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Procedure 2: non coverability certificate

Exercise 1

m T(w) = length of a longest computation starting from
we X

m T(w)eN,.
o w<yw if T(w) < T(w).

Prove the following theorem

Theorem
Turing machines are WSTS with strict and strong monotony wrt
<T.



Exercises

Procedure 2: non coverability certificate

Exercise 2

y is not coverable from x iff y ¢ | Post™(x).

Let (S;)i be an enumeration of finite sets of ideals,
L Post*(x) = Sp,, for some m and (F;); an enumeration of finite
sets F; C X.

procedure 2: certificate of y from x

while —({ Post(S;) C Sj and x € S; and y ¢ S;) do
i i+1

return false

procedure 2: certificate of y from x

while —(Pre(1 F;) C1Fi) and x ¢ TF; and y € 1 F;) do
i—i+1

return false




Exercises

Procedure 2: non coverability certificate

m Find a picture for representing Pre*-coverability
semi-algorithm.

m Find a picture for representing Post*-coverability
semi-algorithm.



Preambule

Motivation

Verification of infinite-state models

counter machines with reset-transfer-affine-w extensions
Lossy fifo systems and variants with time, data and priority
Parameterized broadcast protocols and other

CFG, graph rewriting

Systems with pointers, graph memory (Well-Structured Graph
Transformation Systems (CONCUR 2014))

Fragments of the m-calculus, depth bounded processes
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Introduction Overview

WSTS

Reachability problems

Multiple decidability results are known for (finitely branching)
WSTS.

Example of WSTS:  Petri nets

Post(® OO) = O®O
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WSTS

Reachability problems

And also for (infinitely branching) WSTS such as systems with
infinitely many initial states and parametric systems

EXampIe Of WSTS W_Petrl nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

PosttO O0) = OO0 . 0O®0. 0&0. ...
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WSTS

Reachability problems

Well structured transition system (. icaLp's7)

S = (X,—, <) where

m X set, Vx = y
m — CX x X, A A
m transitive monotony, x' - y' J
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WSTS

Reachability problems

Well structured transition system (r, icaLp's7)

S = (X, —, <) where

m X set, Vx — y
E — CX x X, A A
m strong monotony, X |= ¥y 5
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Introduction Overview
WSTS

Reachability problems

Well structured transition system (r, icaLp's7)

S = (X, —, <) where

m X set,
E — CX x X,
® monotony,
|

well-quasi-ordered:
Vxo,Xx1,... i <j st. x;i < X.



Introduction Overview
WST!

Reachability problems

(X, <) is a wqo if and only if every upward closed set U =1 U C X
has a finite basis, i.e., it is equal to a finite union of elements 1 u;
with u; € U.

The magical theorem of wqo

Many caracterisations of wqo

< is a wqo if and only if < is FAC + WF.
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Reachability problems

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)

m T(w) = length of a longest computation starting from
w e XZ*

m T(w)eN,.
o w<pwif T(w) < T(w).

m <7 isawqoonX*



Introduction O w

bility problems

WSTS Everywhere! (F, Schnoebelen LATIN'98, TCS'01)
m T(w) = length of a longest computation starting from
w e XZ*
m T(w)eN,.
o w<pwif T(w) < T(w).

m <7 isawqoonX*

Theorem
Turing machines are WSTS with strict and strong monotony wrt
<7.
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Introduction Overview
WSTS

Reachability problems

WSTS Everywhere!

m <7 is not decidable.
m Hence TM are non-effective WSTS.

m This also proves that there is no (non-trivial) decidability
result for non-effective WSTS (not surprising !).
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Reachability...but it is undecidable for general WSTS :((
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Introduction Overview
WSTS
Reachability problems

We want to study the usual reachability problems, e.g.,

Reachability...but it is undecidable for general WSTS :((
Termination
Coverability (the most used property)

Boundedness

And other properties like eventuality, simulation by finite
automaton...

11/39



Termination
A (partial) survey Boundedness

Simulations (next time)

Termination

Input: (X, —, <) a WSTS, x € X.

