CS 208: Automata Theory and Logic
Part II, Lecture 4: PCP and Complexity

S Akshay

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.
Post’s correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read on top and bottom add up to the same?

– Not all dominoes need to be used
– Each domino can be used more than once
Post’s correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read on top and bottom add up to the same?

- Not all dominoes need to be used
- Each domino can be used more than once
Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_i, b_i \in \Sigma^*$:

$$P = \left\{ \frac{a_1}{b_1}, \frac{a_2}{b_2}, \ldots, \frac{a_k}{b_k} \right\}$$

Does there exist a sequence i_1, \ldots, i_ℓ such that the string read by the dominoes match? That is, $a_{i_1} \ldots a_{i_\ell} = b_{i_1} \ldots b_{i_\ell}$.

For e.g., a collection of dominoes may look like:

$$\left\{ \frac{b}{ca}, \frac{a}{ab}, \frac{ca}{a}, \frac{abc}{c} \right\}$$

Then, a match/solution to the puzzle is:

$$\frac{a}{ab} \frac{b}{ca} \frac{ca}{a} \frac{a}{ab} \frac{abc}{c}$$

This problem is unsolvable by algorithms!
Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_i, b_i \in \Sigma^*$:

$$P = \{ \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}, \ldots, \begin{bmatrix} a_k \\ b_k \end{bmatrix} \}$$

Does there exist a sequence i_1, \ldots, i_ℓ such that the string read by the dominoes match? That is, $a_{i_1} \ldots a_{i_\ell} = b_{i_1} \ldots b_{i_\ell}$.

For e.g., a collection of dominoes may look like:

$$\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \}$$

Then, a match/solution to the puzzle is:

$$\begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$$

This problem is unsolvable by algorithms!
PCP is undecidable

Theorem
The Post’s correspondence problem is undecidable for $|\Sigma| \geq 2$.

Proof sketch
– Step 1: Reduce to Modified PCP (MPCP)
 MPCP = \{⟨P⟩ | P is an inst of PCP with a match starting from first domino.\}

– Step 2: Reduction from L_{TM} to MPCP. We construct MPCP P' whose matching/soln will solve the TM-acceptance problem.

1. Put $[# # q_0 ... w_n #]$ as first domino in P'.

complexity – 4 of 13
Theorem

The Post’s correspondence problem is undecidable for $|\Sigma| \geq 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) $\text{MPCP} = \{\langle P \rangle \mid P \text{ is an inst of PCP with a match starting from first domino.}\}$
- Step 2: Reduction from L_{TM}^A to MPCP. We construct MPCP P' whose matching/soln will solve the TM-acceptance problem.
The Post’s correspondence problem is undecidable for $|\Sigma| \geq 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) $\text{MPCP} = \{ \langle P \rangle \mid P$ is an inst of PCP with a match starting from first domino.
- Step 2: Reduction from L^A_{TM} to MPCP. We construct MPCP P' whose matching/soln will solve the TM-acceptance problem.
- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{acc}}, q_{\text{rej}})$.

1. Put $\left[\#_{q_0 \ldots w_n \#} \right]$ as first domino in P'.
Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. $q \neq q_{\text{rej}}$

 if $\delta(q, a) = (r, b, R)$ put $\left[\frac{qa}{br} \right]$ in P'

3. for every tape alphabet a, b, c and states q, r s.t. $q \neq q_{\text{rej}}$

 if $\delta(q, a) = (r, b, L)$ put $\left[\frac{cqa}{rcb} \right]$ in P'

4. for tape alphabet a put $\left[\frac{a}{a} \right]$ in P'. (see board for sim)
Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. $q \neq q_{\text{rej}}$

 if $\delta(q, a) = (r, b, R)$ put $\left[\frac{qa}{br}\right]$ in P'

3. for every tape alphabet a, b, c and states q, r s.t. $q \neq q_{\text{rej}}$

 if $\delta(q, a) = (r, b, L)$ put $\left[\frac{cqa}{rcb}\right]$ in P'

4. for tape alphabet a put $\left[\frac{a}{a}\right]$ in P'. (see board for sim)

5. for $\#$, put $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\#\#}\right]$ in P'.

6. for every tape alphabet a, put $\left[\frac{aq_{\text{acc}}}{q_{\text{acc}}a}\right]$ and $\left[\frac{q_{\text{acc}}a}{q_{\text{acc}}}\right]$ in P'.

