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Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : 0] is the suffix starting at position i

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.

@ af piff p € 0]

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.

@ af piff p € 0]
@ aE Xpiffa[l: o]l Ep

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.

@ af piff p € 0]

@ aE Xpiffa[l: o]l Ep

@ a = ¢ U iff there is j such that afj : oo] =4 and for all i < j
ali - oo] =
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Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.
@ af piff p € 0]
@ aE Xpiffa[l: o]l Ep
@ a = ¢ U iff there is j such that afj : oo] =4 and for all i < j
ali: ool £ ¢
@ a = ¢ R iff either for every i, afi : o] = 4 or
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Linear Temporal Logic (LTL)

[Pnueli 1977]

pu=p|lpleAp|leVel Boolean operators
XeloUp|leRe Temporal operators

For a € (27)*, afi : oc] is the suffix starting at position i and a[0] is the first
element of sequence.
@ af piff p € 0]
@ aE Xpiffa[l: o]l Ep
@ a = ¢ U iff there is j such that afj : oo] =4 and for all i < j
ali: ool £ ¢
@ a = ¢ R iff either for every i, i : 0] = % or there is j such that
afj i oo] E ¢ and forall i < j afi: o] E ¢
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Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula ¢, there is a nondeterministic Biichi
automaton M of size O(2¥!) such that L(M) = [¢]
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Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula ¢, there is a nondeterministic Biichi
automaton M of size O(2¥!) such that L(M) = [¢]

Applications

Gave first non-elementary decision procedure for
@ Satisfiability and validity of LTL
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Translating LTL to Automata

Theorem (Sistla-Vardi-Wolper 1985)

For every LTL formula ¢, there is a nondeterministic Biichi
automaton M of size O(2¥!) such that L(M) = [¢]

Applications

Gave first non-elementary decision procedure for
@ Satisfiability and validity of LTL
@ Verifying system designs
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Why translate LTL to probabilistic
automata?
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Understanding the power of randomization

Central Question: What computational power do nondeterminism
and randomization provide?

@ Nondeterminism, in the context of finite automata, reasonably
well understood
o Nondeterminism (in most cases) provides no additional
computational power, but nondeterministic machines can have
exponentially fewer states.
@ What about probabilistic automata?

e Probabilistic finite state machines can solve problems that
cannot be solved on deterministic/nondeterministic automata
e What about from the perspective of memory /states?

Kini-Viswanathan LTL to Probabilistic Automata



Introduction
Need for new translations

Applications

Translation from LTL to nondeterministic automata not good for
certain applications

@ Monitoring
@ Solving games
@ MDP model checking
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Dynamic Analysis of Systems

@ Monitor passively observes
System system behavior which is an
unbounded stream of events
@ Alarm raised when a
problem is discovered
E— Monitor
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Dynamic Analysis of Systems

@ Monitor passively observes
system behavior which is an
unbounded stream of events

System

@ Alarm raised when a
problem is discovered;
— % Monitor correctness indicated
implicitly by the absence of
alarms

W

Environment
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Randomized Monitoring
Safety Properties Safe LTL to FPM
Lower Bound Proof

Dynamic Analysis of Systems

@ Monitor passively observes
System system behavior which is an
unbounded stream of events

@ Alarm raised when a
problem is discovered;

———]  Monitor correctness indicated
implicitly by the absence of
alarms

3 @ Application: Discovery of
Environment errors and intrusions in

deployed systems
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Randomized Monitoring
Safety Properties ) LTL to FPM
Bound Proof

Randomized Monitoring

@ The monitor has access to
private source of randomness

System

——  Monitor @ The system itself is not

probabilistic

W

Environment
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Finite State Probabilistic Monitors (FPM)

[Chadha-Sistla-V. 2008]

Definition

A FPM over alphabet % is
M =(Q,qgs,qr,9), where Q is a finite set
of states, gs € Q is the initial state, g, € Q
is the absorbing reject state, and

J:Q xXxQ—[0,1] is such that for any
geQandack, > 0d(g,24¢)=1
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Randomized Monitoring
Safety Properties Safe LTL to FPM
Lower Bound Proof

