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Introduction
The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

Motivation 1
The basis for Erdös and Tarski Theorem
Motivation 2 and Context

Up and down

The decidability of coverability, in the WSTS theory, was based on
the fact that for all wqo’s:

Upward closed sets in WQO
Every upward closed set U = ↑U ⊆ X is equal to the finite union
of elements ↑ x with x ∈ U.

But, unfortunately, every downward closed set D = ↓D ⊆ X is not
equal to the downward closure of elements ↓ x with x ∈ D (think
of N 6=

⋃
i∈F ↓ xi where F is finite).

Downward closed sets in WQO (and weaker domains, wait a little)

Every downward closed set is equal to a finite union of ideals
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Ideals
∅ 6= I ⊆ X is an ideal if

downward closed: I = ↓ I,

directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.
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Motivation 1
The basis for Erdös and Tarski Theorem
Motivation 2 and Context

Ideals(Nd) = Ideals(N)× Ideals(N)× · · · × Ideals(N)︸ ︷︷ ︸
d times

An ideal I ∈ Ideals(N) is either N or of the form ↓ x for some
x ∈ N.

Consider the previous downward closed set:

X = {(x1, x2) ∈ N2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)}.

X = finite union of 3 ideals:

↓ 4× N ∪ ↓ 8× ↓ 10 ∪ N× ↓ 5
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Figure: Decomposition of
X = {(x1, x2) ∈ N2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)} into the
three ideals ↓ 4× N, ↓ 8× ↓ 10 and N× ↓ 5
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The Erdös and Tarski Theorem

Motivation 1
The basis for Erdös and Tarski Theorem
Motivation 2 and Context

Downward closed sets are everywhere !

Karp and Miller algorithm (1969) for Petri nets uses a finite
representation (with ω) of dc sets.
The tool TREX (2001) for lossy FIFO systems uses a finite
representation of dc sets.
A forward reachability procedure for Time Petri nets (each
token has an age) uses regions generators as a finite
representation of dc sets (Abdulla & al. 2004).

"Finally, we aim at developing generic methods for building
downward closed languages....This would give a general theory for
forward analysis of infinite state systems..." (Abdulla & al. 2004).
In fact, a theory was missing in our mind !

Raskin & al. (2004) supposed that a finite representation of
dc sets exists for ADL with wqo.
F. & Goubault-Larrecq (2009) proved that it exists for all
wqo’s.
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In fact, Erdös & Tarski proved it in 1943 !

hum...not exactly... Erdös & Tarski stated something more
general in another context (without statement neither proof)
But, the community of mathematicians (for instance Maurice
Pouzet) says that one may deduce it from the Erdös & Tarski
theorem.
Their construction is not effective (for constructive
decompositions, see "Forward Analysis for WSTS, Part I:
Completions", with Goubault-Larrecq, 80 pages, submitted)

Our abstract
We give a simple and self-contained proof of the fact that every
downward closed set decomposes into finitely many ideals iff every
antichain is finite.
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The Erdös and Tarski Theorem
Definitions
Ideals

Definition

Now (X ,≤) is a qo (in short written X or ≤)

A ⊆ X is an antichain if all pairs of A are incomparable.
X is Finite AntiChain (FAC) if all antichains in X are finite.
X is Well Founded (WF) if all strictly decreasing sequences in
X are finite.
X is WQO if X is FAC & X is WF (can be a Theorem).

Every WQO is FAC
The converse is false since Z,Q,R are FAC but not WF:
13/7, π, 3, 2, 1, 0,−1/2,−1,−2,−3,−41,−78695/12, ...
Z2 contains infinite antichains, A = {(n,−n) | n ∈ N}, hence
the cartesian product of two FAC’s is not necessarly a FAC.
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Figure: Decomposition of
X = {(x1, x2) ∈ N2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)} into the
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The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

A very interesting but unknown theorem for the verification
community.