7. Complete by adding $\left[\frac{q_{\text{acc}}\#\#}{\#}\right]$ in P'.
Formal definition of mapping reducibility

- To reduce problem A to B, we use a **computable function** to convert instances of A to instances of B. Then we can solve A with a solver for B.
Formal definition of mapping reducibility

- To reduce problem A to B, we use a **computable function** to convert instances of A to instances of B. Then we can solve A with a solver for B.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is called **computable** if there exists a TM M, which on every input w halts with just $f(w)$ on its tape.
Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert instances of A to instances of B. Then we can solve A with a solver for B.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is called computable if there exists a TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of reduction

A language A is mapping reducible to B (denoted $A \leq_m B$) if there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$ s.t., for every w

$$w \in A \text{ iff } f(w) \in B$$

The function f is called the reduction of A to B.

So, to check if $w \in A$, use the reduction to map w to $f(w)$ and check if $f(w) \in B$.
Mapping reducibility

Theorem

1. If $A \leq_m B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).

2. If $A \leq_m B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

Proof of 1. for decidable:

- Let M be the decider of B and f the reduction from A to B.
- Then define N a decider for A as follows: On input w
 1. Compute $f(w)$
 2. Run M on input $f(w)$ and output whatever M outputs.
Mapping reducibility

Theorem

1. If $A \leq_m B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).

2. If $A \leq_m B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

Proof of 1. for decidable:

- Let M be the decider of B and f the reduction from A to B.
- Then define N a decider for A as follows: On input w
 1. Compute $f(w)$
 2. Run M on input $f(w)$ and output whatever M outputs.
The running time of a TM is the number of steps it makes before halting.

So, if the TM doesn’t halt, the running time is infinite.
Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesn’t halt, the running time is infinite.
- The **time complexity** of M is the function $T(n)$ that is the maximum, over all inputs w of length n, of the running time of M on w.

A **time complexity class** $TIME(t(n))$ is the set of all languages that can be decided by a TM in $O(t(n))$ time.
Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesn’t halt, the running time is infinite.
- The time complexity of M is the function $T(n)$ that is the maximum, over all inputs w of length n, of the running time of M on w.

A time complexity class $TIME(t(n))$ is the set of all languages that can be decided by a TM in $O(t(n))$ time.

- Every multi-tape TM with time complexity $t(n)$ can be simulated by a single-tape TM with time complexity $O(t^2(n))$.
- Every non-deterministic single-tape TM with time complexity $t(n)$ can be simulated by a deterministic single-tape TM with time complexity $2^{O(t(n))}$.
The complexity classes \mathcal{P} and \mathcal{NP}

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.
- $\mathcal{P} = \bigcup_k \text{TIME}(n^k)$.

The class \mathcal{NP}

- \mathcal{NP} is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).

Obviously $\mathcal{P} \subseteq \mathcal{NP}$, but the question is: **Is $\mathcal{P} = \mathcal{NP}$?**
The complexity classes \mathcal{P} and \mathcal{NP}

<table>
<thead>
<tr>
<th>The class \mathcal{P}</th>
</tr>
</thead>
<tbody>
<tr>
<td>- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.</td>
</tr>
<tr>
<td>- $\mathcal{P} = \bigcup_k \text{TIME}(n^k)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The class \mathcal{NP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>- \mathcal{NP} is the class of languages decidable in poly-time on a non-det 1-tape TM.</td>
</tr>
<tr>
<td>- \mathcal{NP} is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).</td>
</tr>
</tbody>
</table>
The complexity classes \(\mathcal{P} \) and \(\mathcal{NP} \)

The class \(\mathcal{P} \)
- \(\mathcal{P} \) is the class of languages decidable in poly-time on a det 1-tape TM.
- \(\mathcal{P} = \bigcup_k \text{TIME}(n^k) \).

The class \(\mathcal{NP} \)
- \(\mathcal{NP} \) is the class of languages decidable in poly-time on a non-det 1-tape TM.
- \(\mathcal{NP} \) is the class of languages that guess a poly-length string and then verify membership in \(\mathcal{P} \) (poly-time).

Obviously \(\mathcal{P} \subseteq \mathcal{NP} \), but the question is:

** Is \(\mathcal{P} = \mathcal{NP} \)? **
Examples of problems in \(\mathcal{P} \) and \(\mathcal{NP} \)

Problems in \(\mathcal{P} \)

- **PATH**: In a directed graph \(G \), is there a path from vertices \(s \) to \(t \).
- **PRIMES**: Is a given number prime? (Solved by Agrawal-Kayal-Saxena in 2002).

