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Cyber-Physical Systems (CPS)

Systems in which software "cyber' interacts with the '""physical" world

Medical Devices Automotive Robotics Aeronautics Process control
Plant Hybrid Systems
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Hybrid Systems



Air tratfic collision avoidance protocol

Minimum separation

The aircraft maintain a minimum
distance between them always
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Automatic Gear Box & Cruise Control

Cruise controller
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Velocity v reaches vy.f

even in the presence of disturbances



Stability



Stability

Stability is a fundamental property in control system design

+ It captures the notion that small perturbations in the initial state or input result in only small
deviations from the nominal behavior

CRUISE CABLE
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CRUISE WIRES ’

?

CRUISE MODULE

Cruise control Robotic arm Bipedal robot walking

* Set-point stability

+ Stability of the periodic orbit



Stability

* Small perturbations in the initial state lead to small deviations in

the system behavior




Liyapunov and asymptotic stability
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Challenges i Stability Verification
for Hybrid Systems
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Stability analysis

Linear dynamical systems WY

2 Y . .
Stability can be determined

f % B D by eigen values analysis
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Linear hybrid systems

Eigen wvalue analysis does not
suffice for switched linear system
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Current techmques for Stability
Verification

12



Liyapunov’s second method

Lyapunov function:

Template based automated search

* Continuously differentiable + Choose a template

V:R" - RT

+ Positive definite

V(zr) > 0Vx

* Decreases along any trajectory

a‘g—ff)F(:v) <0 Vz

+ Polynomial with coefficients as parameters

+ Encode (a relaxation) of the constraints as a sum-of-
square programming problem

* Use existing tools for SOS

Shortcomings:
* Success depends crucially on the choice of the template

* The current methods provide no insight into the reason
for the failure, when a template fails to prove stability

+ No guidance regarding the choice of the next template

v A CEGAR framework
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Counter-example guided abstraction
refinement
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Abstraction

Safety Analysis

+ Every trajectory corresponds to a path in the graph

* Absence of a path from green to red node implies safety
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Abstraction
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Safety Analysis * The above system is safe
+ Every trajectory corresponds to a path in the graph + The abstract graph has a counter-example

* Absence of a path from green to red node implies safety * Right abstractions are hard to find!
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Refinement

l

Safety Analysis * The above system is safe
+ Every trajectory corresponds to a path in the graph + The abstract graph has a counter-example

* Absence of a path from green to red node implies safety * Right abstractions are hard to find!

+ Refine by analyzing the abstract counter-example
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Counter-example guided abstraction refinement

l Property
Concrete Abstract
System Svstem Yes
y—> Abstract 2 » Model-Check [— Pro.pzrtglz * CEGAR for discrete systems
satistie [Kurshan et al. 93, Clarke et al. 00,
A
Abstraction No Abstract Ball et al. 02]
Relation Counter-example * CEGAR for hybrid systems safety
No Y Yes verification [Alur et al 03, Clarke et
Refine < . Validate — Pl.*operty al 03, Prabhakar et al 13]
Analysis violated
Results
Template based search CEGAR framework

* Success depends crucially on the choice

of the template

* No insight into the reason for the failure,
when a template fails to prove stability

* No guidance regarding the choice of the

next template

+ Systematically iterate over the abstract
systems

+ Returns a counter-example in the case
that the abstraction fails

* The counter-example can be used to
guide the choice of the next abstraction
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What are the mgredients for
CEGAR?
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CEGAR questions

+ What pre-orders preserve stability?

+ How do we construct abstractions/ refinement?
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Simulations and Bisimulations

Simulation between 7; and 73 is a binary relation R C §; X Sy

O———0 |
SN D VS
R L
Qi
51 ;92

+ Every path of the first system has a matching path in the second system

+ Bisimulations preserve several discrete-time properties [Timed automata,

Multi-rate automata, O-minimal automata]
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Stability 1s not bisimulation invariant!

| Lyapunov Stable

(0,9),t — (t,y)

| Unstable

(0,y),t = (t,y + yt)

Preorders for reasoning about stability of hybrid systems.Pavithra Prabhakar, Geir Dullerud and Mahesh Viswanathan.

