Exercises
Preambule
Introduction
A (partial) survey
News on coverability
Still coverability
Conclusion

A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India 5th March 2018

 Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.

Exercise 1

- T(w) = length of a longest computation starting from $w \in \Sigma^*$.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq_T w'$ if $T(w) \leq T(w')$.

Exercise 1

- T(w) = length of a longest computation starting from $w \in \Sigma^*$.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq_T w'$ if $T(w) \leq T(w')$.

Prove the following theorem

Theorem

Turing machines are WSTS with strict and strong monotony wrt \leq_T .

Exercise 2

y is not coverable from x iff $y \notin \downarrow \mathsf{Post}^*(x)$.

Let $(S_i)_i$ be an enumeration of finite sets of ideals, $\downarrow \operatorname{Post}^*(x) = S_m$, for some m and $(F_i)_i$ an enumeration of finite sets $F_i \subseteq X$.

procedure 2: non coverability certificate of y from x

while
$$\neg(\downarrow \mathsf{Post}(S_i) \subseteq S_i \text{ and } x \in S_i \text{ and } y \notin S_i)$$
 do $i \leftarrow i+1$

return false

procedure 2: non coverability certificate of y from x

while
$$\neg(\operatorname{Pre}(\uparrow F_i) \subseteq \uparrow F_i)$$
 and $x \notin \uparrow F_i$ and $y \in \uparrow F_i)$ do $i \leftarrow i + 1$ return false

- Find a picture for representing *Pre**-coverability semi-algorithm.
- Find a picture for representing *Post**-coverability semi-algorithm.

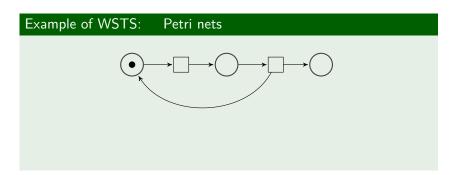
Exercises
Preambule
Introduction
A (partial) survey
News on coverability
Still coverability
Conclusion

Motivation

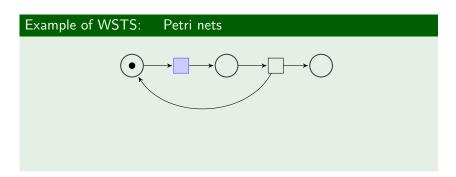
Verification of infinite-state models

- lacktriangle counter machines with reset-transfer-affine- ω extensions
- Lossy fifo systems and variants with time, data and priority
- Parameterized broadcast protocols and other
- CFG, graph rewriting
- Systems with pointers, graph memory (Well-Structured Graph Transformation Systems (CONCUR 2014))
- lacktriangleright Fragments of the π -calculus, depth bounded processes

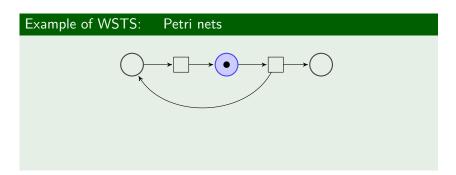
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)



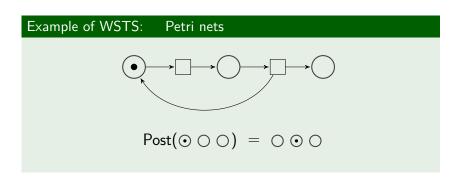
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)

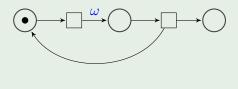


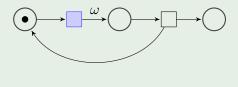
Well Structured Transition Systems (WSTS) encompass a large number of infinite state systems (PN and reset-transfer-affine- ω extensions, lossy fifo systems, broadcast protocols, CFG, graph rewriting, depth bounded processes, fragments of the π -calculus,....)

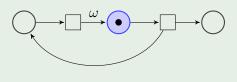


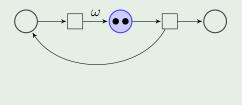
Multiple decidability results are known for (finitely branching) WSTS.

