Learning to Use Learning in Verification

Jan Křetínský

Technische Universität München, Germany

joint work with T. Brázdil (Masaryk University Brno), K. Chatterjee, M. Chmelík, P. Daca, A. Fellner, T. Henzinger, T. Petrov (IST Austria), V. Forejt, M. Kwiatkowska, M. Ujma (Oxford University) D. Parker (University of Birmingham) published at ATVA 2014, CAV 2015, TACAS 2016

Mysore Park Workshop Trends and Challenges in Quantitative Verification February 3, 2016

No Signal (Ever Code: 8001)

this could be due to a bad connection or bad weather conditions at your east or at broadcast centre. Check the cable connections and remove any obstruction around the diph.
 Try to change chaunds. 3. Restart the set top box by switching power off and then on.

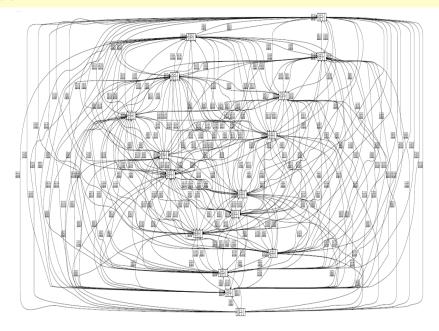
Ster Installation Schup જિલ્લા / સાલિવું / સંસ્થાત / મરાવી

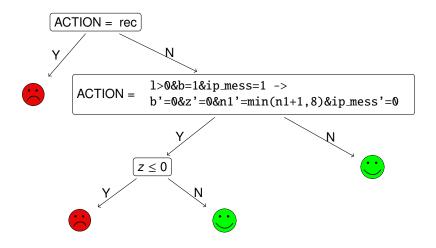
Formal methods

- precise
- scalability issues

Formal methods

- ► precise
- scalability issues





Formal methods

- precise
- scalability issues

Formal methods

- precise
- scalability issues

Learning

- weaker guarantees
- scalable

different objectives

Formal methods

- precise
- scalability issues

Learning

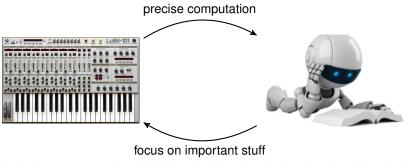
- weaker guarantees
- scalable

Formal methods

- precise
- scalability issues

Learning

- weaker guarantees
- scalable



Verification

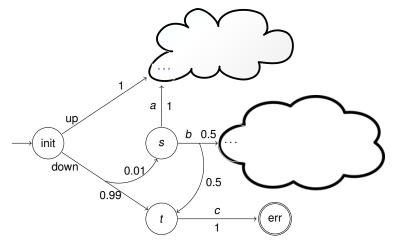
- (ε)-optimality $\xrightarrow{?}$ PAC
- ► hard guarantees $\xrightarrow{?}$ probably correct

Controller synthesis

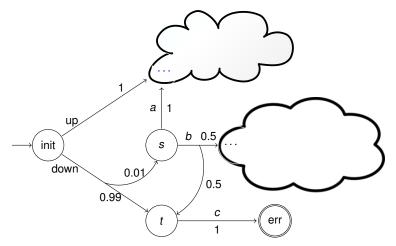
- convergence is preferable
- at least probably correct?

Synthesis

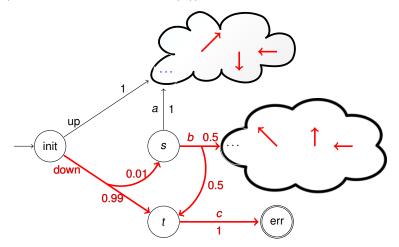
 $(S, s_0 \in S, A, \Delta : S \to A \to \mathcal{D}(S))$