15th ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2012. Honorable mention best paper award.
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Uniformly continuous (bi)-simulations

R is a uniformly continuous simulation from 77 to 7y if

1. R is a simulation and

2. R is uniformly continuous.

Ve > 0, 36 > 0 such that Vx € Dom(R),
R(Bs(r)) € Be(R(z))

r

.

Theorem

Let R be a uniformly continuous simulation from 7; to 75, and be consistent with 7 and 7.

T5 is stable with respect to 7o implies 77 is stable with respect to 7

<

oo

Continuous simulations suffice for stability with respect to an equilibrium point

Classical stability analysis techniques —- Lyapunov’s second method and Linearization —-
are instances of stability analysis based on uniformly continuous simulations

Preorders for reasoning about stability of hybrid systems with inputs. Pavithra Prabhakar, Jun Liu and Richard Murray.
International conference on Embedded Software (EMSOFT), 2013. Invited paper at the 50th Allerton conference.
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Abstraction based Analysis

* What pre-orders preserve stability?

+ How do we construct abstractions?
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Piecewise Constant Derivative System

Jy > 0,Ve € (0,7
Me>0,36 > 0,[(r(0) € Bs(0)) = VE(r(t) € B.(0))]

+ Special structure in a small neighborhood

* Homogenous linear constraints matter
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PCD examples

N N D
\<>/ N N

Liyapunov stable but Both Lyapunov stable and
Not asymptotically stable asymptotically stable

Unstable

4 N

Theorem

Verifying Lyapunov/ Asymptotic Stability is undecidable in 5 dimensions for

PCDs, but is decidable in 2 dimension for a more general class of systems.




Predicate abstraction

Weights capture information
about distance to the origin

along the executions
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Weighted Graph Construction

t D2

P3 / \ pr D3 <;\p3 Ps3 < p1
\@ N/ <>'/

P4 P4 D4
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A remark on weight computation

b+
|d+C)

t>0,v1 € f1,02 € fo,v2 = v1 + @t

a — b implies cva — ab
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Soundness of Abstraction

-
Theorem

The piecewise constant derivative system is Lyapunov stable if

+ there are no edges with infinite weights and

weights on the edges greater than 1

\_

+ the weighted graph does not contain any cycles with product of

J

Abstraction based model-checking of stability of hybrid systems. P. Prabhakar, M. G. Soto. CAV’13

30



Quantitative Predicate Abstraction

Let H be a hybrid system.
Let P ={P,..., P.} a finite partition of its state-space
Construct a weighted graph G = (V, E, W), where:
v V="P
+ (P, Py) € E if there exists P such that Reach(Py, P, Py) # ()
w Wie) = sup{M | (x,y) € Reach(P, P, Py)}, where e = (P, P5)

kg

RGCLCh(Pl,P, PQ) —= {(81,82) ’ s1 € P1,sy € Py, 59 “11 82}

Soundness holds under certain finite variability conditions
on the dynamics with respect to the partition

Foundations for Quantative predicate abstraction for stability analysis of hybrid systems. P. Prabhakar, M. G.
Soto. VMCATI'15 o1




Rectangular and polyhedral dynamics

Reach(Py, P, Py) = {(s1,82) | s1 € P1,82 € Py, 81 2 So }

Constant derivative £ = ¢

t > 0,1 €f1,”02 Efg,vgzvl—l—gpt QOEP

Polyhedral dynamics z € P, P is a polyhedral set
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Polyhedral switched systems

* Qverlapping guards and invariants

z=-1 x>0 x <0
r—1y<0

* The number of switchings is not bounded

+ Compute the reachability relation for a strongly connected

component

An algorithmic approach to stability verification of polyhedral switched systems. P. Prabhakar, M. G. Soto. ACC14




Polyhedral switched systems contd.