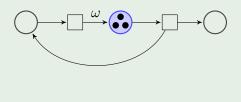


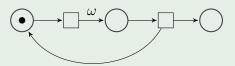








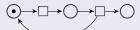




$$\mathsf{Post}(\odot) = \bigcirc \odot \bigcirc$$
, $\bigcirc \odot \bigcirc$, $\bigcirc \odot \bigcirc$, ...

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.



$$S = (X, \rightarrow, \leq)$$
 where

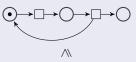
- \blacksquare \mathbb{N}^3 ,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

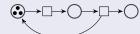
$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq \mathbb{N}^3 \times \mathbb{N}^3$
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

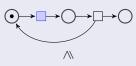
- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.

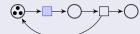




$$S = (X, \rightarrow, \leq)$$
 where

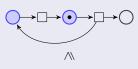
- X set,
- $\rightarrow \subseteq X \times X$
- monotony,
- well-quasi-ordered.





$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

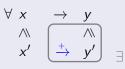


$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$
- transitive monotony,
- well-quasi-ordered.



$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- strong monotony,
- well-quasi-ordered.

$$S = (X, \rightarrow, \leq)$$
 where

- X set,
- $\rightarrow \subseteq X \times X$,
- monotony,
- well-quasi-ordered:

$$\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j.$$

The magical theorem of wqo

 (X, \leq) is a wqo if and only if every upward closed set $U = \uparrow U \subseteq X$ has a finite basis, i.e., it is equal to a finite union of elements $\uparrow u_i$ with $u_i \in U$.

Many caracterisations of wqo

 \leq is a wqo if and only if \leq is FAC + WF.

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)

- T(w) = length of a longest computation starting from $w \in \Sigma^*$.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq_T w'$ if $T(w) \leq T(w')$.
- $\blacksquare \leq_{\mathcal{T}}$ is a wqo on Σ^* .

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)

- T(w) = length of a longest computation starting from $w \in \Sigma^*$.
- $T(w) \in \mathbb{N}_{\omega}$.
- $w \leq_T w'$ if $T(w) \leq T(w')$.
- $\blacksquare \leq_{\mathcal{T}}$ is a wqo on Σ^* .

Theorem

Turing machines are WSTS with strict and strong monotony wrt \leq_T .

WSTS Everywhere!

- $\blacksquare \leq_T$ is not decidable.
- Hence TM are non-effective WSTS.
- This also proves that there is no (non-trivial) decidability result for non-effective WSTS (not surprising !).

We want to study the usual reachability problems, e.g.,

■ Reachability...but it is undecidable for general WSTS :((

- Reachability...but it is undecidable for general WSTS :((
- Termination

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)
- Boundedness

- Reachability...but it is undecidable for general WSTS :((
- Termination
- Coverability (the most used property)
- Boundedness
- And other properties like eventuality, simulation by finite automaton...

Termination

Input: (X, \rightarrow, \leq) a WSTS, $x_0 \in X$.

Question: $\exists x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$?

TerminationBoundedness
Simulations (next time

Termination

 Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).

Termination

- Decidable for post-effective finitely branching WSTS with transitive monotony (F, ICALP'87)
- Undecidable for post-effective finitely branching WSTS with non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective infinitely branching WSTS with strict and strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).
- Undecidable for non-effective finitely branching WSTS with strict and strong monotony (F-Schnoebelen, TCS'01), since every TM is a WSTS for \leq_T .

Termination Boundedness Simulations (next time

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem.

Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by:

 $x \rightarrow_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$.

 S_i is finitely branching, post-effective, monotone but not transitive and \leq is a wpo.

Proposition (2016)

Termination is undecidable for post-effective finitely branching WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem.

Let M_i be a TM, and let $S_i = (\mathbb{N}, \rightarrow_i, \leq)$ defined by:

 $x \to_i x + 1$ if M_i does not halt in $\leq x$ steps. Let $C = \{S_i \mid i \geq 0\}$. S_i is finitely branching, post-effective, monotone but not transitive

and \leq is a wpo.