Acceptance/Rejection Probability

For a € X%, let [0 : j] denote the prefix of length j + 1. The
probability of rejecting and accepting « is defined as follows.

rej(a) = Iimj%oo 6a[0:j](q57 ar)
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Acceptance/Rejection Probability

For a € X%, let [0 : j] denote the prefix of length j + 1. The
probability of rejecting and accepting « is defined as follows.

rej(a) = Iimj%oo 6a[0:j](q57 ar)
acc(a) =1 — rej(a)
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Randomized Monitoring
Safety Properties Safe LTL to FPM
Lower Bound Proof

Acceptance/Rejection Probability

For a € X%, let [0 : j] denote the prefix of length j + 1. The
probability of rejecting and accepting « is defined as follows.

rej(a) = Iimj%oo 6a[0:j](q57 ar)
acc(a) =1 — rej(a)

Given A € [0,1], £L5(M) is the set of words o accepted with
probability > A.
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Strong and Weak Monitors

Property L is monitorable
e strongly if there is an M such that L_;(M) =L
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rong and Weak Monitors

Property L is monitorable

e strongly if there is an M such that £_;(M) = L; no false
alarms
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ound Proof

Strong and Weak Monitors

Property L is monitorable

e strongly if there is an M such that £_;(M) = L; no false
alarms

e weakly if there is an M such that L5o(M) =L
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Randomized Monitoring
Safety Properties ) to FPM
ound Proof

Strong and Weak Monitors

Property L is monitorable

e strongly if there is an M such that £_;(M) = L; no false
alarms

e weakly if there is an M such that L5¢(M) = L; no missed
alarms
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Safety Properties L to FPM
ound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

o L C X% is a safety property if o € L iff there is a prefix a0 : ]
such that [0 : /X% C L.
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Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

o L C %% is a safety property if o & L iff there is a prefix a[0 : /]
such that [0 : /X% C L.

Randomized Monitoring [Chadha-Sistla-V. 2008]
Strong There is FPM M such that L = £L_;(M) iff L is a
regular, safety property.
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Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

o L C %% is a safety property if o & L iff there is a prefix a[0 : /]
such that [0 : /X% C L.

Randomized Monitoring [Chadha-Sistla-V. 2008]
Strong There is FPM M such that L = £L_;(M) iff L is a
regular, safety property.

Weak There are FPMs M such that L-(M) is a
non-regular, persistence property.
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Randomized Monitoring
Safety Properties Safe LTL to FPM
Lower Bound Proof

Expressive Power of Randomized Monitors

Deterministic Monitoring [Schneider]

Properties monitored deterministically are safety properties

o L C %% is a safety property if o & L iff there is a prefix a[0 : /]
such that [0 : /X% C L.

Randomized Monitoring [Chadha-Sistla-V. 2008]
Strong There is FPM M such that L = £L_;(M) iff L is a
regular, safety property.

Weak There are FPMs M such that L-(M) is a
non-regular, persistence property.

@ L is a persistence property if it is a countable
union of safety properties, i.e., “eventually
always” -type properties
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Safe LTL

[Sistla 1985]

pu=plopleANe|leVel
XoloRolpUep
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Safe LTL

[Sistla 1985]

pu=p|lpleANeleVel Boolean operators
XpleRep Restricted to R
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Safety Properties Safe LTL to
Lower Bound Pro

Strong Monitors for Safe LTL

Proposition (Kini-V. 2014)

For every Safe LTL formula ¢, there is M, of size O(2!?!) such
that [¢] = L=1(M).
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Randomized Monitoring
Safety Properties Safe LTL to FPM

Lower Bound Proof

Strong Monitors for Safe LTL

Proposition (Kini-V. 2014)

For every Safe LTL formula ¢, there is M, of size O(2!?!) such
that [¢] = L=1(M).

@ Construct nondeterministic Biichi automaton using [Vardi
1996]-method for —¢; the automaton has a single, absorbing
accept state.