Question: 3Ixg — x1 — x0 — ...7

12/39
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Proposition (2016)

Termination is undecidable for post-effective finitely branching
WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem.

Let M; be a TM, and let S; = (N, —;, <) defined by:

x =i x + 1 if M; does not halt in < x steps. Let C ={S; | i > 0}.
S; is finitely branching, post-effective, monotone but not transitive
and < is a wpo.
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Termination
A (partial) survey Boundedness
Simulations (next time)

Proposition (2016)

Termination is undecidable for post-effective finitely branching
WSTS with non-transitive monotony.

Proof

We give a reduction from the halting problem.

Let M; be a TM, and let S; = (N, —;, <) defined by:

x =i x + 1 if M; does not halt in < x steps. Let C ={S; | i > 0}.
S; is finitely branching, post-effective, monotone but not transitive
and < is a wpo.

Now, 3 infinite run xg = 0 —; x;1 —; ... iff M; does not halt.
Hence termination for C is undecidable. ]
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Termination
A (partial) survey Boundedness

Simulations (next time)

The survey for termination

Post-effective | Finitely branching | Transitive Decidability

Yes Yes Yes Decidable [F87]

non effective Yes Yes + strict-strong | Undecidable [FSO01]
Yes Yes NO Undecidable [BFM16
Yes NO Yes + strict-strong | Undecidable [BFM14

15/39
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Termination
A (partial) survey Boundedness

Simulations (next time)

The survey for boundedness

Post-effective | Finitely branching | Strict monotony | wpo | Decidability

Yes Yes Yes Yes D [F87]

non effective Yes Yes + strong Yes | U [FSO1]

Yes Yes NO but strong Yes U [ICALP'98]
Yes NO Yes Yes D [BFM'16]
Yes Yes Yes wqo | 777

Yes NO Yes wqo | 777

Exercise: Is the boundedness problem decidable for WSTS with
strict monotony ?
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Simulations (next time)

A survey on WSTS

Alain Finkel

LSV, ENS Paris-Saclay (ex ENS Cachan)

T Mumbai, India
5th March 2018

m Based on joint works with Michael Blondin, Jean Goubault-Larrecq &
Pierre McKenzie.
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A (partial) survey Boundedness
Simulations (next time)

Coming back with exercises

m Say that a sequence xg, x1, ... is bad if there are no /,j s.t.
i <jand x; < Xj

m What is the maximal length of bad sequences begining with n
in (N, <) with (n, n) in (N2, <), and with (n,n, n) in (N3, <) ?

m Let us prove that
Vx0,Xx1,... 3i <j s.t. x; < x; implies Vxg, x1,... dip < ih <
e <p < ..osit. Xp <xp, << X, <

m PROOF: Define the set A= {i | Vj > i;x; £ x;}. A's finite
else contradiction; let k the largest index of xi in A, hence for
all i > k, one may construct an infinite non-decreasing
sequence from x;.
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A quick story of coverability in WSTS
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Coverability
A conceptual coverability algorithm

News on coverability c hm based on downward closed sets
Procedure 2: non coverability certificate

A conceptual coverability algorithm, not the original

Execute two procedures in parallel, one looking for a coverability
certificate and one looking for a non coverability certificate.

m Coverability is semi-decidable:
m if 3 >y, x 5 x’, one finally will find x’.

m Non-coverability is also semi-decidable:

m —~(3x' >y, x 5 X)iff x & Pre*(1 y) =1 Jn for some m.

m One enumerates all the finite sets (*) J C X such that y €1 J
and Pre(1 J) Ct J (hence Pre*(1T J) =1 J) and x &1 J, hence
Pre*(ty) =1 Jm €1 J = Pre* (1 J).

m Since we are sure that at least one J exists (Jp, !), one finally
will find one. May be we find a large Jp s.t. 1 Jm = Pre*(1y) €1 Jp
but x ¢t J, = x & Pre*(1 y).

Enumeration of upward closed sets by their finite basis is a consequence of
(X, <) is WQO.