Strongly connected component

0=0

X9 = X1 + a1ty + agle + a1tz + asty + ...
r1 € Rox1+a1t1 € R,x1 +a1t1 +astes € R, ...

d1 g2

N

To = X1 + alt’l -+ azté
Tr1 € R, o € R
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Polyhedral switched systems contd.

k‘ ?
1Y
v
Vs
‘ 4

Strongly connected component

0=0

To =1 + a1ty + asto + a1ty + asty + . ..
x1 € Rox1+ait1 € R,x1 +a1t1 +asts € R, ...

AN

To = T1 + alt'l -+ CLQt/Q
Tr1 € R, To € R
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K

Summary

Can compute abstractions for PCD and polyhedral hybrid systems

Quantitative predicate abstraction is sound for a general class of hybrid

systems
What happens if the abstraction fails to deduce stability?

It returns a counter-example!

36



Validation: Counter-example Analysis

37



Counter-example

+  If the abstract system fails to prove stability, then it returns a counter-
example.

/ + A cycle with product of weight

greater than 1
1

+  Need to check if it is spurious — can the system follow the cycle to exhibit
trajectories which diverge

+ Validation — checking spuriousness — is not a bounded model-checking
problem

38



Validation

Theorem

doa > 1: 21

A counter example p1 — po — p3 — -+ — py is valid

if and only if

Pl P2 Pk
NS L9 M X3 T N\ T =

39



Validation

Pl P2 Pk
da >1:21 ~> X9~ T3...~ T N T = axy

Y1 = ayr oy, Aty

40



Validation

Yr—= Y2 = yYs Y4

,L >

Ya

Y3

Y1
Yo
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Validation

G:S — 25

yr—Y

ay* € G(y*)

Has some similarity with fix point

Y=yt
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Validation

Kakutani’s Theorem

Let S be a non-empty, compact and convex set.
Let H be a set-valued function S to S such that
+ its graph is a closed set

+ H(s) is non-empty and convex for all s in S
Then H has a fixpoint

G(s)

w

G’ : S — 2° given by s >
G:S— 2°
yr—Y
S S

S’ with states from which there are infinite executions following the cyclg3



Validation and Refinement Summary

[f the counter-example is spurious, perform a backward
propagation along the weights on the edges to compute the point

of refinement
Refine as before by splitting the region at the point of refinement
Some improvements:

+ If an infinite execution (not necessarily diverging) does not

exist, then can try to “eliminate” the cycle.

+ If infinite executions exist, but no diverging executions, then

reduce the weight on some edge of the cycle.

4



Linear Hybrid Systems

45



Linear dynamical systems

Linear dynamical systems
r\ (a b x
y) \c¢ d)\y
A very important class of control system

RBCLCh(Pl,P, PQ) — {(81,82) | s1 € P1,sy € Py, 51 “/P; 82}

# Solution is an exponential function
* Need a representation on which optimization can be performed

* Approximation methods [Girard et al., Frehse et al., PP]
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Switched Linear Systems

e eV (R
N |

0.34 .N%

0.52\@

0.34
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Arbitrary switching example

A

- [ O=C

| N
et \j

P1

V(z) =19.576x1% + 11.627x1°z9 + 15.267x1 Yz + 3.0857x1 3293+
8.9471:1712:1324 — 1.36292125° + 1.053925°.
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Hybridization for stability

P1

P={Azx|z € R}

+ Conical partitions do not ensure bounded error approximation of
the reachability relation

+ However, they ensure bounded error approximation of the scaling
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Completeness for linear systems

Theorem

For every linear dynamical system that is asymptotically stable, t!

nere

exists a polyhedral hybrid system abstraction that is asymptotical

Proof Idea
z € flz) &€y

ly stable.