@ Assign arbitrary probability to nondeterministic choices, and
make accept state the unique reject state of FPM. []
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Lower Bound Pro

Weak Monitors for Safe LTL

Theorem (Kini-V. 2014)

There are Safe LTL formulas ¢ such that the smallest FPM M
with L~o0(M) = [¢] has at least doubly exponential states.
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Randomized Monitoring
Safety Properties L to FPM

ound Proof

Weak Monitors for Safe LTL

Theorem (Kini-V. 2014)

There are Safe LTL formulas ¢ such that the smallest FPM M
with L~o0(M) = [¢] has at least doubly exponential states.

Weak monitors are computationally more powerful than strong
monitors but only as “efficient” as deterministic monitors for Safe
LTL.
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Weakly monitoring LTL(G)

LTL(G)

pu=plopleAp|leVel Boolean operations
Xp| Gy Restricted to G

where Gp =1L R
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Weakly monitoring LTL(G)

LTL(G)

pu=plopleAp|leVel Boolean operations
Xp| Gy Restricted to G

where Gp =1L R

@ [Alur-LaTorre 2004] Smallest deterministic machines for
LTL(G) has doubly exponential states.
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Randomized Monitoring

Safety Properties to FPM

Weakly monitoring LTL(G)

LTL(G)

pu=plopleAp|leVel Boolean operations
Xp| Gy Restricted to G

where Gp =1L R

@ [Alur-LaTorre 2004] Smallest deterministic machines for
LTL(G) has doubly exponential states.

e [Kini-V. 2014] For every LTL(G) formula ¢ there is an FPM
M such that Log(M) = [¢] and M has O(2/¥!) states.
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Communication Complexity
[Yao 1982]

Problem described by function  : X x Y — {0,1}, where X, Y
are finite sets.

@ Alice is given input x € X and Bob is given input y € Y

@ Alice and Bob arbitrary computational devices and can toss
coins

@ Alice and Bob can send and receive messages

How bits need to be communicated for Bob to compute f(x,y)?
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Set Membership

For aset S, take X =2° and Y = S. Define g° : X x Y — {0,1}
such that g°(x,y) = 1iff y € x.
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Lower Bound Proof

Set Membership

For aset S, take X =2° and Y = S. Define g° : X x Y — {0,1}
such that g°(x,y) = 1iff y € x.

One Round Randomized Protocol

In this model, both Alice and Bob can toss coins, but Bob has to
compute the answer based on single message sent by Alice.

o RAZB(f) is the fewest number of bits that Alice needs to
send to Bob so that Bob can compute f with error at most e.
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Lower Bound Proof

Set Membership

For aset S, take X =2° and Y = S. Define g° : X x Y — {0,1}
such that g°(x,y) = 1iff y € x.

One Round Randomized Protocol

In this model, both Alice and Bob can toss coins, but Bob has to
compute the answer based on single message sent by Alice.

o RAZB(f) is the fewest number of bits that Alice needs to
send to Bob so that Bob can compute f with error at most e.

Theorem (Kremer-Nisan-Ron 1995)

RATE(g) = Q(2°)).
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Lower Bound Proof

Hard Property to Weakly Monitor

For alphabet ¥ = {0,1,#, %} define the following languages

Sp=(#(0+1)")"$(0+1)" membership query
R, = {(#(0+ 1)")*(#w)(#(0+ 1)")*$w | w € (0+ 1)"} positive query
R, —Sa \ R, negative query

Ly = Ry + Ry (#(0+1)")*
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Hard Property to Weakly Monitor

For alphabet ¥ = {0,1,#, %} define the following languages

Sp=(#(0+1)")"$(0+1)" membership query
Ry = {(#(0+ 1)")*(#w)(#(0+ 1)")*$w | w € (0+ 1)"} positive query
R, — S, \ R, negative query
L, = RY + Ry(#(0 +1)")
[Kupferman-Rosenberg 2010] There is ¢, such that [¢,] = L, and
|on| = nlogn
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Randomized Moni
Safety Properties Safe LTL to FPM
Lower Bound Proof

Protocol from Monitor

Lemma

For any € and M,, such that L~o(M,) = L,, there is a state q,
reachable through an input in R} such that every 5 € L, is
accepted with probability > 1 — € from q..
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Safety Properties Safe LTL to FPM
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Protocol from Monitor

Lemma

For any € and M,, such that L~o(M,) = L,, there is a state q,
reachable through an input in R} such that every B € L, is
accepted with probability > 1 — € from g.