Theorem (Erdös & Tarski’43, Bonnet’75, Fraïsse’86,...)

(X ,≤) FAC ⇐⇒ for all D = ↓D ⊆ X we have: D =
⋃
finite

Ideals

Corollary ( Blondin, F,. McKenzie, ICALP’2014)

Every downward closed set decomposes canonically as the union of
its ⊆-maximal ideals.
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The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Theorem
Let D = ↓D ⊆ X and X a WQO. Then D = I1 ∪ I2 ∪ · · · ∪ Im for
some I1, I2, . . . , Im ∈ Ideals(X ).

Assume that a bad D (bad = dc set that does not admit a finite
(may be empty) decomposition in ideals) exists.

∃D bad and minimal for inclusion among bad subsets (strictly
decreasing subsequences of dc subsets are finite in a WQO).

D 6= ∅ since ∅ is not bad since it is equal to an empty union.
D 6= {d} since {d} is not bad because it is an ideal.
Hence D contains at least two elements, say x1 6= x2 ∈ D.

Since D \ ↑ x1 and D \ ↑ x2 are dc and strictly included in D, they
are not bad (by minimality of D).

Thus, D \ ↑ x1 =
⋃n

j=1 Ij and D \ ↑ x2 =
⋃m

j=n+1 Ij for some ideals
I1, I2, . . . , Im ⊆ X .
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The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Hence
D′ = (D \ ↑ x1) ∪ (D \ ↑ x2) =

m⋃
j=1

Ij

We have:
D′ = D \ (↑ x1 ∩ ↑ x2)

As D′ 6= D (because D′ is not bad), therefore, D ∩ (↑ x1 ∩ ↑ x2) 6= ∅

Thus:

∃d ∈ D ∩ (↑ x1 ∩ ↑ x2) s.t. x1 ≤ d and x2 ≤ d .

Hence D is directed and therefore D is an ideal, contradicting our
assumption. Thus, D is equal to a finite union of ideals.
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Hence D is directed and therefore D is an ideal, contradicting our
assumption. Thus, D is equal to a finite union of ideals.
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The Erdös & Tarski Theorem

(X ,≤) FAC ⇐⇒ ∀D = ↓D ⊆ X , D =
⋃

i=1,...,m
Ii

where Ii are ideals.
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Introduction
The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

The proof of Erdös & Tarski Theorem
(particular case: X countable).
Only if. Suppose that X , infinite, contains no infinite antichain
(FAC). Let any D = ↓D ⊆ X . The idea is to build a WF
dc-equivalent subset D′ ⊆ D. Let d0, d1, d2, ..., dn, ... an infinite
enumeration of D.

D0
def= D.

For i ≥ 0, we pick the first element ei ∈ Di (with e0 = d0), in
the enumeration of D, and we write:

Di+1
def= Di \ ↓ ei (Make a figure !)

Each ei satisfies ei 6≤ e0, e1, ..., ei−1.

D′ def= {ei : i ∈ N}

14 / 20
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Introduction
The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Let ≤′=≤ restricted to D′, ↓′ denotes the ≤′-downward closure.
Show that (D′,≤′) is WQO.

(D′,≤′) is FAC (by hypothesis on X ). Show that (D′,≤′) is WF.
By construction of D′, the sequence of (ei)i has the following
property (1): for every i , each ei 6≤ to any e0 = d0, e1, e2, ..., ei−1.
Suppose that D′ contains an infinite strictly decreasing sequence:

ei0 > ei1 > · · · > eik > ...

. Since the set of indexes {ik | k ≥ 0} is infinite, there necessarly
exists an integer k s.t. i0 < ik ; with property (1), this implies that
ei0 6≥ eik and this is a contradiction with ei0 > ei1 > · · · > eik > ... .