Now, \exists infinite run $x_0 = 0 \rightarrow_i x_1 \rightarrow_i \dots$ iff M_i does not halt.

Hence termination for *C* is undecidable.

Termination
Boundedness
Simulations (next time)

The survey for termination

Post-effective	Finitely branching	Transitive	Decidability
Yes	Yes	Yes	Decidable [F87]
non effective	Yes	Yes + strict-strong	Undecidable [FS01]
Yes	Yes	NO	Undecidable [BFM16]
Yes	NO	Yes + strict-strong	Undecidable [BFM14]

Termination Boundedness Simulations (next time)

Boundeness

 Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).

Boundeness

- Decidable for post-effective finitely branching WSTS (with wpo) with strict transitive monotony (F, ICALP'87)
- Decidable for post-effective infinitely branching WSTS (with wpo) with strict non-transitive monotony (Blondin-F-McKenzie, 2016).
- Undecidable for post-effective finitely branching WSTS (with wpo) with strong monotony (deduced from Dufourd, Jančar & Schnoebelen, ICALP'99).
- Undecidable for non-effective finitely branching WSTS (with wpo) with strict and strong monotony (F-Schnoebelen, TCS'01), since every TM is a WSTS for \leq_T .

The survey for boundedness				
Post-effective	Finitely branching	Strict mono		
Yes	Yes	Yes		

Post-effective	Finitely branching	Strict monotony	wpo	Decidability
Yes	Yes	Yes	Yes	D [F87]
non effective	Yes	Yes + strong	Yes	U [FS01]
Yes	Yes	NO but strong	Yes	U [ICALP'98]
Yes	NO	Yes	Yes	D [BFM'16]
Yes	Yes	Yes	wqo	???
Yes	NO	Yes	wqo	???

Exercise: Is the boundedness problem decidable for WSTS with strict monotony ?

Termination Boundedness Simulations (next time)

A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

IIT Mumbai, India 5th March 2018

 Based on joint works with Michael Blondin, Jean Goubault-Larrecq & Pierre McKenzie.

■ Say that a sequence $x_0, x_1, ...$ is bad if there are no i, j s.t. i < j and $x_i \le x_j$

- Say that a sequence $x_0, x_1, ...$ is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq) , and with (n, n, n) in (\mathbb{N}^3, \leq) ?

- Say that a sequence $x_0, x_1, ...$ is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq) , and with (n, n, n) in (\mathbb{N}^3, \leq) ?
- Let us prove that $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies}$

- Say that a sequence x_0, x_1, \ldots is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq) , and with (n, n, n) in (\mathbb{N}^3, \leq) ?
- Let us prove that $\forall x_0, x_1, \ldots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies } \forall x_0, x_1, \ldots \exists i_1 < i_2 < \ldots < i_n < \ldots \text{ s.t. } x_{i_1} \leq x_{i_2} \leq \ldots \leq x_{i_n} \leq .$

- Say that a sequence $x_0, x_1, ...$ is bad if there are no i, j s.t. i < j and $x_i \le x_j$
- What is the maximal length of bad sequences begining with n in (\mathbb{N}, \leq) with (n, n) in (\mathbb{N}^2, \leq) , and with (n, n, n) in (\mathbb{N}^3, \leq) ?
- Let us prove that $\forall x_0, x_1, \dots \exists i < j \text{ s.t. } x_i \leq x_j \text{ implies } \forall x_0, x_1, \dots \exists i_1 < i_2 < \dots < i_n < \dots \text{ s.t. } x_{i_1} \leq x_{i_2} \leq \dots \leq x_{i_n} \leq .$
- PROOF: Define the set $A = \{i \mid \forall j > i; x_i \not\leq x_j\}$. A is finite else contradiction; let k the largest index of x_k in A, hence for all i > k, one may construct an infinite non-decreasing sequence from x_i .