Coverability
A conceptual coverability algorithm
The backward coverability algorithm
News on coverability A conceptual coverability algorithm based on downward closed sets

Procedure 2: non coverability certificate

The story of the backward coverability algorithm

m 1978: coverability for reset VAS is decidable (Arnold and
Latteux published in French in CALCOLO'78). Their
algorithm is an instance of the backward algorithm (LICS'96).

m 1993: decidability of coverability for LCS (Abdulla, Cerans,
Jonsson, Tsay, LICS'93)

m 1996: decidability of coverability for strong WSTS assuming
Pre(1 x) is computable (Abdulla, Cerans, Jonsson, Tsay,
LICS'96)

m 1998: decidability of coverability for WSTS assuming
TPre(1 x) is computable (F., Schnoebelen LATIN'98)
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Coverability
A conceptual coverability algorithm
The backward coverability algorithm

News on coverability A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

Remarks on the backward coverability algorithm

m It computes Pre*(1y) that is more than solving coverability.

m It is often but not always computable, ex: depth-bounded
processes (Wies, Zufferey, Henzinger, FOSSACS'10)

m Backward algorithms are often less efficient than forward
algorithms.

24 /39



Coverability
A conceptual coverability algorithm
The ba ard coverability algorithm
News on coverability A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

The downward approach for coverability

m Initially presented by Geeraerts, Raskin, and Van Begin
(FSTTCS'04) for strongly monotone WSTS with Adequate
Domain of Limits (ADL).
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The downward approach for coverability

m Initially presented by Geeraerts, Raskin, and Van Begin
(FSTTCS'04) for strongly monotone WSTS with Adequate
Domain of Limits (ADL).

m Simplified and extended with Goubault-Larrecq (STACS'09):
ADL is not an hypothesis, it always exists.

m Still simplified and extended with Blondin, McKenzie
(ICALP'14): ideal completion for infinitely branching.

m Still simplified and extended with Blondin, McKenzie: WQO is
not necessary. Decidable for more than WSTS. (arxiv, august
2016, in LMCS'2017).
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Coverability
A conceptual coverability algorithm

The ba ard coverabil gorithm
News on coverability A conceptua vera algorithm based on downward closed sets
Procedure 2: non coverability certificate

y is not coverable from x iff y & | Post*(x).

Let (D;); be an enumeration of dcs, hence | Post*(x) = Dy, for
some m.

procedure 2: enumerates dcs to find certificate of

y from x

i« 0;

while =(| Post(D;) C D; and x € D; and y ¢ D;) do
i+—i+1

return false

Effective hypotheses

m  dcs are recursive.

m  Union of dcs is computable

m | Post(D) is computable.

m Inclusion between dcs is decidable.

m Works for post effective infinitely branching systems. 26 /39



Coverability
A conceptual coverability algorithm
The backward coverabilit orithm
News on coverability A conceptual coverability algorithm based on downward closed sets
Procedure 2: non coverability certificate

Theorem

Let S = (X, —, <) be a monotone transition system + there exists
an enumeration of downward closed sets of X, and let x,y € X.

y is coverable from x iff Procedure 1 terminates.
y is not coverable from x iff Procedure 2 terminates.
This theorem does not provide an algorithm.

RENELS

WSTS, hence WQO implies possible enumeration of downward
closed sets (by minimal elements of upward closed sets) but the
converse is false: (Z, <) is not WQO but one may enumerate the
D; as follows: D; = | x; for x; € Z or D; = 7.
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ability algorithm

News on coverability c al c rithm based on do ard closed sets
Procedure 2: non coverablllty certificate

Question

How to enumerate downward closed sets ?

By enumerating ideals ! (come to the next seminar tomorrow)
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Coverability
A co tual coverability algorithm
The bacl 2 gorithm
News on coverability A conceptua E orithm based on d ward closed sets
Procedure 2: {

With the 2" magical theorem of wqo

If <is a wqo then every downward closed set D = | D has a finite
basis, i.e., it is equal to a finite union of ideals.
(ideal = downward closed set + directed).

