We want to study the usual reachability problems, e.g.,

Reachability...but it is undecidable for general WSTS :((

Overview WSTS Reachability problems

Objective

- Reachability...but it is undecidable for general WSTS :((
- Termination

Overview WSTS Reachability problems

Objective

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)

Overview WSTS Reachability problems

Objective

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)
- Boundedness

Overview WSTS Reachability problems

Objective

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)
- Boundedness
- And other properties like eventuality, simulation by finite automaton...

Termination Boundedness Simulations (next time)

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots$?

Termination Boundedness Simulations (next time)

Termination

 Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)

Termination Boundedness Simulations (next time)

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).

Termination Boundedness Simulations (next time)

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).

Termination Boundedness Simulations (next time)

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).
- Undecidable for non-effective finitely branching WSTS with strict and strong monotony (F-Schnoebelen, TCS'01), since every TM is a WSTS for ≤_T.

Termination Boundedness Simulations (next time)

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Termination Boundedness Simulations (next time)

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem. Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by: $x \rightarrow_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$. S_i is finitely branching, post-effective, monotone but not transitive and \leq is a wpo.

Termination Boundedness Simulations (next time)

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem. Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by: $x \rightarrow_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$. S_i is finitely branching, post-effective, monotone but not transitive and \leq is a wpo.

Now, \exists infinite run $x_0 = 0 \rightarrow_i x_1 \rightarrow_i \dots$ iff M_i does not halt. Hence termination for C is undecidable.

Termination Boundedness Simulations (next time)

The survey for termination

Post-effective	Finitely branching	Transitive	Decidability	
Yes	Yes	Yes	Decidable [F87]	
non effective	Yes	Yes + strict-strong	Undecidable [FS01]	
Yes	Yes	NO	Undecidable [BFM16]	
Yes	NO	Yes + strict-strong	Undecidable [BFM14]	

Termination Boundedness Simulations (next time)

Boundeness

 Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)

Termination Boundedness Simulations (next time)

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).

Termination Boundedness Simulations (next time)

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).

Termination Boundedness Simulations (next time)

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).
- Undecidable for non-effective finitely branching WSTS (with wpo) with strict and strong monotony (F-Schnoebelen, TCS'01), since every TM is a WSTS for ≤_T.

Termination Boundedness Simulations (next time)

The survey for boundedness

Post-effective	Finitely branching	Strict monotony	wpo	Decidability
Yes	Yes	Yes	Yes	D [F87]
non effective	Yes	Yes + strong	Yes	U [FS01]
Yes	Yes	NO but strong	Yes	U [ICALP'98]
Yes	NO	Yes	Yes	D [BFM'16]
Yes	Yes	Yes	wqo	???
Yes	NO	Yes	wqo	???

Exercise: Is the boundedness problem decidable for WSTS with strict monotony ?

Termination Boundedness Simulations (next time)

A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India 5th March 2018

 Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.

Termination Boundedness Simulations (next time)

Coming back with exercises

Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$

Termination Boundedness Simulations (next time)

Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (N, ≤) with (n, n) in (N², ≤), and with (n, n, n) in (N³, ≤) ?

Termination Boundedness Simulations (next time)

Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (N, ≤) with (n, n) in (N², ≤), and with (n, n, n) in (N³, ≤) ?
- Let us prove that

 $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies}$

Termination Boundedness Simulations (next time)

Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (N, ≤) with (n, n) in (N², ≤), and with (n, n, n) in (N³, ≤) ?
- Let us prove that

 $\begin{array}{ll} \forall x_0, x_1, \dots \ \exists i < j \ \text{ s.t. } x_i \leq x_j \ \text{implies } \forall x_0, x_1, \dots \ \exists i_1 < i_2 < \\ \dots < i_n < \dots \ \text{ s.t. } x_{i_1} \leq x_{i_2} \leq \dots \leq x_{i_n} \leq . \end{array}$

Termination Boundedness Simulations (next time)