 $(S, s_0 \in S, A, \Delta : S \rightarrow A \rightarrow \mathcal{D}(S))$

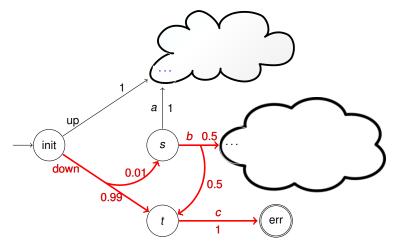


 $(S, s_0 \in S, A, \Delta : S \rightarrow A \rightarrow \mathcal{D}(S))$

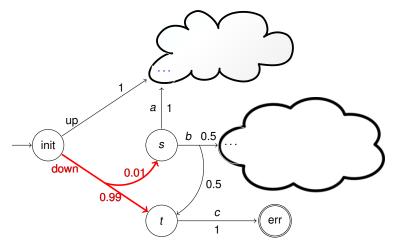


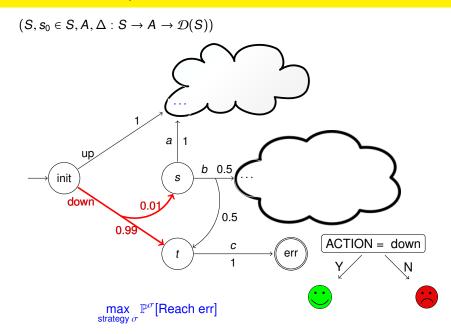
 $(S, s_0 \in S, A, \Delta : S \to A \to \mathcal{D}(S))$ а up b 0.5 init s down 0.01 0.5 0.99 С err t

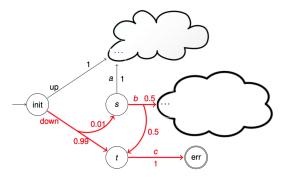
 $(S, s_0 \in S, A, \Delta : S \to A \to \mathcal{D}(S))$



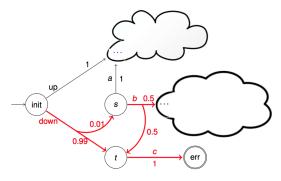
 $(S, s_0 \in S, A, \Delta : S \rightarrow A \rightarrow \mathcal{D}(S))$





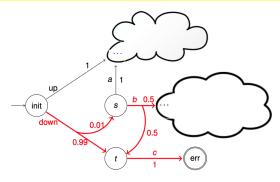


Fixed-point computation $V(s) := \max_{a \in \Delta(s)} V(s, a)$ $V(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot V(s')$



Fixed-point computation $V(s) := \max_{a \in \Delta(s)} V(s, a)$ $V(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot V(s')$

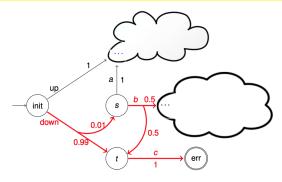
Order of evaluation?



Fixed-point computation $V(s) := \max_{a \in \Delta(s)} V(s, a)$ $V(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot V(s')$

Order of evaluation? [ATVA'14]

More frequently evaluate those states that are visited more frequently

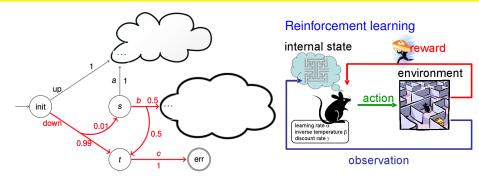


Fixed-point computation

$$egin{aligned} & V(s) := \max_{a \in \Delta(s)} V(s,a) \ & V(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot V(s') \end{aligned}$$

Order of evaluation? [ATVA'14]

More frequently evaluate those states that are **visited** more frequently by reasonably good schedulers



Fixed-point computation

 $V(s) := \max_{a \in \Delta(s)} V(s, a)$ $V(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot V(s')$

Order of evaluation? [ATVA'14]

More frequently evaluate those states that are **visited** more frequently by reasonably good schedulers