RENEILS

It is an if then but not an if and only if.

We will see a more magical theorem of FAC = "half wqo"

Come tomorrow !
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Coverability
tual coverability algorithm

News on coverability c g E orithm based on d vard closed sets

We are tomorrow !

<'is FAC if and only if every downward closed set D = | D has a
finite basis, i.e., it is equal to a finite union of ideals.

The proof is in the paper WBTS in LMCS'2017.
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An effective forward coverability algorithm
The survey/story of coverability
/ f gorithm
Still coverability

Coverability
Input: (X,—,<) a WSTS, x,y € X.

Question: x = x' > y?
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Coverability
Input: (X,—,<) a WSTS, x,y € X.
Question: y € | Post*(x)?

Forward method

Coverability:
m Enumerate executions | x — D,
m Accept if y € D.

Non coverability:

m Enumerate D C X downward closed, dj s.t. | x C J;

m Reject if y & D.
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Coverability
Input: (X,—,<) a WSTS, x,y € X.
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The survey/story of coverability for WSTS

An effective forw

rd coverability algorithm

The survey/story of coverability

A survey/story of
Still coverability

KM algorithm

Year Authors Mathematical hyp. Effectivity hyp. back /forward
1978 Arnold & Latteux reset VAS YES backward
1987 F. very WSTS (strong+strict, wz-wqo,.“) effective very WSTS forward
1996 Abdulla & CJT strong monotony Preg(1 x) comp. backward
1998 F. Schnoebelen monotony 1 Preg(1 x) comp. backward
2004 Geeraerts & RV strong monotony, ADL effective ADL forward
2006 Geeraerts & RV monotony, ADL effective ADL forward
2009 F. & Goubault-Larrecq strong monotony, weak ADL, flattable effective WADL forward
2009 F. & Goubault-Larrecq strong monotony, flattable ideally effective forward
2014 Blondin & FM monotony, ideally effective forward
2016 Blondin & FM monotony, no wqo but FAC ideally effective forward
2017 Trivial no monotony, wqo (Minsky machines) ideally effective Undec.
2017 Sutre monotony, no wqo but WF ideally effective Undec
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Still coverability

An effective forward coverability algorithm

The survey/story of coverability
A survey/story of KM algorithm

A survey (to complete) of KM algorithm: fo

Year | Authors Model Termination
1969 | Karp & Miller VASS YES
1978 | Valk post self-modifying PN YES
1978 | Valk self-modifying PN NO
1994 | Abdulla & Jonsson LCS NO
1998 | Dufourd & F. & Schnoebelen 3-dim reset/transfer VASS NO
1998 | Emerson & Namjoshi WSTS model checking NO
1999 | Esparza & F. & Mayr broadcast protocols & transfer PN | NO
2000 | F. & Sutre 2-dim reset/transfer VASS YES
2004 | F. & McKenzie & Picaronny strongly increasing w-resursive nets | YES
2004 | Raskin & Van Begin PN-+NBA NO
2005 | Goubault-Larrecq & Verma BVASS YES
2009 | F. & Goubault-Larrecq w?-WSTS, cover-flattable YES
2010 | F. & Sangnier PN-+0-test YES
2011 | Acciai, Boreale, Henzinger, Meyer,... depth-bounded processes, v-PN NO
2011 | Chambard & F. & Schmitz trace-bounded w?-WSTS YES
2013 | Geeraerts & HeuBner & Praveen & Raskin | w-PN YES
2013 | Hichting & Majumdar & Meyer name-bounded 7-calculus processes | YES
2016 | Hofman & Lasota & Lazic & Leroux & ST | unordered PN YES

33/39



A quick story of WSTS
WSTS Everywhere!

And now ?

