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Need for new translations

Linear Temporal Logic (LTL)
[Pnueli 1977]

Syntax

ϕ ::=p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Boolean operators

Xϕ | ϕ U ϕ | ϕ R ϕ Temporal operators

Semantics

For α ∈ (2P)ω, α[i :∞] is the suffix starting at position i and α[0] is the first
element of sequence.

α |= p iff p ∈ α[0]

α |= Xϕ iff α[1 :∞] |= ϕ

α |= ϕ U ψ iff there is j such that α[j :∞] |= ψ and for all i < j
α[i :∞] |= ϕ

α |= ϕ R ψ iff either for every i , α[i :∞] |= ψ or there is j such that
α[j :∞] |= ϕ and for all i < j α[i :∞] |= ψ
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Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula ϕ, there is a nondeterministic Büchi
automatonM of size O(2|ϕ|) such that L(M) = [[ϕ]]

Applications

Gave first non-elementary decision procedure for

Satisfiability and validity of LTL

Verifying system designs
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Why translate LTL to probabilistic
automata?
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Understanding the power of randomization

Central Question: What computational power do nondeterminism
and randomization provide?

Nondeterminism, in the context of finite automata, reasonably
well understood

Nondeterminism (in most cases) provides no additional
computational power,

but nondeterministic machines can have
exponentially fewer states.

What about probabilistic automata?

Probabilistic finite state machines can solve problems that
cannot be solved on deterministic/nondeterministic automata
What about from the perspective of memory/states?
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Applications

Translation from LTL to nondeterministic automata not good for
certain applications

Monitoring

Solving games

MDP model checking

For such applications one usually translates the logic to
deterministic automata.
Can probabilistic automata help?
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Randomized Monitoring
Safe LTL to FPM
Lower Bound Proof

Dynamic Analysis of Systems

System

Environment

Monitor

Monitor passively observes
system behavior

which is an
unbounded stream of events

Alarm raised when a
problem is discovered

;
correctness indicated
implicitly by the absence of
alarms

Application: Discovery of
errors and intrusions in
deployed systems
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Monitor

The monitor has access to
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The system itself is not
probabilistic
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Finite State Probabilistic Monitors (FPM)
[Chadha-Sistla-V. 2008]

qs

qa

qr
b, 12

a,b, 1

a,b, 1

b, 12

a, 1

Definition

A FPM over alphabet Σ is
M = (Q, qs , qr , δ), where Q is a finite set
of states, qs ∈ Q is the initial state, qr ∈ Q
is the absorbing reject state, and
δ : Q × Σ× Q → [0, 1] is such that for any
q ∈ Q and a ∈ Σ,

∑
q′∈Q δ(q, a, q′) = 1.

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Safety Properties

General Properties

Randomized Monitoring
Safe LTL to FPM
Lower Bound Proof

Acceptance/Rejection Probability

For α ∈ Σω, let α[0 : j ] denote the prefix of length j + 1. The
probability of rejecting and accepting α is defined as follows.

rej(α) = limj→∞ δα[0:j](qs , qr )

acc(α) = 1− rej(α)

Given λ ∈ [0, 1], L>λ(M) is the set of words α accepted with
probability > λ.
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Randomized Monitoring
Safe LTL to FPM
Lower Bound Proof

Strong and Weak Monitors

Property L is monitorable

strongly if there is an M such that L=1(M) = L

; no false
alarms

weakly if there is an M such that L>0(M) = L; no missed
alarms
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Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

L ⊆ Σω is a safety property if α 6∈ L iff there is a prefix α[0 : i ]
such that α[0 : i ]Σω ⊆ L.

Randomized Monitoring [Chadha-Sistla-V. 2008]

Strong There is FPM M such that L = L=1(M) iff L is a
regular, safety property.

Weak There are FPMs M such that L>0(M) is a
non-regular, persistence property.

L is a persistence property if it is a countable
union of safety properties, i.e., “eventually
always”-type properties
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Safe LTL
[Sistla 1985]

ϕ ::=p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Boolean operators

Xϕ | ϕ R ϕ | ϕ U ϕ Restricted to R
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Strong Monitors for Safe LTL

Proposition (Kini-V. 2014)

For every Safe LTL formula ϕ, there isMϕ of size O(2|ϕ|) such
that [[ϕ]] = L=1(M).

Proof.

Construct nondeterministic Büchi automaton using [Vardi
1996]-method for ¬ϕ; the automaton has a single, absorbing
accept state.

Assign arbitrary probability to nondeterministic choices, and
make accept state the unique reject state of FPM.
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Weak Monitors for Safe LTL

Theorem (Kini-V. 2014)

There are Safe LTL formulas ϕ such that the smallest FPMM
with L>0(M) = [[ϕ]] has at least doubly exponential states.

