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Overview of the Talk 

 

• Biological Motivation 

 

• Trajectories of Markov Chains 

 

• Languages of Markov Chains 

 

• Approximations 
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Setting: Many yeasts. Simplistic model 
Each yeast can be in one of 3 states (1 high, 2 med,3  low concentr. of X) 
 
Experiments: Percentage of yeasts going from state S to state S’  
       => Chance for a yeast to go from state S to state S’ (after 5 min). 
 
Image analysis: proportion in state 1 (high concentration of X => marker). 

Population of cells 

Stochastic 
Model 0.1 
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Continuous Abstraction 

Assume enough yeasts => Proportion in state 1,2,3. 

Initial Proportion of cells :     through image analysis Pinit = 

       

 

P5min= Myeast Pinit P10min= M2
yeast Pinit 
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Deterministic concrete trajectory from a given Pinit 

Non Continuous: Nathalie’sTalk tomorow. 



Symbolic Trajectory 
Expermiments (image analysis):  
 first less than 5/12 of yeasts in state 1. 
 some time later more than 5/12 of yeasts in state 1. 
 then eventually, less than 5/12 of yeasts in state 1. 
 
 
 
We set up Threshold=5/12 
 
Below threshold: B 
Above (or equal) threshold: A      =>  finite alphabet {A,B} 
 
 
So we observed Bn1An2B

Language of Markov Chain: set of trajectories from Init={Pinit| x [0,2/3]} 

Symb. Trajectory = infin. word on {A,B} 

5/12 
 
 
 
 1/3 



Quantitative Question 

Is Bn1An2B  in the language of the Markov Chain for some n1,n2 ? 

If yes, for which initial proportion, for which n1,n2? 
 
 
i.e. for which subset of s in          ? Init = { 

       

 | x 

       

 

Looks like a verification Question. 
Use algorithm for solving PCTL* questions on Markov Chains ? 

Cannot be modeled with PCTL* [Beauquier Rabinovitch Slissenko CSL’02+ 



Skolem Problems 

Actually, even with a unique initial configuration  Pinit =  

         

 

Trajectory of a Markov chain from Pinit is B  ? 
 
 
 as hard as Skolem (question on linear rec. seq. (e.g. Fibonacci)) 

[Akshay, Antonopoulose,Ouaknine, Worrel, IPL’15+ 
 
 
  Decidability? Open for > 40 years. 
   Decidable for <6 states 
If dec. for 18 states,  major breakthrough in diophantines approximations 



Simple Markov Chains 

Simple: Every Eigen value of Markov Chain has multiplicity 1. 
  -> Markov Chain is diagonalizable. 
 
For simple markov chains,   
Trajectory of a Markov chain from some Pinit is B  ? 
 => decidable for 10 states. 
 => for more than 25 states, breakthrough in Diophantines approx 
 
 
Decidable if Trajectory of a simple Markov chain from some Pinit is wB   
  for some finite word w (ultimate positivity) 
 
 [Ouaknine Worrell ICALP’14 (best paper) & ICALP’14+ 



Eigen Basis 
Simple:Markov Chains are diagonalizable. 
 
Express Pinit in the eigen vector basis 

Pinit= 

Mn Pinit =           0.7n          0.6n 

Mn Pinit *1+ ≥ 
  

  iff  
  

 0.7n ≥ 
  

 0.6n 

Symbolic Trajectory from Pinit:  B
k A



General Simple Markov Chains 

Trajectories are not always ultimately periodic, even for simple M 
 
e.g: 
 
 
 
 
 
 
 
Mn Pinit *0+ ≥ 1/3?  with      Pinit(S1)= Pinit(S2)=1/4. 
 
Reason:  
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eigen values:     1, 

                  

 

Mn Pinit *1+ ≥      iff a0+  a1 1
n +…+ ak k

n ≥ 0 



Roots of real numbers 

If eigen values are roots of real numbers,  
then trajectories are ultimately periodic 

Mn Pinit *1+ ≥      iff a0+  a1 1
n +…+ ak k

n ≥ 0 

Let lk with k
lk is positive real, 

Let L=lcm(lk) and k= k
L 

MLn Pinit *1+ ≥      iff a0+  a1 1
n +…+ ak k

n ≥ 0 

Eventually constant (dominant factor) e.g.: w A   

Ultimately periodic of period L 
 ex: L=5, trajectory w’ (A B B A B)



even ult. constant 

Decidability ? 

Sum up 

Decidability! 

but positivity/equality  approximable 
[Chadha Kini Viswanathan QEST’14+ 



What about languages? 

set of trajectories from e.g. 
 
Init needs to be a polytope. 

Init = { 

       

 | x 

       

 



Language: not that simple 

Myeast: eigen values are positive real numbers: 1, 0.7, 0.6 

Trajectory:  Bk A

Trajectory:  B

When Pinit converges towards  
   
 trajectory becomes BnA  with n converging to ∞ 

  => Can show that language is B*A   U B



e 

f 

  e.g. : Set of Initial distributions: 
            { e + (1- )f | 
  

 [0,1]}. 

Language in general 

First, under these conditions, all trajectories are ultimately constant. 

Result: if all eigen values are distincts positive real numbers, 
 Then language is regular for Init a polytope. 
                                  *AGKV STACS’16+ 



A

B

Ultimate Language 
a1(e)>0 

e 

f 

a1(f)=0 

a2(f)<0 

Nmax such that after Nmax steps,  
the trajectories from e,f are  
 

A and B

The set of trajectories in (e,f) after N steps: 
Lemma 1: Included into B* A
Lemma 2: for all i, exists starting point with Bi A



A

B

Language 

What about the prefixes  
of the  Nmax first steps? 
 