1:
$$U(\cdot, \cdot) \leftarrow 1, L(\cdot, \cdot) \leftarrow 0$$

2: $L(\mathbf{1}, \cdot) \leftarrow 1, U(\mathbf{0}, \cdot) \leftarrow 0$

3: repeat

7: until $U(s_0) - L(s_0) < \epsilon$

1:
$$U(\cdot, \cdot) \leftarrow 1, L(\cdot, \cdot) \leftarrow 0$$

2: $L(\mathbf{1}, \cdot) \leftarrow 1, U(\mathbf{0}, \cdot) \leftarrow 0$

3: repeat

4: sample a path from s_0 to $\{1, 0\}$

▶ actions uniformly from $\arg \max U(s, a)$

▶ states according to $\Delta(s, a, s')$

7: **until** $U(s_0) - L(s_0) < \epsilon$

1:
$$U(\cdot, \cdot) \leftarrow 1, L(\cdot, \cdot) \leftarrow 0$$

2: $L(\mathbf{1}, \cdot) \leftarrow 1, U(\mathbf{0}, \cdot) \leftarrow 0$

3: repeat

4: sample a path from s_0 to $\{1, 0\}$

▶ actions uniformly from $\arg \max U(s, a)$

▷ states according to $\Delta(s, a, s')$

- 5: **for all** visited transitions (s, a, s') **do**
- 6: UPDATE(s, a, s')
- 7: **until** $U(s_0) L(s_0) < \epsilon$

1:
$$U(\cdot, \cdot) \leftarrow 1, L(\cdot, \cdot) \leftarrow 0$$

2: $L(\mathbf{1}, \cdot) \leftarrow 1, U(\mathbf{0}, \cdot) \leftarrow 0$

3: repeat

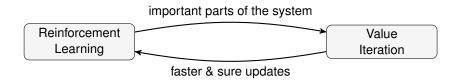
4: sample a path from s_0 to $\{1, 0\}$

▶ actions uniformly from $\arg \max U(s, a)$

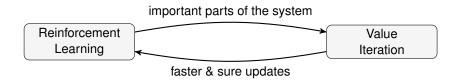
▶ states according to $\Delta(s, a, s')$

- 5: **for all** visited transitions (s, a, s') **do**
- 6: UPDATE(s, a, s')
- 7: until $U(s_0) L(s_0) < \epsilon$

- 1: **procedure** UPDATE (s, a, \cdot)
- 2: $U(s,a) := \sum_{s' \in S} \Delta(s,a,s') \cdot U(s')$
- 3: $L(s, a) := \sum_{s' \in S} \Delta(s, a, s') \cdot L(s')$



Guaranteed upper & lower bounds at all times + practically fast convergence



Guaranteed upper & lower bounds at all times + practically fast convergence

Remark:

- PAC SMC for MDP and (unbounded) LTL [ATVA'14]: |S|, pmin
- practical PAC SMC for MC and (unbounded) LTL + mean payoff [TACAS'16]: p_{min}

Example	Visited states					
Example	PRISM	BRTDP				
	3,001,911	760				
zeroconf	4,427,159	977				
	5,477,150	1411				
wlan	345,000	2018				
	1,295,218	2053				
	5,007,548	1995				
firewire	6,719,773	26,508				
	13,366,666	25,214				
	19,213,802	32,214				
mer	17,722,564	1950				
	17,722,564	2902				
	26,583,064	1950				
	26,583,064	2900				

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, Joost-Pieter Katoen:

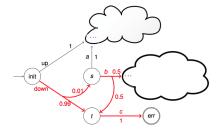
Safety-Constrained Reinforcement Learning for MDPs. TACAS 2016.

- safe and cost-optimizing strategies
- (1) compute safe, permissive strategies
- (2) learn cost-optimal strategies (convergence) among them

Alexandre David, Peter Gjl Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Lime, Mathias Grund Srensen, Jakob Haahr Taankvist: *On Time with Minimal Expected Cost!* ATVA 2014.