Coming back with exercises

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (N, ≤) with (n, n) in (N², ≤), and with (n, n, n) in (N³, ≤) ?
- Let us prove that
 - $\begin{array}{ll} \forall x_0, x_1, \dots \ \exists i < j \ \text{ s.t. } x_i \leq x_j \ \text{implies } \forall x_0, x_1, \dots \ \exists i_1 < i_2 < \\ \dots < i_n < \dots \ \text{ s.t. } x_{i_1} \leq x_{i_2} \leq \dots \leq x_{i_n} \leq . \end{array}$
- PROOF: Define the set A = {i | ∀j > i; x_i ≤ x_j}. A is finite else contradiction; let k the largest index of x_k in A, hence for all i > k, one may construct an infinite non-decreasing sequence from x_i.

Termination Boundedness Simulations (next time)

A quick story of coverability in WSTS
Coverability

A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

■ $\exists x' \mid x \xrightarrow{*} x' \ge y$ (this is the definition !) iff

Coverability

A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \ge y$ (this is the definition !) iff
- $x \in \operatorname{Pre}^*(\uparrow y)$ (this could be the definition !) iff

Coverability

A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \ge y$ (this is the definition !) iff
- $x \in \operatorname{Pre}^*(\uparrow y)$ (this could be the definition !) iff
- $y \in \downarrow \text{Post}^*(x)$ (this could be the definition !).

Remark

•
$$\operatorname{Pre}^*(\uparrow y) = \uparrow \operatorname{Pre}^*(\uparrow y)$$

Coverability

A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \ge y$ (this is the definition !) iff
- $x \in \operatorname{Pre}^*(\uparrow y)$ (this could be the definition !) iff
- $y \in \downarrow \text{Post}^*(x)$ (this could be the definition !).

Remark

•
$$\operatorname{Pre}^*(\uparrow y) = \uparrow \operatorname{Pre}^*(\uparrow y)$$

•
$$\downarrow \mathsf{Post}^*(x) = \downarrow \mathsf{Post}^*(\downarrow x).$$

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed se Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

Coverability is semi-decidable:

• if $\exists x' \ge y$, $x \xrightarrow{*} x'$, one finally will find x'.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \ge y$, $x \xrightarrow{*} x'$, one finally will find x'.

Non-coverability is also semi-decidable:

■ ¬($\exists x' \ge y, x \xrightarrow{*} x'$) iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \ge y$, $x \xrightarrow{*} x'$, one finally will find x'.
- Non-coverability is also semi-decidable:
 - ¬($\exists x' \ge y, x \xrightarrow{*} x'$) iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.
 - One enumerates all the finite sets (*) $J \subseteq X$ such that $y \in \uparrow J$ and $Pre(\uparrow J) \subseteq \uparrow J$ (hence $Pre^*(\uparrow J) = \uparrow J$) and $x \notin \uparrow J$, hence $Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J)$.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \ge y$, $x \xrightarrow{*} x'$, one finally will find x'.
- Non-coverability is also semi-decidable:
 - ¬($\exists x' \ge y, x \xrightarrow{*} x'$) iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.
 - One enumerates all the finite sets (*) $J \subseteq X$ such that $y \in \uparrow J$ and $Pre(\uparrow J) \subseteq \uparrow J$ (hence $Pre^*(\uparrow J) = \uparrow J$) and $x \notin \uparrow J$, hence $Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J)$.
 - Since we are sure that at least one J exists $(J_m !)$, one finally will find one. May be we find a large J_p s.t. $\uparrow J_m = Pre^*(\uparrow y) \subsetneq \uparrow J_p$ but $x \notin \uparrow J_p \implies x \notin Pre^*(\uparrow y)$.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.