d(f(z),g9(x)) < € implies d(o¢(z0,1),04(x0,t)) < m(e,T') for a time bound T

+ Inspired from a classical result from differential inclusions theory, that states that if
the Hausdorff distance between two differential inclusions is bounded by g, then
the solutions within time T are bounded by some exponential function of (g, T)

50



Completeness for linear systems

Theorem

For every linear dynamical system that is asymptotically stable, t!

nere

exists a polyhedral hybrid system abstraction that is asymptotical

Proof Idea
z € flz) &€y

ly stable.

d(f(z),g9(x)) < € implies d(o¢(z0,1),04(x0,t)) < m(e,T') for a time bound T

P2 P1
T = Ax r = Ax
icP T € P|x|
it P = {Az|z € R) d(f(z),9(z)) < e[z

Polyhedral Polyhedral-like

51



Proof continued ....

b2 1 7 = Ar r = Ax
P P={Az|z € R} d(f(z),9(x)) < €|z
d(of(z0,1),04(w0,t)) <m(e,T)
Polyhedral Polyhedral-like

Polyhedral system stable iff Polyhedral-like system stable

If the linear system is asymptotically stable, then there exists
a polyhedral-like system that is stable

52



Proof continued ....

P2 P1 :.U:A:C j?ZA:C
i€ P z € P|x|
R P ={Az|z € R} d(f(z), g(x)) < €|z

CZ(O’f(CUQ, t), O'g(ili(), t)) < m(e, T)

Polyhedral Polyhedral-like

If the linear system is asymptotically stable, then
there exists a polyhedral-like system that is stable - / [

Asymptotically stable linear systems are uniformly T

converging — choose the € such that the error in the
solutions between polyhedral-like and linear systems is
bounded by 1/4 for the time T it takes for the trajectories of
the linear system to be 1/2 the distance where they started

53



AVERIST : Algorithmice VERItier for STability

Polyhedral Hybrid pooTTTTTTTTTAT AT Lincar
Linear Hybrid Automaton E Quantitative i Optimization
Automaton : ; Predicate Abstraction : Solver
»| Hybridization E l E (GLPK)
: : Graph
: Model-Checking E H analyzer
E : (NetworkX)
AVERIST i :
: Validation : H SMT Solver
. . (Z3)
E . E Parma
: Refinement : H Polyhedral
: . Library




Experiments

Lyapunov’s method suffers from numerical

AVERIST STABHYLI lnStablllty
Dimension/ Regions  Runtime  Proved Degree  LF found Runtime .
N Stability + 6th degree polynomial returned, but no 8th

2D | Ast 129 31 Yes 6 Yes 8 degree polynomial

5541 9 <1 Yes 8 - 452 . .

+ LF found for arbitrary switched system, but
SS81 17 <1 Yes 6 - 443 . .
not for restricted switched system

SS16 1 33 1 Yes 4 — 177
3D | As4 147 194 Yes 6 - 410 #* Common LF found, but no multiple LF

SS4 4 771 484 Yes 2 Yes 75

SS8 4 771 470 Yes 2 Yes 15 AVERIS T

SS16 4 771 568 Y 2 Y 138 o1 .

_ _ + Prove stability in many more cases than

4D AS7 81 625 Yes 2 — 12 S tabh 11

Ss47 81 119 Yes 2 — 101 y

sss7 | 153 234 Yes 2 - 1071 + The verification time increases slower with

ssi67 | 297 533 Yes 2 - 339 respect to the number of regions as compared

AS9 - out No 4 Yes 34 to the degree of the polynomial

5549 81 125 Yes 4 - 105

S R — - N - ” Abstraction computation is parallelizable

* Stabhyli can handle non-linear hybrid

systems
55



Conclusion

* An algorithmic verification method for stability analysis based

on abstraction-refinement and hybridization
+ Works for polyhedral and linear hybrid systems

* Future Work: Non-linear systems and case studies
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