- ▶ priced timed games → priced timed MDPs
- time-bounded cost-optimal (convergence) strategies
- (1) Uppaal TiGa for safe strategies
- (2) Uppaal SMC and learning for cost-optimal strategies

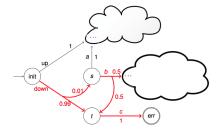
11/16



Importance of a node *s* with respect to \diamond *target* and strategy σ :

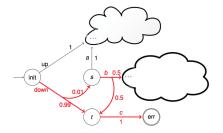
$$\mathbb{P}^{\sigma}[\diamond s$$

11/16



Importance of a node *s* with respect to \diamond *target* and strategy σ :

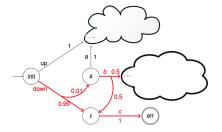
 $\mathbb{P}^{\sigma}[\diamond s \mid \diamond target]$



Importance of a node *s* with respect to \diamond *target* and strategy σ :

 $\mathbb{P}^{\sigma}[\diamond s \mid \diamond target]$

Cut off states with zero importance (unreachable or useless)



Importance of a node s with respect to \diamond target and strategy σ :

 $\mathbb{P}^{\sigma}[\diamond s \mid \diamond target]$

Cut off states with zero importance (unreachable or useless)

Cut off states with low importance (small error, *ɛ*-optimal strategy)

How to make use of the exact importance?

How to make use of the exact importance?

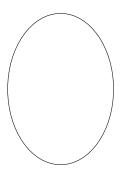
Learn decisions in *s* in proportion to importance of *s*

How to make use of the exact importance?

Learn decisions in *s* in proportion to importance of *s*

Advantages of decision trees over BDDs:

- more readable: predicates
- smaller due to good ordering: entropy
- yet smaller at a cost of an error: pruning

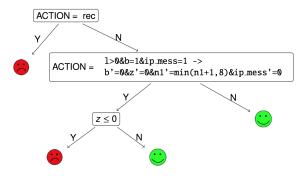


How to make use of the exact importance?

Learn decisions in *s* in proportion to importance of *s*

Advantages of decision trees over BDDs:

- more readable: predicates
- smaller due to good ordering: entropy
- yet smaller at a cost of an error: pruning



Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %
firewire	481,136	1.0	479,834	4233	1	0.0
investor	35,893	0.958	28,151	783	27	0.886
mer	1,773,664	0.200016	MEM-OUT *			
zeroconf	89,586	0.00863	60,463	409	7	0.106

Example	#states	Value	Explicit	BDD	DT	Rel.err(DT) %	
firewire	481,136	1.0	479,834	4233	1	0.0	
investor	35,893	0.958	28,151	783	27	0.886	
mer	1,773,664	0.200016	MEM-OUT *				
zeroconf	89,586	0.00863	60,463	409	7	0.106	

* MEM-OUT in PRISM,

whereas BRTDP yields: 1887 619 13 0.00014

Pranav Garg, Daniel Neider, P. Madhusudan, Dan Roth: Learning Invariants using Decision Trees and Implication Counterexamples. POPL 2016.

- positive examples from runs of the program
- negative examples from modifications
- implication examples

Siddharth Krishna, Christian Puhrsch, Thomas Wies: Learning Invariants Using Decision Trees.

- positive examples: states reachable when preconditions holds
- negative examples: states leaving loop and violating a postcondition

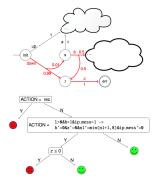
Summary

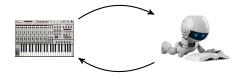
Machine learning in verification

- Scalable heuristics
- Example 1: Speeding up value iteration
 - тесницие: reinforcement learning, BRTDP
 - IDEA: focus on updating "most important parts"
 most often visited by good strategies

Example 2: Small and readable strategies

- тесницие: decision tree learning
- IDEA: based on the importance of states, feed the decisions to the learning algorithm





Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldnt overrule guarantees?
 - SMC should be PAC; when is it enough?
- Oracle usage seems fine

Discussion

Verification using machine learning

- How far do we want to compromise?
- Do we have to compromise?
 - BRTDP, invariant generation, strategy representation don't
- Don't we want more than ML?
 - (ε-)optimal controllers?
 - arbitrary controllers is it still verification?
- What do we actually want?
 - scalability shouldnt overrule guarantees?
 - SMC should be PAC; when is it enough?
- Oracle usage seems fine