Coverability A conceptual coverability algorithm **The backward coverability algorithm** A conceptual coverability algorithm based on downward closed Procedure 2: non coverability certificate

The story of the backward coverability algorithm

- 1978: coverability for reset VAS is decidable (Arnold and Latteux published in French in CALCOLO'78). Their algorithm is an instance of the backward algorithm (LICS'96).
- 1993: decidability of coverability for LCS (Abdulla, Cerans, Jonsson, Tsay, LICS'93)
- 1996: decidability of coverability for strong WSTS assuming Pre(↑x) is computable (Abdulla, Cerans, Jonsson, Tsay, LICS'96)
- 1998: decidability of coverability for WSTS assuming ↑Pre(↑x) is computable (F., Schnoebelen LATIN'98)

Coverability A conceptual coverability algorithm **The backward coverability algorithm** A conceptual coverability algorithm based on downward closed : Procedure 2: non coverability certificate

Remarks on the backward coverability algorithm

- It computes $Pre^*(\uparrow y)$ that is more than solving coverability.
- It is often but not always computable, ex: depth-bounded processes (Wies, Zufferey, Henzinger, FOSSACS'10)
- Backward algorithms are often less efficient than forward algorithms.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

The downward approach for coverability

 Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP'14): ideal completion for infinitely branching.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP'14): ideal completion for infinitely branching.
- Still simplified and extended with Blondin, McKenzie: WQO is not necessary. Decidable for more than WSTS. (arxiv, august 2016, in LMCS'2017).

Exercises Preambule Introduction A (partial) survey Still coverability Conclusion Coverability A conceptual coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

y is not coverable from x iff $y \notin \downarrow \text{Post}^*(x)$.

Let $(D_i)_i$ be an enumeration of dcs, hence $\downarrow \text{Post}^*(x) = D_m$, for some m.

procedure 2: enumerates dcs to find non coverability certificate of y from x

 $i \leftarrow 0$; while $\neg(\downarrow \text{Post}(D_i) \subseteq D_i \text{ and } x \in D_i \text{ and } y \notin D_i)$ do $i \leftarrow i + 1$ return false

Effective hypotheses

- dcs are recursive.
- Union of dcs is computable
- ↓ Post(D) is computable.
- Inclusion between dcs is decidable.
- Works for post effective infinitely branching systems.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

Theorem

Let $S = (X, \rightarrow, \leq)$ be a monotone transition system + there exists an enumeration of downward closed sets of X, and let $x, y \in X$.

1 y is coverable from x iff Procedure 1 terminates.

2 y is not coverable from x iff Procedure 2 terminates.

This theorem does not provide an algorithm.

Remark

WSTS, hence WQO implies possible enumeration of downward closed sets (by minimal elements of upward closed sets) but the converse is false: (\mathbb{Z}, \leq) is not WQO but one may enumerate the D_i as follows: $D_i = \downarrow x_i$ for $x_i \in \mathbb{Z}$ or $D_i = \mathbb{Z}$.

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets **Procedure 2: non coverability certificate**

Question

How to enumerate downward closed sets ?

Answer

By enumerating ideals ! (come to the next seminar tomorrow)

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed set: Procedure 2: non coverability certificate

With the 2nd magical theorem of wqo

If \leq is a wqo then every downward closed set $D = \downarrow D$ has a finite basis, i.e., it is equal to a finite union of ideals. (ideal = downward closed set + directed).

Remark

It is an if then but not an if and only if.

We will see a more magical theorem of FAC = "half wqo"

Come tomorrow !

Coverability A conceptual coverability algorithm The backward coverability algorithm A conceptual coverability algorithm based on downward closed sets Procedure 2: non coverability certificate

We are tomorrow !

 \leq is FAC if and only if every downward closed set $D = \downarrow D$ has a finite basis, i.e., it is equal to a finite union of ideals.

The proof is in the paper WBTS in LMCS'2017.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x, y \in X$. Question: $y \in \downarrow \text{Post}^*(x)$?

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x, y \in X$. Question: $y \in \downarrow \text{Post}^*(x)$?