Finite number of prefixes 
of size Nmax. 

w1 

w2 

w3 

Language:  
w1 A

w1 B A
w1 B² A
w2 B² A

… 
w2 Bi A  

w3 BiB* A
It is regular! 



e 

f 

In general with Polytope in 1D 

a1(e)>0 

a1(f)>0 

max bound e, bound f 
is a uniform bound 
for utimately constant. 

e 

f 

a1(e)>0 

a1(f)<0 

a1(g)=0 

a2(g)<0 

Unifrom  
Bound 
For A

Case before



Polytopes in any Dimension 

Case of e1..ez extremities of Polytope with 
a1(e1) >0 
a1(e2)=0, a2(e2)<0 
a1(e3)=a2(e3)=0, a3(e3)>0 
… 
            ….  Sign (ak(ek))=(-1)k 

N is the max of the ultimately constant bound for e1..ez 

 Result: LN
ult(H)= (A*) B*A*… B* A

The set of trajectories in (e1..ez) after N steps: 
Lemma 1: At most z switch, i.e. Included into (A*) B*A*… B* A
Lemma 2: for all i1..iz, exists initial distrib with traj: Bi1 Ai2 .. Biz A



General Dimension: Handle Prefixes 
e 

f 

a1(e)>0 

a2(f)<0 

h 
a3(h)>0 

Induction on the highest « z » in the space. 
 
In the picture, z=3, n(dimension)=4 
Take w touching (h,g) and touching (h,g,f) with a point not touching h or g 
And  touching (h,g,f,e) with a point not touching  (hfg). 
We can prove that for some i,  
w Ai B A  is a trajectory    continuity argument 
w Ai B  is a trajectory    =>  wAiA*B*A  included into trajectory 
w A  is a trajectory 

a3(g)>0 

g 

w 

w’ 



In general 
e 

f 

a1(e)>0 

a2(f)<0 

h 
a3(h)>0 

Induction on the highest « z » in the space. 
 
Remove points with trajectory wAiA*B*A  and w’AiA*B*A  
It remains a finite union of convex polyhedra with lower « z » 
 
Hence the language is a finite union of regular set, hence it is regular. 

a3(g)>0 

g 



Sum up 

decidable 

but approximable 
*AAGT LICS’12+ 

Distinct roots of real numbers: not regular. 

Decidability 
? 



Approximation for Markov Chains. 



Irreducible aperiodic chains 

2.008.0

5.005.0

07.03.0

M

2 

1 3 
0.8 

0.2 

0.5 
0.7 

0.5 

0.3 

04.56.4.

1.035.55.

35.21.44.
2MM is irreducible aperiodic because: 



Approximations for irreducible aperiodic chains: 

Irreducible aperiodic: unique stationary distribution f. 
Fix ε =>  exists K such that |MKu – f|< ε for all initial distribution u. 
 
A1..An is an (ε,K)-approximate symbolic trajectory of  
                  a concrete trajectory d1..dn if 
di  Ai for all i<K and di is ε-close to Ai for i>K. 
 
 
Exact symbolic trajectory from init: ABBABBBABBBBA… 
Epsilon => K=4,  
Approx symbolic trajectories: 
ABBABBAA…, ABBABBAB…, ABBABBBA…, ABBABBBB…. 
 
 We get ABBABB (A or B)* is regular.  



Approximations for irreducible aperiodic chains: 

Th: Given MC + Init (set), it is decidable *AAGT, LICS’12+  whether: 
 
For some concrete trajectory w, there does not exists a approx  
trajectory satisfying φ,  
 =>  w does not satisfies φ. 
  => system does not satisfy φ. 
  
For all concrete trajectory w, all approx traj satisfy φ  
 => all w satisfies φ. 
 => system satisfies φ. 
 
Undetermined: for all concrete trajectory, there exists approximate  
  trajectroty satisfying φ, but not for all. 
 
 => Refine ε to reduce number of approx trajectories. 



Irreducible Periodic chains 
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M is periodic of period 3. 
 
M3 is irreducible aperiodic on disconnected partition of nodes. 
 
Consider M3 from Init,  
Consider M3 from M Init , 
Consider M3 from M2 Init 



Not irreducible chains 

Consider  the  
strongly connected components. 

Stationary distributions have weight 0 for non bottom SCC (1; 2-3, 4). 
Analyse the bottom SCC with earlier algorithm. 

 
Tough part: Analyse non bottom SCC to get weights for bottom SCC,  
depending on Initial distribution (algorithm close to PCTL Mod. Check.) 
 
+ uniform K over all initial distrib => allow to lift results to Languages 



Polytope of initial Distributions 

uniform K over all initial distrib => allow to lift results to Languages 

Consider each extremities e1..en of the initial polytope. 
   Use linearity! 
 
Compute the way they weight in the different BSCC 
e =  i ei   =>  weight(e,BSCCk) = i weight(ei,BSCCk)  
 
 

Easy to compute the possible ultimately ε-reccuring set of letters 
 
 

 Then compute set of bounded prefixes with some ultimate set of letters, 
    easy to compute as well. 



Conclusion 

Markov Chain (Unary PFA): 
Simplistic formalism but still many open problems. 

 
Even taking restrictive hypothesis,  

not easy to describe their behavior. 
 

But quantitative analysis of population is possible  
under strong hypothesis or with approximations. 


