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What problems? 4/16

I Verification
I (ε)-optimality

?
−→ PAC

I hard guarantees
?
−→ probably correct

I Controller synthesis
I convergence is preferable
I at least probably correct?

I Synthesis
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Ex.1: Computing strategies faster: How? 6/16

Reinforcement learning

Fixed-point computation
V(s) := max

a∈∆(s)
V(s, a)

V(s, a) :=
∑
s′∈S

∆(s, a, s′) · V(s′)

Order of evaluation?

[ATVA’14]

More frequently evaluate those states that are visited more frequently

by reasonably good schedulers
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Ex.1: Computing strategies faster: Algorithm 7/16

1: U(·, ·)← 1, L(·, ·)← 0
2: L(1, ·)← 1,U(0, ·)← 0

3: repeat

4: sample a path from s0 to {1, 0}
. actions uniformly from arg max

a
U(s, a)

. states according to ∆(s, a, s′)

5: for all visited transitions (s, a, s′) do
6: Update(s, a, s′)

7: until U(s0) − L(s0) < ε

——————————————————————————

1: procedure Update(s, a, ·)
2: U(s, a) :=

∑
s′∈S ∆(s, a, s′) · U(s′)

3: L(s, a) :=
∑

s′∈S ∆(s, a, s′) · L(s′)
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Ex.1: Computing strategies faster 8/16

Reinforcement
Learning

Value
Iteration

important parts of the system

faster & sure updates

Guaranteed upper & lower bounds at all times + practically fast convergence

Remark:
I PAC SMC for MDP and (unbounded) LTL [ATVA’14]: |S |, pmin

I practical PAC SMC for MC and (unbounded) LTL + mean payoff
[TACAS’16]: pmin
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Ex.1: Experimental results 9/16

Example
Visited states
PRISM BRTDP

zeroconf
3,001,911 760
4,427,159 977
5,477,150 1411

wlan
345,000 2018

1,295,218 2053
5,007,548 1995

firewire
6,719,773 26,508

13,366,666 25,214
19,213,802 32,214

mer

17,722,564 1950
17,722,564 2902
26,583,064 1950
26,583,064 2900



Further examples on reinforcement learning 10/16

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu,
Joost-Pieter Katoen:
Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016.
I safe and cost-optimizing strategies
I (1) compute safe, permissive strategies
I (2) learn cost-optimal strategies (convergence) among them

Alexandre David, Peter Gjl Jensen, Kim Guldstrand Larsen, Axel Legay,
Didier Lime, Mathias Grund Srensen, Jakob Haahr Taankvist:
On Time with Minimal Expected Cost! ATVA 2014.
I priced timed games→ priced timed MDPs
I time-bounded cost-optimal (convergence) strategies
I (1) Uppaal TiGa for safe strategies
I (2) Uppaal SMC and learning for cost-optimal strategies



Ex.2: Computing small strategies: Which decisions? 11/16

Importance of a node s with respect to ^target and strategy σ:

Pσ[^s

| ^target

]

Cut off states with zero importance (unreachable or useless)

Cut off states with low importance (small error, ε-optimal strategy)
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Ex.2: Small strategies: Which representation? 12/16

How to make use of the exact importance?

Learn decisions in s in proportion to importance of s

Advantages of decision trees over BDDs:
I more readable: predicates
I smaller due to good ordering: entropy
I yet smaller at a cost of an error: pruning
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Ex.2: Experimental results 13/16

Example #states Value Explicit BDD DT Rel.err(DT) %
firewire 481,136 1.0 479,834 4233 1 0.0
investor 35,893 0.958 28,151 783 27 0.886
mer 1,773,664 0.200016 ——— MEM-OUT ——— *
zeroconf 89,586 0.00863 60,463 409 7 0.106

* MEM-OUT in PRISM,
whereas BRTDP yields: 1887 619 13 0.00014
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Further examples on decision trees 14/16

Pranav Garg, Daniel Neider, P. Madhusudan, Dan Roth:
Learning Invariants using Decision Trees and Implication
Counterexamples. POPL 2016.
I positive examples from runs of the program
I negative examples from modifications
I implication examples

Siddharth Krishna, Christian Puhrsch, Thomas Wies:
Learning Invariants Using Decision Trees.
I positive examples: states reachable when preconditions holds
I negative examples: states leaving loop and violating a postcondition



Summary 15/16

Machine learning in verification
I Scalable heuristics
I Example 1: Speeding up value iteration

I technique: reinforcement learning, BRTDP
I idea: focus on updating “most important parts”

= most often visited by good strategies
I Example 2: Small and readable strategies

I technique: decision tree learning
I idea: based on the importance of states,

feed the decisions to the learning algorithm



Discussion 16/16

Verification using machine learning

I How far do we want to compromise?
I Do we have to compromise?

I BRTDP, invariant generation, strategy representation don’t
I Don’t we want more than ML?

I (ε-)optimal controllers?
I arbitrary controllers – is it still verification?

I What do we actually want?
I scalability shouldnt overrule guarantees?

I SMC should be PAC; when is it enough?

I Oracle usage seems fine

Thank you
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