Weak monitors are computationally more powerful than strong
monitors but only as “efficient” as deterministic monitors for Safe
LTL.
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Weakly monitoring LTL(G )

LTL(G )

ϕ ::=p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Boolean operations

Xϕ | Gϕ Restricted to G

where Gϕ ≡ ⊥ R ϕ

[Alur-LaTorre 2004] Smallest deterministic machines for
LTL(G ) has doubly exponential states.

[Kini-V. 2014] For every LTL(G ) formula ϕ there is an FPM
M such that L>0(M) = [[ϕ]] and M has O(2|ϕ|) states.
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Communication Complexity
[Yao 1982]

Setup

Problem described by function f : X × Y → {0, 1}, where X ,Y
are finite sets.

Alice is given input x ∈ X and Bob is given input y ∈ Y

Alice and Bob arbitrary computational devices and can toss
coins

Alice and Bob can send and receive messages

Goal

How bits need to be communicated for Bob to compute f (x , y)?
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Set Membership

Problem

For a set S , take X = 2S and Y = S . Define gS : X × Y → {0, 1}
such that gS(x , y) = 1 iff y ∈ x .

One Round Randomized Protocol

In this model, both Alice and Bob can toss coins, but Bob has to
compute the answer based on single message sent by Alice.

RA→B
ε (f ) is the fewest number of bits that Alice needs to

send to Bob so that Bob can compute f with error at most ε.

Theorem (Kremer-Nisan-Ron 1995)

RA→B
ε (gS) = Ω(2|S |).
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Hard Property to Weakly Monitor

For alphabet Σ = {0, 1,#, $} define the following languages

Sn = (#(0 + 1)n)+$(0 + 1)n membership query
R ′n = {(#(0 + 1)n)∗(#w)(#(0 + 1)n)∗$w | w ∈ (0 + 1)n} positive query
Rn − Sn \ R ′n negative query
Ln = Rω

n + R∗n (#(0 + 1)n)ω

[Kupferman-Rosenberg 2010] There is ϕn such that [[ϕn]] = Ln and
|ϕn| = n log n
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Protocol from Monitor

Lemma

For any ε andMn such that L>0(Mn) = Ln, there is a state qε,
reachable through an input in R∗n such that every β ∈ Ln is
accepted with probability ≥ 1− ε from qε.

Protocol

For S = (0 + 1)n, a protocol for gS from Mn is as follows.

1 Let wx be input corresponding to Alice’s input x . Alice runs
Mn on wx from qε and sends the state q reached to Bob.

2 Bob checks if $y(#0n)ω is accepted from q

Bits communicated = log |Mn| ≥ 2n
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Fragments of LTL

LTL(F ,G )

ϕ ::=p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Boolean operations

Xϕ | Fϕ | Gϕ Restricted to F and G

where Fϕ ≡ > U ϕ

LTL \ GU [Kretinsky-Esparza 2012]

ψ ::=ϕ | ψ ∧ ψ | ψ ∨ ψ | ϕ ∈ LTL(F ,G )

Xψ | ψ U ψ U above G
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Probabilistic Büchi Automata
[Baier-Größer 2005]

qs q

a, 1
2 a, 1

a, 1
2

b, 1

A PBA is like an FPM except that it does not
have a reject state and instead as final states.

An execution is accepting if it visits some
final state infinitely often

The acceptance probability of a word α,
acp(α), is the measure of all accepting
executions on α.

L>0(M) and L=1(M) defined similarly.
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PBA for LTL \ GU

Theorem (Kini-V. 2015)

For every ϕ in LTL \ GU there is a PBAMϕ such thatMϕ has
O(2|ϕ|) states and L>0(M) = [[ϕ]].
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Simplifying Assumptions

Focus on LTL(F ,G )

Also, assume there are no X operators
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Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such
that every state reachable from a final state is deterministic

Theorem (Baier-Größer 2005)

Let N be a nondeterministic Büchi automaton. LetM be the
PBA obtained assigning some probabilities to the nondeterministic
choices. Then L>0(M) = L(N ).

We will construct a limit deterministic automaton for LTL \ GU.
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step.

Consider ϕ = G (a ∨ Fb).

q0 : {ϕ,Fb} q1 : {ϕ}

true

b

a
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ϕ = G (a ∨ Fb).

q0 : {ϕ,Fb} q1 : {ϕ}

¬b, b

b

a

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Safety Properties

General Properties

LTL \ GU
Construction Details
Conclusions

“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ϕ = G (a ∨ Fb).

q0 : {ϕ,Fb} q1 : {ϕ}

¬b, b

b

a

�� ��Automaton is not limit deterministic!
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Construction for LTL(F ,G )
Intuition

Observation

For any formula ϕ over propositions P, any word w ∈ (2P)ω

satisfies exactly one of the following

Gϕ Fϕ ∧ ¬Gϕ ¬Fϕ
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What does this mean for F ,G subformulas?