Termination Boundedness Simulations (next time)

A quick story of coverability in WSTS

Coverability

A conceptual coverability algorithm

A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

■ $\exists x' \mid x \xrightarrow{*} x' \geq y$ (this is the definition!) iff

Coverability

A conceptual coverability algorithm

The backward coverability algorithm

A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \geq y$ (this is the definition!) iff
- $x \in \operatorname{Pre}^*(\uparrow y)$ (this could be the definition !) iff

Coverability

A conceptual coverability algorithm

A conceptual coverability algorithm based on downward closed set Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \geq y$ (this is the definition!) iff
- $x \in \text{Pre}^*(\uparrow y)$ (this could be the definition !) iff
- $y \in \downarrow \text{Post}^*(x)$ (this could be the definition !).

Remark

$$Pre^*(\uparrow y) = \uparrow Pre^*(\uparrow y)$$

Coverability

A conceptual coverability algorithm

A conceptual coverability algorithm based on downward closed ser Procedure 2: non coverability certificate

Coverability

For monotone transition systems, y is coverable from x if

- $\exists x' \mid x \xrightarrow{*} x' \geq y$ (this is the definition!) iff
- $x \in \text{Pre}^*(\uparrow y)$ (this could be the definition !) iff
- $y \in \downarrow \text{Post}^*(x)$ (this could be the definition !).

Remark

- $Pre^*(\uparrow y) = \uparrow Pre^*(\uparrow y)$

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed set.
Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y$, $x \xrightarrow{*} x'$, one finally will find x'.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed set.
Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y$, $x \xrightarrow{*} x'$, one finally will find x'.
- Non-coverability is also semi-decidable:
 - $\neg(\exists x' \geq y, x \xrightarrow{*} x')$ iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y$, $x \xrightarrow{*} x'$, one finally will find x'.
- Non-coverability is also semi-decidable:
 - $\neg(\exists x' \geq y, x \xrightarrow{*} x')$ iff $x \notin Pre^*(\uparrow y) = \uparrow J_m$ for some m.
 - One enumerates all the finite sets (*) $J \subseteq X$ such that $y \in \uparrow J$ and $Pre(\uparrow J) \subseteq \uparrow J$ (hence $Pre^*(\uparrow J) = \uparrow J$) and $x \notin \uparrow J$, hence $Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J)$.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability certificate and one looking for a non coverability certificate.

- Coverability is semi-decidable:
 - if $\exists x' \geq y$, $x \xrightarrow{*} x'$, one finally will find x'.
- Non-coverability is also semi-decidable:
 - $\blacksquare \neg (\exists x' \geq y, x \xrightarrow{*} x') \text{ iff } x \notin Pre^*(\uparrow y) = \uparrow J_m \text{ for some } m.$
 - One enumerates all the finite sets (*) $J \subseteq X$ such that $y \in \uparrow J$ and $Pre(\uparrow J) \subseteq \uparrow J$ (hence $Pre^*(\uparrow J) = \uparrow J$) and $x \notin \uparrow J$, hence $Pre^*(\uparrow y) = \uparrow J_m \subseteq \uparrow J = Pre^*(\uparrow J)$.
 - Since we are sure that at least one J exists $(J_m !)$, one finally will find one. May be we find a large J_p s.t. $\uparrow J_m = Pre^*(\uparrow y) \subsetneq \uparrow J_p$ but $x \not\in \uparrow J_p \implies x \not\in Pre^*(\uparrow y)$.

Enumeration of upward closed sets by their finite basis is a consequence of (X, \leq) is WQO.

The story of the backward coverability algorithm

- 1978: coverability for reset VAS is decidable (Arnold and Latteux published in French in CALCOLO'78). Their algorithm is an instance of the backward algorithm (LICS'96).
- 1993: decidability of coverability for LCS (Abdulla, Cerans, Jonsson, Tsay, LICS'93)
- 1996: decidability of coverability for strong WSTS assuming $Pre(\uparrow x)$ is computable (Abdulla, Cerans, Jonsson, Tsay, LICS'96)
- 1998: decidability of coverability for WSTS assuming $\uparrow Pre(\uparrow x)$ is computable (F., Schnoebelen LATIN'98)