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

Enumerate

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

- Enumerate $D \subseteq X$ downward closed, $x \in D$ and $\downarrow \mathsf{Post}(D) \subseteq D$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

• Enumerate $D = I_1 \cup \ldots \cup I_k$

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $x \in D$

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\downarrow x \subseteq I_1 \cup \ldots \cup I_k$

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

• Enumerate $D \subseteq X$ downward closed, $\exists j \text{ s.t. } \downarrow x \subseteq I_j$

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

- Enumerate $D \subseteq X$ downward closed, $x \in D$ and $\downarrow \mathsf{Post}(D) \subseteq D$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

The survey/story of coverability for WSTS

Year	Authors	Mathematical hyp.	Effectivity hyp.	back/forward
1978	Arnold & Latteux	reset VAS	YES	backward
1987	F.	very WSTS (strong+strict, ω^2 -wqo,)	effective very WSTS	forward
1996	Abdulla & CJT	strong monotony	$Pre_{S}(\uparrow x)$ comp.	backward
1998	F. Schnoebelen	monotony	$\uparrow \operatorname{Pre}_{\mathcal{S}}(\uparrow x)$ comp.	backward
2004	Geeraerts & RV	strong monotony, ADL	effective ADL	forward
2006	Geeraerts & RV	monotony, ADL	effective ADL	forward
2009	F. & Goubault-Larrecq	strong monotony, weak ADL, flattable	effective WADL	forward
2009	F. & Goubault-Larrecq	strong monotony, flattable	ideally effective	forward
2014	Blondin & FM	monotony,	ideally effective	forward
2016	Blondin & FM	monotony, no wqo but FAC	ideally effective	forward
2017	Trivial	no monotony, wqo (Minsky machines)	ideally effective	Undec.
2017	Sutre	monotony, no wqo but WF	ideally effective	Undec

An effective forward coverability algorithm The survey/story of coverability <u>A survey/story of KM algorithm</u>

A survey (to complete) of KM algorithms for WSTS

Year	Authors	Model	Termination
1969	Karp & Miller	VASS	YES
1978	Valk	post self-modifying PN	YES
1978	Valk	self-modifying PN	NO
1994	Abdulla & Jonsson	LCS	NO
1998	Dufourd & F. & Schnoebelen	3-dim reset/transfer VASS	NO
1998	Emerson & Namjoshi	WSTS model checking	NO
1999	Esparza & F. & Mayr	broadcast protocols & transfer PN	NO
2000	F. & Sutre	2-dim reset/transfer VASS	YES
2004	F. & McKenzie & Picaronny	strongly increasing ω -resursive nets	YES
2004	Raskin & Van Begin	PN+NBA	NO
2005	Goubault-Larrecq & Verma	BVASS	YES
2009	F. & Goubault-Larrecq	ω^2 -WSTS, cover-flattable	YES
2010	F. & Sangnier	PN+0-test	YES
2011	Acciai, Boreale, Henzinger, Meyer,	depth-bounded processes, ν -PN	NO
2011	Chambard & F. & Schmitz	trace-bounded ω^2 -WSTS	YES
2013	Geeraerts & Heußner & Praveen & Raskin	ω-PN	YES
2013	Hüchting & Majumdar & Meyer	name-bounded π -calculus processes	YES
2016	Hofman & Lasota & Lazic & Leroux & ST	unordered PN	YES

A quick story of WSTS WSTS Everywhere! And now ?

ICALP'87 (F)

- WSTS definitions
- decidability of termination
- decidability of boundedness
- computation of the coverability set hence decidability of coverability (under stronger hyp.)

A quick story of WSTS WSTS Everywhere! And now ?

ICALP'87 (F)

- WSTS definitions
- decidability of termination
- decidability of boundedness
- computation of the coverability set hence decidability of coverability (under stronger hyp.)
- LICS'96 (Abdulla, Cerans, Jonsson, Tsay)
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).
A quick story of WSTS WSTS Everywhere! And now ?