Gϕ Fϕ ∧ ¬Gϕ ¬Fϕ

A B C

Gψ

Fψ
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What does this mean for F ,G subformulas?

Gϕ Fϕ ∧ ¬Gϕ ¬Fϕ

A B C

Gψ Gψ ¬Gψ ∧ FGψ

Fψ
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Construction for LTL(F ,G )
Overview

A state is a guess about how often each F ,G subformula
holds.

The automaton checks if the guess is sound

A guess is sound if every Gψ ∈ πA is true and every Fψ 6∈ πA
is true.

example
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Construction for LTL(F ,G )
Evaluation

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

The evaluation of ϕ denoted by [ϕ ]πν is the truth of ϕ at present
with respect to the guess π and input ν ∈ 2P .

truth of propositions obtained from input ν

boolean connectives evaluated using their semantics

[Gψ ]πν is true iff Gψ ∈ πA and [Fψ ]πν is true iff Fψ /∈ πA.
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Gψ ∈ πA Gψ ∈ ρA

�� ��Ensure ψ is true by evaluating it
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Gψ ∈ πB Gψ ∈ ρA ∪ ρB

�� ��No need to check Gψ is false
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Gψ ∈ πC Gψ ∈ ρC

�� ��No need to check FGψ is false
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Fψ ∈ πA Fψ ∈ ρA

�� ��No need to check Fψ is false
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Fψ ∈ πB Fψ ∈ ρA ∪ ρB

�� ��If Fψ moves to A ensure ψ is true
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Construction for LTL(F ,G )

A B C

Gψ Gψ ¬Gψ ∧ FGψ ¬FGψ
Fψ ¬Fψ Fψ ∧ ¬GFψ GFψ

π
ν−−−−−−−−→ ρ

Fψ ∈ πC Fψ ∈ ρC

�� ��Check that ψ holds infinitely often: use a counter!
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Construction for LTL(F ,G )
States

An automaton state is a pair (π, n)

π is current guess for ϕ

n ∈ {0, 1, . . . k} where k is the number of F formulas in πC
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Construction for LTL(F ,G )
Transitions

Transitions should help check if the guess is sound

(π,m)
ν−−−−→ (ρ, n)

πA ⊆ ρA πB ⊇ ρB πC = ρC (component πB is
non-increasing)

for Gψ ∈ πA, [ψ ]πν is true

for Fψ ∈ πB , [ψ ]πν is false implies Fψ ∈ ρB
increment counter if m = 0 or the mth F -formula in πC
evaluates to true
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Construction for LTL(F ,G )
Acceptance Condition

Büchi Condition: A state (π, 0) is final if πB is empty.

empty πB ensure obligations are eventually met

Büchi condition ensures counter incremented infinitely often

Together they ensure that every guess in an accepting run is sound.
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Büchi Condition: A state (π, 0) is final if πB is empty.

empty πB ensure obligations are eventually met
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Construction for LTL(F ,G )
Initial Conditions

A transition (π, 0)
ν−−−−→ (ρ, n) is initial if [ϕ ]πν is true.

Since initial guess is sound in an accepting run, the truth of ϕ is
ensured.
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Construction for LTL(F , g)
Limit Determinism

Limit determinism is ensured because

Once πB becomes empty, the guess π cannot change across
transitions

Counter is incremented deterministically
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Example

Consider ϕ = G (a ∨ Fb)

q0 : 〈 ϕ |Fb | - 〉, 0

q1 : 〈 ϕ,Fb | - | - 〉, 0

q2 : 〈 ϕ | - |Fb 〉, 0

q3 : 〈 ϕ | - |Fb 〉, 1

true

b

a

trueb

¬b
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Markov Decision Processes

States divided into probabilistic and nondeterministic. From a
probabilistic state, the next state is chosen by tossing a coin,
and from a nondeterministic state, the next state is chosen
nondeterministically

Models (closed) concurrent, stochastic programs

Nondeterminism resolved by a scheduler
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Model Checking Problem

Given and MDP A and LTL formula ϕ, is there a scheduler S such
that the set of executions of AS that satisfy ϕ has probability > 0?

[Courcoubetis-Yannakakis 1995] The problem is
2EXPTIME-complete for LTL specs

Upper bound relies on analyzing the cross-product of the
MDP with a limit deterministic automaton for ϕ.

[Kini-V. 2015] The problem is EXPTIME-complete for
LTL \ GU specs
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Wrapup

Ideas can be generalized to construct limit deterministic
automata for full LTL

but it is doubly exponential size

Can it be improved?

No lower bound proof, but unlikely

Implementation of translation
http://web.engr.illinois.edu/ kini2/buchifier/
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