A conceptual coverability algorithm

The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

Remarks on the backward coverability algorithm

- It computes $Pre^*(\uparrow y)$ that is more than solving coverability.
- It is often but not always computable, ex: depth-bounded processes (Wies, Zufferey, Henzinger, FOSSACS'10)
- Backward algorithms are often less efficient than forward algorithms.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non-coverability certificate

The downward approach for coverability

 Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP'14): ideal completion for infinitely branching.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets

The downward approach for coverability

- Initially presented by Geeraerts, Raskin, and Van Begin (FSTTCS'04) for strongly monotone WSTS with Adequate Domain of Limits (ADL).
- Simplified and extended with Goubault-Larrecq (STACS'09): ADL is not an hypothesis, it always exists.
- Still simplified and extended with Blondin, McKenzie (ICALP'14): ideal completion for infinitely branching.
- Still simplified and extended with Blondin, McKenzie: WQO is not necessary. Decidable for more than WSTS. (arxiv, august 2016, in LMCS'2017).

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed set
Procedure 2: non coverability certificate

y is not coverable from x iff $y \notin \int \mathsf{Post}^*(x)$.

Let $(D_i)_i$ be an enumeration of dcs, hence $\downarrow \operatorname{Post}^*(x) = D_m$, for some m.

procedure 2: enumerates dcs to find non coverability certificate of y from x

$$i \leftarrow 0$$
;

while
$$\neg(\downarrow \mathsf{Post}(D_i) \subseteq D_i$$
 and $x \in D_i$ and $y \notin D_i)$ do $i \leftarrow i + 1$

return false

Effective hypotheses

- dcs are recursive.
- Union of dcs is computable
- ↓ Post(D) is computable.
- Inclusion between dcs is decidable.
- Works for post effective infinitely branching systems.

Theorem

Let $S = (X, \rightarrow, \leq)$ be a monotone transition system + there exists an enumeration of downward closed sets of X, and let $x, y \in X$.

- $\mathbf{1}$ y is coverable from x iff Procedure 1 terminates.
- 2 y is not coverable from x iff Procedure 2 terminates.

This theorem does not provide an algorithm.

Remark

WSTS, hence WQO implies possible enumeration of downward closed sets (by minimal elements of upward closed sets) but the converse is false: (\mathbb{Z}, \leq) is not WQO but one may enumerate the D_i as follows: $D_i = \downarrow x_i$ for $x_i \in \mathbb{Z}$ or $D_i = \mathbb{Z}$.

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

Question

How to enumerate downward closed sets?

Answer

By enumerating ideals ! (come to the next seminar tomorrow)

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed set
Procedure 2: non coverability certificate

With the 2nd magical theorem of wqo

If \leq is a wqo then every downward closed set $D = \downarrow D$ has a finite basis, i.e., it is equal to a finite union of ideals. (ideal = downward closed set + directed).

Remark

It is an if then but not an if and only if.

We will see a more magical theorem of FAC = "half wqo"

Come tomorrow!

A conceptual coverability algorithm
The backward coverability algorithm
A conceptual coverability algorithm based on downward closed set
Procedure 2: non coverability certificate

We are tomorrow!

 \leq is FAC if and only if every downward closed set $D = \downarrow D$ has a finite basis, i.e., it is equal to a finite union of ideals.

The proof is in the paper WBTS in LMCS'2017.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $x \stackrel{*}{\rightarrow} x' \ge y$?

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x, y \in X$.

Question: $y \in \downarrow Post^*(x)$?

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input: (X, \rightarrow, \leq) a WSTS, $x, y \in X$.

Question: $y \in \downarrow Post^*(x)$?

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in \downarrow Post^*(x)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

Non coverability:

Enumerate

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed, $x \in D$ and $\downarrow \operatorname{Post}(D) \subseteq D$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \xrightarrow{*} D$,
- Accept if $y \in D$.