Protocol
For S = (04 1)", a protocol for g° from M, is as follows.

© Let wy be input corresponding to Alice's input x. Alice runs
M, on wy from g, and sends the state g reached to Bob.

@ Bob checks if $y(#0")“ is accepted from g
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Randomized Monitoring
Safety Properties Safe LTL to FPM
Lower Bound Proof

Protocol from Monitor

Lemma

For any € and M,, such that L~o(M,) = L,, there is a state q,
reachable through an input in R} such that every B € L, is
accepted with probability > 1 — € from g.

Protocol
For S = (04 1)", a protocol for g° from M, is as follows.

© Let wy be input corresponding to Alice's input x. Alice runs
M, on wy from g, and sends the state g reached to Bob.

@ Bob checks if $y(#0")“ is accepted from g
Bits communicated = log |M,| > 2"
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LTL \ GU
Construction Details
General Properties Conclusions

Fragments of LTL

LTL(F,G)

pu=p|lpleAeleVel Boolean operations
Xp|Fo| Gy Restricted to F and G

where Fp=T Uy
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Construction Details
General Properties Conclusions

Fragments of LTL

LTL(F,G)

pu=p|lpleAeleVel Boolean operations
Xp|Fo| Gy Restricted to F and G

where Fp=T Uy

LTL\ GU [Kretinsky-Esparza 2012]

Y=Y A |V ¢ € LTL(F, G)
X | Uy U above G
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LTL \ GU
Construction Details
General Properties Conclusions

Probabilistic Buchi Automata
[Baier-GroBer 2005]

A PBA is like an FPM except that it does not
have a reject state and instead as final states.
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Probabilistic Buchi Automata
[Baier-GroBer 2005]

A PBA is like an FPM except that it does not
have a reject state and instead as final states.
@ An execution is accepting if it visits some
final state infinitely often
@ The acceptance probability of a word «,
acp(a), is the measure of all accepting
executions on .
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LTL \ GU
Construction Details
General Properties Conclusions

Probabilistic Buchi Automata
[Baier-GroBer 2005]

A PBA is like an FPM except that it does not
have a reject state and instead as final states.
@ An execution is accepting if it visits some
final state infinitely often
@ The acceptance probability of a word «,
acp(a), is the measure of all accepting
executions on .

o L-o(M) and L_1(M) defined similarly.
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LTL \ GU
Construction Details
General Properties Conclusions

PBA for LTL \ GU

Theorem (Kini-V. 2015)

For every ¢ in LTL\ GU there is a PBA M, such that M, has
0(2!#) states and L~o(M) = [¢].

Kini-Viswanathan LTL to Probabilistic Automata



GU
Construc
General Properties Conclusions

Simplifying Assumptions

e Focus on LTL(F, G)
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GU
Construc
General Properties Conclusions

Simplifying Assumptions

e Focus on LTL(F, G)

@ Also, assume there are no X operators
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LTL \ GU
Construction Details
General Properties Conclusions

Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such
that every state reachable from a final state is deterministic
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Construction Details
General Properties Conclusions

Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such
that every state reachable from a final state is deterministic

Theorem (Baier-GroBer 2005)

Let N be a nondeterministic Biichi automaton. Let M be the
PBA obtained assigning some probabilities to the nondeterministic

choices. Then L~o(M) = L(N).
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Limit Deterministic Automata

Courcoubetis-Yannakakis 1995

Limit deterministic automata: Nondeterministic automata such
that every state reachable from a final state is deterministic

Theorem (Baier-GroBer 2005)

Let N' be a nondeterministic Biichi automaton. Let M be the

PBA obtained assigning some probabilities to the nondeterministic
choices. Then L~o(M) = L(N).