Conclusion

= ICALP'87 (F)

m WSTS definitions

decidability of termination

decidability of boundedness

computation of the coverability set hence decidability of
coverability (under stronger hyp.)
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m WSTS definitions

decidability of termination

decidability of boundedness

computation of the coverability set hence decidability of
coverability (under stronger hyp.)

m LICS'96 (Abdulla, Cerans, Jonsson, Tsay)

m decidability of coverability with a backward algorithm
m decidability of simulation with finite-state systems
m undecidability of repeated control-state (for LCS).

m LICS'98 (Emerson, Namjoshi), LICS'99 (Esparza, F, Mayr)
m broadcast protocols are WSTS
m model checking of WSTS (with procedures)

m WSTS everywhere, TCS'01 (F, Schnoebelen)
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A quick story of WSTS
WSTS Everywhere!

And now ?

Conclusion

m FSTTCS'04 (Geeraerts, Raskin and Van Begin):
m The first forward coverability algorithm for WSTS (with ADL).

m STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14
(Blondin, F, McKenzie)
m ADL is not an hypothesis.
m ldeal completion of any WSTS
m Computation of the clover for flattable WSTS
m w?-WSTS are completable and robust....
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Conclusion

m FSTTCS'04 (Geeraerts, Raskin and Van Begin):
m The first forward coverability algorithm for WSTS (with ADL).

m STACS'09, ICALP'09 (F, Goubault-Larrecq), ICALP'14
(Blondin, F, McKenzie)
m ADL is not an hypothesis.
m ldeal completion of any WSTS
m Computation of the clover for flattable WSTS
m w?-WSTS are completable and robust....

m 2015-2016: Use of ideals decomposition in:

m RP'15: The Ideal View on Rackoff's Coverability Technique
(Lazi¢, Schmitz)

m LICS'15: Demystifying Reachability in Vector Addition
Systems (Leroux, Schmitz).

m FOSSACS'16: Coverability Trees for Petri Nets with Unordered
Data (Schmitz and a lot of authors...)

m LICS'16: v-Petri nets (Lazi¢, Schmitz).
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A quick story of WSTS
WSTS Everywhere!

And now ?

Conclusion

WSTS Everywhere!

mS= (Nk, <).

Petri nets: WSTS with strict and strong monotony.
Positive Affine nets, Reset/Transfer Petri nets: WSTS with
strong (but not strict) monotony.
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Conclusion

WSTS Everywhere!

m S = (NK <)
m Petri nets: WSTS with strict and strong monotony.
m Positive Affine nets, Reset/Transfer Petri nets: WSTS with
strong (but not strict) monotony.

B S=(Qx Xk =xLCHh.
m LCS: WSTS with non-strict monotony.
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A quick story of WSTS
WSTS Everywhere!

And now

Conclusion

WSTS still verywhere!

m Data nets: S = (Q x NK)*
m Lazic, Newcomb, Ouaknine, Roscoe, Worrell (PN'07)
m Hofman, Lasota, Lazié¢, Leroux, Schmitz, Totzke
(FOSSACS'16).
m Lasota (PN'16)
v-Petri nets: S = (Q x N¥)@,
m Rosa-Velardo, de Frutos-Escrig (PN'07)
m Lazi¢ and Schmitz (LICS'16).
Pi-calculus: Depth-Bounded Processes (trees).

m Wies, Zufferey, Henzinger (FOSSACS'10, VMCAI'12).

m Timed Petri nets: Regions = ((@ x NK)®)*
m Bonnet, F, Haddad, Rosa-Velardo (FOSSACS'10)
m Haddad, Schmitz, Schnoebelen (LICS'12).

Process algebra (BPP,...).
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Conclusion

Further work

m Explore more in details WBTS and find applications of WBTS
(comme tomorrow).

m Computing efficiently with ideals (no brut force enumeration).
m Design Karp-Miller algorithm for w?-WSTS (FSTTCS'2017).

m Go to model checking.

Interships available: ENS Paris-Saclay, CSA, MSR,...many levels:

Bachelor, Master, PhD, post-PhD

m Different topics: theoretical and/or applied subjects.

m Developping the WSTS theory and a prototype for finding
bugs in web services and choreographies.

m Make the first efficient prototype for reachability for Petri nets. ;4



A quick stor:
WSTS Ever:
And now ?

Conclusion

Thank you!
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