- ICALP'87 (F)
 - WSTS definitions
 - decidability of termination
 - decidability of boundedness
 - computation of the coverability set hence decidability of coverability (under stronger hyp.)
- LICS'96 (Abdulla, Cerans, Jonsson, Tsay)
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).
- LICS'98 (Emerson, Namjoshi), LICS'99 (Esparza, F, Mayr)
 - broadcast protocols are WSTS
 - model checking of WSTS (with procedures)
- WSTS everywhere, TCS'01 (F, Schnoebelen)

A quick story of WSTS WSTS Everywhere! And now ?

- FSTTCS'04 (Geeraerts, Raskin and Van Begin):
 - The first forward coverability algorithm for WSTS (with ADL).
- STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14 (Blondin, F, McKenzie)
 - ADL is not an hypothesis.
 - Ideal completion of any WSTS
 - Computation of the clover for flattable WSTS
 - ω^2 -WSTS are completable and robust....

A quick story of WSTS WSTS Everywhere! And now ?

- FSTTCS'04 (Geeraerts, Raskin and Van Begin):
 - The first forward coverability algorithm for WSTS (with ADL).
- STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14 (Blondin, F, McKenzie)
 - ADL is not an hypothesis.
 - Ideal completion of any WSTS
 - Computation of the clover for flattable WSTS
 - ω^2 -WSTS are completable and robust....
- 2015-2016: Use of ideals decomposition in:
 - RP'15: The Ideal View on Rackoff's Coverability Technique (Lazić, Schmitz)
 - LICS'15: Demystifying Reachability in Vector Addition Systems (Leroux, Schmitz).
 - FOSSACS'16: Coverability Trees for Petri Nets with Unordered Data (Schmitz and a lot of authors...)
 - LICS'16: ν-Petri nets (Lazić, Schmitz).

A quick story of WSTS WSTS Everywhere! And now ?

WSTS Everywhere!

- $S = (\mathbb{N}^k, \leq).$
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.

A quick story of WSTS WSTS Everywhere! And now ?

WSTS Everywhere!

- $S = (\mathbb{N}^k, \leq).$
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.

$\bullet S = (Q \times \Sigma^{*k}, = \times \sqsubseteq^k).$

LCS: WSTS with non-strict monotony.

A quick story of WSTS WSTS Everywhere! And now ?

WSTS still verywhere!

• Data nets: $S = (Q \times \mathbb{N}^k)^*$

- Lazic, Newcomb, Ouaknine, Roscoe, Worrell (PN'07)
- Hofman, Lasota, Lazić, Leroux, Schmitz, Totzke (FOSSACS'16).
- Lasota (PN'16)
- ν -Petri nets: $S = (Q \times \mathbb{N}^k)^{\oplus}$.
 - Rosa-Velardo, de Frutos-Escrig (PN'07)
 - Lazić and Schmitz (LICS'16).
- Pi-calculus: Depth-Bounded Processes (trees).
 - Wies, Zufferey, Henzinger (FOSSACS'10, VMCAI'12).
- Timed Petri nets: $Regions = ((Q \times \mathbb{N}^k)^{\oplus})^*$
 - Bonnet, F, Haddad, Rosa-Velardo (FOSSACS'10)
 - Haddad, Schmitz, Schnoebelen (LICS'12).
- Process algebra (BPP,...).

A quick story of WSTS WSTS Everywhere! And now ?

Further work

A quick story of WSTS WSTS Everywhere! And now ?

Further work

 Explore more in details WBTS and find applications of WBTS (comme tomorrow).

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

Different topics: theoretical and/or applied subjects.

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developping the WSTS theory and a prototype for finding bugs in web services and choreographies.

A quick story of WSTS WSTS Everywhere! And now ?

Further work

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developping the WSTS theory and a prototype for finding bugs in web services and choreographies.
- Make the first efficient prototype for reachability for Petri nets. 41/42

A quick story of WSTS WSTS Everywhere! And now ?

Thank you!