We will construct a limit deterministic automaton for LTL \ GU.
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Construction Details
General Properties Conclusions

“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step.
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

qo - {907 Fb}
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

true

o
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

true

o
o ) )
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

true a

@ i @
o ) (o 01
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

b, |b] B
() 5 ()
cem—L G
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“Standard” LTL to NBA translation

Idea: Automaton guesses which temporal subformulas are true at
each step. Consider ¢ = G(aV Fb).

b, |b] B
() 5 ()
cem—L G

[Automaton is not limit deterministic!]
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Construction for LTL(F, G)

Intuition

For any formula ¢ over propositions P, any word w € (2°)
satisfies exactly one of the following

Gp FoA—=-Gy —Fyp
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What does this mean for F, G subformulas?

Gp FpA-Gyp —Fp
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What does this mean for F, G subformulas?

Gp FpA-Gyp —Fp

Gy
Fi
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What does this mean for F, G subformulas?

Gp FpA-Gp —Fp

Gy Gy
Fi
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What does this mean for F, G subformulas?

Gp FpA-Gp —Fp
A B C

Gy Gy -Gt A FGi)
Fi
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What does this mean for F, G subformulas?

Gp FpA-Gyp —Fp
A B C

G G -Gy A FGY —~FGY)
Fy
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What does this mean for F, G subformulas?

Gp FpA-Gyp —Fp
A B C

G G ~Gip A FGip ~FGy
F) —~Fy)
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What does this mean for F, G subformulas?

Gp FpA-Gp —Fp

A B C
Gy Gy —~G1p A FGy) ~FGa
Fa ~F1 Fip A —~GF
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What does this mean for F, G subformulas?

Gp FpA-Gp —Fp

A B C
Gy Gy -G A FGY) ~FG)
Fip —F1) Fip A —~GF) GF)
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Construction for LTL(F, G)

Overview

@ A state is a guess about how often each F, G subformula
holds.
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Construction for LTL(F, G)

Overview

@ A state is a guess about how often each F, G subformula
holds.

@ The automaton checks if the guess is sound
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Construction for LTL(F, G)

Overview

@ A state is a guess about how often each F, G subformula
holds.
@ The automaton checks if the guess is sound

o A guess is sound if every G € 74 is true and every Fi) & ma
is true.
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Construction for LTL(F, G)

Evaluation

A B C
G Gip —~G A FGip —~FG)
F) —~Fa) Fa) A =GFa GF
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Construction for LTL(F, G)

Evaluation

A B C
G Gy ~Gip A FGip ~FGp
Fi) —Fa Fip A ~GF) GFy

The evaluation of ¢ denoted by [¢]7 is the truth of ¢ at present
with respect to the guess 7 and input v € 2F.

Kini-Viswanathan LTL to Probabilistic Automata



LTL \ GU
Construction Details
General Properties Conclusions

Construction for LTL(F, G)

Evaluation

A B C
G Gy ~Gip A FGip ~FGp
Fi) —Fa Fip A ~GF) GFy

The evaluation of ¢ denoted by [¢]7 is the truth of ¢ at present
with respect to the guess 7 and input v € 2F.

@ truth of propositions obtained from input v
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Construction for LTL(F, G)

Evaluation

A B C
Gy Gy ~Gip A FGY) ~FG)
Fy) —F) Fip A —GF) GF )

The evaluation of ¢ denoted by [¢]7 is the truth of ¢ at present
with respect to the guess 7 and input v € 2F.

@ truth of propositions obtained from input v

@ boolean connectives evaluated using their semantics
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Construction for LTL(F, G)

Evaluation

A B C
G Gy ~Gip A FGip ~FGp
Fi) —Fa Fip A ~GF) GFy

The evaluation of ¢ denoted by [¢]7 is the truth of ¢ at present
with respect to the guess 7 and input v € 2F.