15 / 20
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Introduction
The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Since (D′,≤′) is WQO, ∃I1, I2, . . . , Ik ∈ Ideals(D′,≤′) s.t.
↓′D′ = I1 ∪ I2 ∪ · · · ∪ Ik .
We claim that D = ↓D′. Let us only prove that D ⊆ ↓D′:
let y ∈ D, by construction of D′, y ≤ ei ∈ D′ for some i ∈ N, hence
y ∈ ↓ ei ⊆ ↓D′, hence y ∈ ↓D′ hence D ⊆ ↓D′, hence D = ↓D′.

Therefore,

D = ↓D′ = ↓ (I1 ∪ I2 ∪ · · · ∪ Ik) = ↓ I1 ∪ ↓ I2 ∪ . . . ↓ Ik .

For each i , one has: ↓ Ii ∈ Ideals(X ,≤)⇔ ↓ Ii is ≤-directed.

Let a, b ∈ ↓ Ii , there exist a′, b′ ∈ Ii such that a ≤ a′ and b ≤ b′.

Since Ii ∈ Ideals(D′,≤′) is directed, there exists c ∈ Ii such that
a′ ≤ ′c and b′ ≤ ′c. Thus, a ≤ a′ ≤ c and b ≤ b′ ≤ c.
Hence ↓ Ii is directed and then ↓ Ii ∈ Ideals(X ,≤). (Only if)
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The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

If. Conversely, suppose that there exists an infinite antichain
A ⊆ X .

We prove that D def= ↓A =
⋃

a∈A ↓ a is bad, (i.e. D is not
equal to a finite union of ideals). Assume that D is well (not bad).

Then ∃I1, I2, . . . , Ik ∈ Ideals(X ) s.t. D = I1 ∪ I2 ∪ · · · ∪ Ik .

Then ∃i ≤ k s.t. Ii contains infinitely many elements from A.
Let a 6= b ∈ Ii ∩ A. Since Ii is directed, ∃c ∈ Ii s.t. a ≤ c and
b ≤ c.

Moreover, since c ∈ Ii ⊆ D, ∃a′ ∈ A s.t. c ≤ a′.
Therefore, a ≤ a′ and b ≤ a′.
(be carefull, a = a′ or b = a′ are possible but not both because...?.)

Because a 6= b, at least two distinct elements of A are comparable,
( i.e. either a and a′, or b and a′). Hence, A is not an antichain, which
is a contradiction. Hence there don’t exist bad sets.
This theorem can be extended to any non countable ordinal.
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The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Exercises

Find a direct proof avoiding wqo.

For wpo, we define x < y if x ≤ y and x 6= y .
Define x < y when ≤ is a wqo but not a wpo.
Give a definition of the set of minimal elements of X :
Min(X ) = {.....
Prove that if (X ,≤) is WF then for all x there is a
m ∈ Min(X ) s.t. x ≥ m.
For U = ↑U, prove that Min(U) is a basis of U when ≤ is
WF. Why it is not the case if ≤ is not WF ?
For U = ↑U, prove that Min(U)/ ≡ is finite when ≤ is FAC.
Conclude that ≤ is wqo iff ≤ is WF + FAC.
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Introduction
The basis for Erdös and Tarski Theorem

The Erdös and Tarski Theorem

The statement
Erdös & Tarski Theorem for WQO
Erdös & Tarski Theorem for FAC

Where are the statements and the proofs ?

(Erdös & Tarski, 1943) contains no statement neither a proof
but only a remark that one could also apply to...!
(Bonnet’75) only contains the "if" part.
(Fraïsse’86) contains the main arguments (without details)
and he refers to (Bonnet’75). Here we followed Fraïsse.
WQO =⇒ finite decomposition in ideals is in (F. G-L, 2009),
simplified in (G-L’2014, unpublished).
Emanuele Frittaion and Alberto Marcone explained how the of
Theorem Erdös & Tarski can be seen as a statement and a
proof.

An almost self-contained proof (we suppose proved for wqo)

Can be found in "WBTS": in LMCS’2017.

19 / 20
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