- Enumerate $D = I_1 \cup ... \cup I_k$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed, $x \in D$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed, $\downarrow x \subseteq I_1 \cup ... \cup I_k$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in \downarrow Post^*(x)$?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed, $\exists j$ s.t. $\downarrow x \subseteq I_i$
- Reject if $y \notin D$.

An effective forward coverability algorithm The survey/story of coverability A survey/story of KM algorithm

Coverability

Input:
$$(X, \rightarrow, \leq)$$
 a WSTS, $x, y \in X$.

Question: $y \in J$ Post*(x)?

Forward method

Coverability:

- Enumerate executions $\downarrow x \stackrel{*}{\rightarrow} D$,
- Accept if $y \in D$.

- Enumerate $D \subseteq X$ downward closed, $x \in D$ and $\downarrow \mathsf{Post}(D) \subseteq D$
- Reject if $y \notin D$.

The survey/story of coverability for WSTS

Year	Authors	Mathematical hyp.	Effectivity hyp.	back/forward
1978	Arnold & Latteux	reset VAS	YES	backward
1987	F.	very WSTS (strong+strict, ω^2 -wqo,)	effective very WSTS	forward
1996	Abdulla & CJT	strong monotony	$Pre_S(\uparrow x)$ comp.	backward
1998	F. Schnoebelen	monotony	$\uparrow \operatorname{Pre}_{\mathcal{S}}(\uparrow x) \operatorname{comp}$.	backward
2004	Geeraerts & RV	strong monotony, ADL	effective ADL	forward
2006	Geeraerts & RV	monotony, ADL	effective ADL	forward
2009	F. & Goubault-Larrecq	strong monotony, weak ADL, flattable	effective WADL	forward
2009	F. & Goubault-Larrecq	strong monotony, flattable	ideally effective	forward
2014	Blondin & FM	monotony,	ideally effective	forward
2016	Blondin & FM	monotony, no wqo but FAC	ideally effective	forward
2017	Trivial	no monotony, wqo (Minsky machines)	ideally effective	Undec.
2017	Sutre	monotony, no wqo but WF	ideally effective	Undec

A survey (to complete) of KM algorithms for WSTS

Year	Authors	Model	Termination
1969	Karp & Miller	VASS	YES
1978	Valk	post self-modifying PN	YES
1978	Valk	self-modifying PN	NO
1994	Abdulla & Jonsson	LCS	NO
1998	Dufourd & F. & Schnoebelen	3-dim reset/transfer VASS	NO
1998	Emerson & Namjoshi	WSTS model checking	NO
1999	Esparza & F. & Mayr	broadcast protocols & transfer PN	NO
2000	F. & Sutre	2-dim reset/transfer VASS	YES
2004	F. & McKenzie & Picaronny	strongly increasing ω -resursive nets	YES
2004	Raskin & Van Begin	PN+NBA	NO
2005	Goubault-Larrecq & Verma	BVASS	YES
2009	F. & Goubault-Larrecq	ω^2 -WSTS, cover-flattable	YES
2010	F. & Sangnier	PN+0-test	YES
2011	Acciai, Boreale, Henzinger, Meyer,	depth-bounded processes, $\nu ext{-PN}$	NO
2011	Chambard & F. & Schmitz	trace-bounded ω^2 -WSTS	YES
2013	Geeraerts & Heußner & Praveen & Raskin	ω-PN	YES
2013	Hüchting & Majumdar & Meyer	name-bounded π -calculus processes	YES
2016	Hofman & Lasota & Lazic & Leroux & ST	unordered PN	YES

■ ICALP'87 (F)

- WSTS definitions
- decidability of termination
- decidability of boundedness
- computation of the coverability set hence decidability of coverability (under stronger hyp.)

- ICALP'87 (F)
 - WSTS definitions
 - decidability of termination
 - decidability of boundedness
 - computation of the coverability set hence decidability of coverability (under stronger hyp.)
- LICS'96 (Abdulla, Cerans, Jonsson, Tsay)
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).