@ truth of propositions obtained from input v
@ boolean connectives evaluated using their semantics
o [GY]T is true iff Gy € ma and [F |7 is true iff Fi) ¢ ma.
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Construction for LTL(F, G)

A B C
Gip Gip ~G1p A FGyp ~FG
Fy) —~Fy) Fip A ~GFap GFy)
T ——— p
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Construction for LTL(F, G)

A B C
G G -Gy A FGy =FG1)
F =F) Fip AN —GF GFy
m -7 p
GY € Txa Gy € pa

LEnsure ) is true by evaluating itj

Kini-Viswanathan LTL to Probabilistic Automata



LTL \ GU
Construction Details
General Properties Conclusions

Construction for LTL(F, G)

A B C
Gy Gy ~G A FGip ~FG)
Fip —F) Fip A ~GF) GF1
T _— p
Gy € g Gy € paU ps

[No need to check G is falsej
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Construction for LTL(F, G)

A B C
G Gy -Gy A FGy =FG1)
F =F) Fip AN —GF GFy
m -7 p
Gy € 7¢ Gy € pc

[No need to check FG is false]
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Construction for LTL(F, G)

A B C
Gy Gy -Gy A FGY =FG1)
Fy =F Fy AN =GFvy GFy
m _— p
Fy e ma Fi € pa

LNO need to check Fv is falsej
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Construction for LTL(F, G)

A B C
Gy Gy —Gip A FGY) —FG
Fo —Fy Fi) A ~GFi) GF)
T -7 p
Fy empg Fi € paUps

Llf F1) moves to A ensure 9 is truej
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Construction for LTL(F, G)

A B C
Gy Gy —Gip A FGY) —FG
Fy ~Fy) Fip A —GF) GF)
T -7 p
Fy emc Fy € pc

LCheck that 1 holds infinitely often: use a counter!j
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Construction for LTL(F, G)

States

An automaton state is a pair (m, n)
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Construction for LTL(F, G)

States

An automaton state is a pair (m, n)

@ 7 is current guess for ¢
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Construction for LTL(F, G)

States

An automaton state is a pair (m, n)
@ 7 is current guess for ¢

e nc€{0,1,...k} where k is the number of F formulas in m¢
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)

@ taCpa TB2pPB TC=pC (component 7g is
non-increasing)
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)

@ taCpa TB2pPB TC=pC (component 7g is
non-increasing)

o for Gip € ma, [Y]] is true
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)

@ taCpa TB2pPB TC=pC (component 7g is
non-increasing)

o for Gip € ma, [Y]] is true
e for Fi € g, [¢]7] is false implies F1 € pg
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)

@ taCpa TB2pPB TC=pC (component 7g is
non-increasing)

o for Gip € ma, [Y]] is true
e for Fi € g, [¢]] is false implies F1) € pg (delayed forever?)
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Construction for LTL(F, G)

Transitions

Transitions should help check if the guess is sound

v

(777 m) B (P, n)

@ taCpa TB2pPB TC=pC (component 7g is
non-increasing)

o for Gip € ma, [Y]] is true
e for Fi € g, [¢]] is false implies F1) € pg (delayed forever?)

@ increment counter if m = 0 or the m*™ F-formula in 7¢
evaluates to true
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Construction for LTL(F, G)

Acceptance Condition

Biichi Condition: A state (m,0) is final if 75 is empty.
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Construction for LTL(F, G)

Acceptance Condition

Biichi Condition: A state (m,0) is final if 75 is empty.

@ empty mg ensure obligations are eventually met
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Construction for LTL(F, G)

Acceptance Condition

Biichi Condition: A state (m,0) is final if 75 is empty.
@ empty mg ensure obligations are eventually met

@ Biichi condition ensures counter incremented infinitely often
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Construction for LTL(F, G)

Acceptance Condition

Biichi Condition: A state (m,0) is final if 75 is empty.
@ empty mg ensure obligations are eventually met
@ Biichi condition ensures counter incremented infinitely often

Together they ensure that every guess in an accepting run is sound.
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Construction for LTL(F, G)

Initial Conditions

A transition (m,0) —2— (p, n) is initial if []7 is true.
Since initial guess is sound in an accepting run, the truth of ¢ is
ensured.
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Construction for LTL(F, g)

