CS 208: Automata Theory and Logic
Part II, Lecture 3: Reductions

S Akshay

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.
Summary of previous lecture

Regular ⊊ Decidable ⊊ Recursively Enumerable ⊊ All languages
DFA/NFA < Algorithms/Halting TM < Semi-algorithms/TM

Properties

1. There exist languages that are not R.E.
2. There exist languages that are R.E but are undecidable.
 Eg. universal TM lang \(L^A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \)
3. Decidable languages are closed under complementation.
4. \(L \) is decidable iff \(L \) is R.E and \(\bar{L} \) is also R.E.
The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

- \(L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \).
The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

– \(L_{TM}^{\text{HALT}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \).

Proof: Suppose there exists TM \(H \) deciding \(L_{TM}^{\text{HALT}} \), then construct a TM \(D \) s.t., on input \(\langle M, w \rangle \):

– runs TM \(H \) on input \(\langle M, w \rangle \)
– if \(H \) rejects then reject.
– if \(H \) accepts, then simulate \(M \) on \(w \) until it halts.
– if at halting \(M \) has accepted \(w \), accept, else reject.

But \(D \) decides \(L_{TM}^{A} \) which is undecidable. A contradiction.
The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

- \(L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \).

Proof: Suppose there exists TM \(H \) deciding \(L_{TM}^{HALT} \), then construct a TM \(D \) s.t., on input \(\langle M, w \rangle \):

- runs TM \(H \) on input \(\langle M, w \rangle \)
- if \(H \) rejects then reject.
- if \(H \) accepts, then simulate \(M \) on \(w \) until it halts.
- if at halting \(M \) has accepted \(w \), accept, else reject.

But \(D \) decides \(L_{TM}^{A} \) which is undecidable. A contradiction.

This proof strategy is called a reduction.
Reduction from the acceptance problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

- \(L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \).
Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

- \(L_{\emptyset}^{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).
Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

\[L_{TM}^0 = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}. \]

The regularity problem for TMs

Does a given Turing machine accept a regular language?

\[L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}. \]
Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

- \(L_{TM}^\emptyset = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \).

The regularity problem for TMs

Does a given Turing machine accept a regular language?

- \(L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \).

Rice’s Theorem

Any “non-trivial” property of R.E languages is undecidable!
Rice’s theorem

Rice’s theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages (i.e., their TM encodings) satisfying P
- Property of r.e languages: membership of M in P depends only on the language of M. If $L(M) = L(M')$, then $\langle M \rangle \in P$ iff $\langle M' \rangle \in P$.
- Non-trivial: It holds for some but not all TMs.
Rice’s theorem

Rice’s theorem (1953)

Any non-trivial property of R.E languages is undecidable!
- Property \(P \equiv \) set of languages (i.e., their TM encodings) satisfying \(P \)
- Property of r.e languages: membership of \(M \) in \(P \) depends only on the language of \(M \). If \(L(M) = L(M') \), then \(\langle M \rangle \in P \) iff \(\langle M' \rangle \in P \).
- Non-trivial: It holds for some but not all TMs.