- ICALP'87 (F)
 - WSTS definitions
 - decidability of termination
 - decidability of boundedness
 - computation of the coverability set hence decidability of coverability (under stronger hyp.)
- LICS'96 (Abdulla, Cerans, Jonsson, Tsay)
 - decidability of coverability with a backward algorithm
 - decidability of simulation with finite-state systems
 - undecidability of repeated control-state (for LCS).
- LICS'98 (Emerson, Namjoshi), LICS'99 (Esparza, F, Mayr)
 - broadcast protocols are WSTS
 - model checking of WSTS (with procedures)
- WSTS everywhere, TCS'01 (F, Schnoebelen)

- FSTTCS'04 (Geeraerts, Raskin and Van Begin):
 - The first forward coverability algorithm for WSTS (with ADL).
- STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14 (Blondin, F, McKenzie)
 - ADL is not an hypothesis.
 - Ideal completion of any WSTS
 - Computation of the clover for flattable WSTS
 - \bullet ω^2 -WSTS are completable and robust....

- FSTTCS'04 (Geeraerts, Raskin and Van Begin):
 - The first forward coverability algorithm for WSTS (with ADL).
- STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14 (Blondin, F, McKenzie)
 - ADL is not an hypothesis.
 - Ideal completion of any WSTS
 - Computation of the clover for flattable WSTS
 - \bullet ω^2 -WSTS are completable and robust....
- 2015-2016: Use of ideals decomposition in:
 - RP'15: The Ideal View on Rackoff's Coverability Technique (Lazić, Schmitz)
 - LICS'15: Demystifying Reachability in Vector Addition Systems (Leroux, Schmitz).
 - FOSSACS'16: Coverability Trees for Petri Nets with Unordered Data (Schmitz and a lot of authors...)
 - LICS'16: ν-Petri nets (Lazić, Schmitz).

WSTS Everywhere!

- $S = (\mathbb{N}^k, \leq).$
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.

WSTS Everywhere!

- $\blacksquare S = (\mathbb{N}^k, \leq).$
 - Petri nets: WSTS with strict and strong monotony.
 - Positive Affine nets, Reset/Transfer Petri nets: WSTS with strong (but not strict) monotony.

- - LCS: WSTS with non-strict monotony.

WSTS still verywhere!

- Data nets: $S = (Q \times \mathbb{N}^k)^*$
 - Lazic, Newcomb, Ouaknine, Roscoe, Worrell (PN'07)
 - Hofman, Lasota, Lazić, Leroux, Schmitz, Totzke (FOSSACS'16).
 - Lasota (PN'16)
- ν -Petri nets: $S = (Q \times \mathbb{N}^k)^{\oplus}$.
 - Rosa-Velardo, de Frutos-Escrig (PN'07)
 - Lazić and Schmitz (LICS'16).
- Pi-calculus: Depth-Bounded Processes (trees).
 - Wies, Zufferey, Henzinger (FOSSACS'10, VMCAI'12).
- Timed Petri nets: $Regions = ((Q \times \mathbb{N}^k)^{\oplus})^*$
 - Bonnet, F, Haddad, Rosa-Velardo (FOSSACS'10)
 - Haddad, Schmitz, Schnoebelen (LICS'12).
- Process algebra (BPP,...).

A quick story of WSTS WSTS Everywhere! And now ?

Further work

A quick story of WSTS WSTS Everywhere! And now ?

Further work

 Explore more in details WBTS and find applications of WBTS (comme tomorrow).

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

■ Different topics: theoretical and/or applied subjects.

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developping the WSTS theory and a prototype for finding bugs in web services and choreographies.

- Explore more in details WBTS and find applications of WBTS (comme tomorrow).
- Computing efficiently with ideals (no brut force enumeration).
- Design Karp-Miller algorithm for ω^2 -WSTS (FSTTCS'2017).
- Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels: Bachelor, Master, PhD, post-PhD

- Different topics: theoretical and/or applied subjects.
- Developping the WSTS theory and a prototype for finding bugs in web services and choreographies.
- Make the first efficient prototype for reachability for Petri nets. 38/39

A quick story of WSTS WSTS Everywhere! And now ?

Thank you!