Limit Determinism

Limit determinism is ensured because

@ Once mp becomes empty, the guess 7 cannot change across
transitions

@ Counter is incremented deterministically
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Example

Consider ¢ = G(a V Fb)
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Example

Consider ¢ = G(a V Fb)

(a0: (0lFb]-). 0)
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Example

Consider ¢ = G(a V Fb)

true

()

(a0: (0lFb]-). 0)
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Example

Consider ¢ = G(a V Fb)
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Example

Consider ¢ = G(a V Fb)
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Example

Consider ¢ = G(a V Fb)

(a0: (0lFb]-). 0) @ (¢|-|Fb). 0
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Example

Consider ¢ = G(a V Fb)

(a0: (0lFb]-). 0) @ (¢|-|Fb). 0

[ -

a1: (¢.Fb|-|-). 0 (a2 (¢l-1Fb). 1)
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Example

Consider ¢ = G(a V Fb)

(a0: (0lFb]-). 0) @ (¢|-|Fb). 0

[ -

a1: (¢.Fb|-|-). 0 (a2 (¢l-1Fb). 1)

U @,

a —b
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Example

Consider ¢ = G(a V Fb)

(a0: (0lFb]-). 0) @ (¢|-|Fb). 0

Tk

a1: (¢.Fb|-|-). 0 (a2 (¢l-1Fb). 1)

U @,

a —b
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Markov Decision Processes

@ States divided into probabilistic and nondeterministic. From a
probabilistic state, the next state is chosen by tossing a coin,
and from a nondeterministic state, the next state is chosen
nondeterministically
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Markov Decision Processes

@ States divided into probabilistic and nondeterministic. From a
probabilistic state, the next state is chosen by tossing a coin,
and from a nondeterministic state, the next state is chosen
nondeterministically

@ Models (closed) concurrent, stochastic programs
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Markov Decision Processes

@ States divided into probabilistic and nondeterministic. From a
probabilistic state, the next state is chosen by tossing a coin,
and from a nondeterministic state, the next state is chosen
nondeterministically

@ Models (closed) concurrent, stochastic programs

@ Nondeterminism resolved by a scheduler
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Model Checking Problem

Given and MDP A and LTL formula ¢, is there a scheduler S such
that the set of executions of A that satisfy ¢ has probability > 0?
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Model Checking Problem

Given and MDP A and LTL formula ¢, is there a scheduler S such
that the set of executions of A that satisfy ¢ has probability > 0?

o [Courcoubetis-Yannakakis 1995] The problem is
2EXPTIME-complete for LTL specs
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Model Checking Problem

Given and MDP A and LTL formula ¢, is there a scheduler S such
that the set of executions of A that satisfy ¢ has probability > 0?

o [Courcoubetis-Yannakakis 1995] The problem is
2EXPTIME-complete for LTL specs

@ Upper bound relies on analyzing the cross-product of the
MDP with a limit deterministic automaton for .
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Model Checking Problem

Given and MDP A and LTL formula ¢, is there a scheduler S such
that the set of executions of A that satisfy ¢ has probability > 0?

o [Courcoubetis-Yannakakis 1995] The problem is
2EXPTIME-complete for LTL specs

@ Upper bound relies on analyzing the cross-product of the
MDP with a limit deterministic automaton for .

e [Kini-V. 2015] The problem is EXPTIME-complete for
LTL \ GU specs
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@ ldeas can be generalized to construct limit deterministic
automata for full LTL
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@ ldeas can be generalized to construct limit deterministic
automata for full LTL but it is doubly exponential size
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@ ldeas can be generalized to construct limit deterministic
automata for full LTL but it is doubly exponential size
@ Can it be improved?
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@ ldeas can be generalized to construct limit deterministic
automata for full LTL but it is doubly exponential size
@ Can it be improved?
e No lower bound proof, but unlikely
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@ ldeas can be generalized to construct limit deterministic
automata for full LTL but it is doubly exponential size

@ Can it be improved?
e No lower bound proof, but unlikely

@ Implementation of translation
http://web.engr.illinois.edu/ kini2/buchifier/
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