Problems in \(\mathcal{NP} \)

- **HAMPATH**: In a directed graph \(G \), is there a path from vertices \(s \) to \(t \), which visits each vertex exactly once.
- **k-CLIQUE**: Does a given undir graph have a clique of size \(k \)?
NP-completeness

NP-complete problems

A class of languages of \mathcal{NP} such that if one of them is in \mathcal{P}, then all of \mathcal{NP} is in \mathcal{P}.

Satisfiability (SAT)

- Boolean variables x, y, z, \ldots taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\phi = (\neg x \land y) \lor (x \land \neg z)$.
- A satisfying assignment is an assignment $x = 0, y = 1, z = 0$ s.t. the formula evaluates to 1 (true).
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula ϕ, is it satisfiable?

Theorem (Cook-Levin '70s)

$\text{SAT} \in \mathcal{P}$ iff $\mathcal{P} = \mathcal{NP}$.
NP-completeness

NP-complete problems

A class of languages of \mathcal{NP} such that if one of them is in \mathcal{P}, then all of \mathcal{NP} is in \mathcal{P}.

Satisfiability (SAT)

- Boolean variables x, y, z, \ldots taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\varphi = (\neg x \land y) \lor (x \land \not= z)$.
- A satisfying assignment is an assignment $x = 0, y = 1, z = 0$ s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula φ, is it satisfiable?
NP-completeness

NP-complete problems
A class of languages of \(\mathcal{NP} \) such that if one of them is in \(\mathcal{P} \), then all of \(\mathcal{NP} \) is in \(\mathcal{P} \).

Satisfiability (SAT)
- Boolean variables \(x, y, z, ... \) taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR, and NOT.
- Boolean formulas: \(\varphi = (\neg x \land y) \lor (x \land \not z) \).
- A satisfying assignment is an assignment \(x = 0, y = 1, z = 0 \) s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula \(\varphi \), is it satisfiable?

Theorem (Cook-Levin ’70s)
\(SAT \in \mathcal{P} \) iff \(\mathcal{P} = \mathcal{NP} \)
Poly-time reducibility

A function $f : \Sigma^* \rightarrow \Sigma^*$ is called **poly-time computable** if there exists a poly-time TM M, which on every input w halts with just $f(w)$ on its tape.
Poly-time reducibility

A function $f : \Sigma^* \rightarrow \Sigma^*$ is called poly-time computable if there exists a poly-time TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of reduction

A language A is P-time reducible to B (denoted $A \leq_m B$) if there is a poly-time computable function $f : \Sigma^* \rightarrow \Sigma^*$ s.t., for every w

$$w \in A \text{ iff } f(w) \in B$$

The function f is called the P-time reduction of A to B.
A function \(f : \Sigma^* \rightarrow \Sigma^* \) is called **poly-time computable** if there exists a poly-time TM \(M \), which on every input \(w \) halts with just \(f(w) \) on its tape.

Formal definition of reduction

A language \(A \) is **P-time reducible** to \(B \) (denoted \(A \leq_m B \)) if there is a poly-time computable function \(f : \Sigma^* \rightarrow \Sigma^* \) s.t., for every \(w \)

\[
 w \in A \iff f(w) \in B
\]

The function \(f \) is called the **P-time reduction** of \(A \) to \(B \).

NP-complete problems

\(B \) is **NP-complete** if \(B \in \mathcal{NP} \) and every \(A \in \mathcal{NP} \) is P-time reducible to \(B \).

Thus, to show that a problem \(B \) is NP-complete it suffices to show a P-time reduction to an already known NP-complete problem (e.g., SAT) to \(B \).
Examples of NP-complete problems

- *SAT* was the first example of an NP-complete problem.
 - For proof, read Hopcroft-Motwani-Ullman or Sipser.
 - But now by showing P-time reduction from *SAT* we can easily show other NP-complete problems!

Some NP-complete problems (prove by reduction!)

- **3-SAT**: satisfiability of 3-CNF formulae. E.g., \((\neg x \lor y \lor \neg z) \land (\neg y \lor \neg z)\).
- **k-CLIQUE, HAMPATH**: As defined before.
- **3COLOR**: Can the vertices of a graph be colored with 3 colors so that no 2 adj vertices have the same color?
- **Bounded PCP**: Given PCP instance \{
 \[\frac{a_1}{b_1} \], \[\frac{a_2}{b_2} \], \ldots, \[\frac{a_k}{b_k} \] \} and a bound \(L\), does there exist a sequence \(i_1, \ldots i_\ell\) of length at most \(L\), i.e., \(\ell \leq L\) s.t \(a_{i_1} \ldots a_{i_\ell} = b_{i_1} \ldots b_{i_\ell}\).