
February 4, 2016

Algorithmic Verification of
Stability of Hybrid Systems

Pavithra Prabhakar
Kansas State University

1

Mysore Park Workshop

Joint work with Miriam Garcia Soto
(IMDEA Software Institute, Madrid)

Cyber-Physical Systems (CPS)

Medical Devices Automotive Robotics Aeronautics Process control

Systems in which software "cyber" interacts with the "physical" world

2

ẋ = f(x, u)

y = h(x)

yu

u = g(y)

Plant

Control

Hybrid Systems

Systems with mixed discrete-

continuous behaviors

Hybrid Systems

3

Air traffic collision avoidance protocol

b

c

free entry

circexit

collision detection
& negotiation

reach inner
circle

parallel to its
initial direction

4

d = (d1, d2): velocity of the airplane

x = (x1, x2): position of the airplane

polytopes, ellipsoids and support functions. These techniques have been extended
to non-linear systems using Taylor models [4]. Another class of techniques for
computing the reach sets is based on hybridization [16, 3, 6], where the state-
space is partitioned into a finite number of regions and the continuous dynamics
in each of the regions is approximated by a simpler dynamics. For instance,
in [16], a hybridization technique which approximates non-linear dynamics by
rectangular dynamics is presented. Finally, deductive approaches for computing
invariants by solving for coe�cients of templates has been investigated [15, 18].

In this paper, we consider the problem of computing the reachable set of a
parameterized linear system, that is, ẋ(t) = Ax(t), where A 2 ⌦ is a square
matrix and ⌦ is a compact polyhedral set. Here, the matrix A is not fixed, but
takes values from a set ⌦, which can be interpreted as a set of perturbations
to which the system needs to be robust. This is an interesting class of systems,
which are useful, for instance, in modeling aircraft dynamics in air tra�c control
protocols. The following matrix from [13] captures the dynamics of an aircraft,
where x = (x1, x2) is the position of the aircraft in a two dimensional plane, and
d = (d1, d2) its velocity.

2

664

ẋ1

ẋ2

ḋ1

ḋ2

3

775 =

2

664

0 0 1 0
0 0 0 1
0 0 0 �!

0 0 ! 0

3

775

2

664

x1

x2

d1

d2

3

775

Here, ! is the angular velocity, which is a parameter that changes depending on
the mode of the airplane. In particular, some complicated computation is used
to set its value during a mode change. Hence, the value of ! is not known a
priori, however, a bound on its value can be inferred.

Our broad technique for approximating the solution of ẋ(t) = Ax(t), where
A 2 ⌦, for a given set of initial states X0 and a time interval [0, T], is as fol-
lows. We sample both the parameter space ⌦ and the time domain [0, T] using
a sample interval �. We compute the solution �(A, t) of the di↵erential equation
at these sample points (A, t), and construct a piecewise continuous function ap-
proximating � by interpolating at the sample values. The approximate function
is a piecewise bilinear function which is piecewise linear in time t and matrix
parameters A. To summarize, given an error tolerance ✏ > 0, our methods com-
putes a sampling interval � > 0, such that the piecewise bilinear function �̂(A, t)
obtained by interpolating the value of � at the �-grid points of ⌦ and [0, T] is
within ✏ of � at all points in ⌦⇥ [0, T]. Note that we approximate the function,
rather than just over-approximating the reachable set. Hence, the relation be-
tween time and state is preserved in our construction, which makes it amenable
to compositional analysis.

2 Related work

The problem of reachable set computation of linear dynamical systems with un-
certain inputs ẋ = Ax + Bu, where the input u 2 U belongs to a compact set,

!: the angular velocity

! := ⇤ḋ2 = !d1

ḋ1 = �!d2

ẋ2 = d2

ẋ1 = d1

(! := ⇤)

(! := ⇤)
(y, e)

kx� yk p

(r!)2 = kdk2

kx� ck =
p
3r

c := x+ �d = y + �e

(x0 := x, d

0 := d)

free

ḋ2 = !d1

ḋ1 = �!d2

ẋ2 = d2

ẋ1 = d1

circ

kx� ck r

ḋ1 = !d2

ẋ2 = d2

ẋ1 = d1

ḋ2 = �!d1

entry

ḋ2 = 0

ḋ1 = 0

ẋ2 = d2

ẋ1 = d1

exit

x0 + �1d0 = x+ �2d

Figure 3: Hybrid automaton model of the aircraft collision avoidance protocol

Guard(circ, exit)(x,d,x0
,d0

,x0,d0,!1,!2, cs1, cs2, tsync

,

c, r) = (x0 + �1d0 = x+ �2d)

^(x = x0) ^ (d = d0) ^ (!2 = 0)

Next, we define a predicate which encodes an execution.
Note that the execution starts at free and could end in any
location. Hence, we add the constraints in the last 4 lines of
Exec, which capture the possibility of ending in any of the
four states. Also, we ensure that t

sync

is the same as the
time at which the first transition was taken.

Exec(x,d, t,x0
,d0

, cs1, cs2, tsync

, c, r) =

(Dyn(free)(x1,d1,!1, t1,x
0
1,d

0
1)

^Guard(free, entry)(x0
1,d

0
1,x2,d2,x0,d0,!1,!2, cs1, cs2,

t

sync

, c, r) ^Dyn(entry)(x2,d2,!2, t2,x
0
2,d

0
2)

^Guard(entry, circ)(x0
2,d

0
2,x3,d3,x0,d0,!2,!3, cs1, cs2,

t

sync

, c, r) ^Dyn(circ)(x3,d3,!3, t3,x
0
3,d

0
3)

^Guard(circ, exit)(x0
3,d

0
3,x4,d4,x0,d0,!3,!4, cs1, cs2,

t

sync

, c, r) ^Dyn(exit)(x4,d4,!4, t4,x
0
4,d

0
4))

^(t
sync

= t1)

^((x = x1,d = d1,x
0 = x0

1,d
0 = d0

1, t = t1)

_(x = x1,d = d1,x
0 = x0

2,d
0 = d0

2, t = t1 + t2)

_(x = x1,d = d1,x
0 = x0

3,d0 = d3
0
, t = t1 + t2 + t3)

_(x = x1,d = d1,x
0 = x0

4,d
0 = d0

4, t = t1 + t2 + t3 + t4))

Next we encode the safety specification for two aircraft. We
want to ensure that any execution of the composed hybrid
automata for the two aircraft is (P, T, {1, 2})-safe, where
{1, 2} correspond to the position variables. We write below
the negation of safety:

Unsafe = Exec(x,d, t,x0
,d0

, cs1, cs2, tsync

, c, r)

^Exec(y,d, t, y0,d0
, cs1, cs2, tsync

, c, r)

^(kx0 � y0k p)

We enforce that the executions synchronize by requiring cs1,
cs2, tsync

, c and r to be the same values in both the execu-
tions.

5. APPROXIMATION
In this section, we present the approximate dynamics and
guard functions which will capture the executions of an ap-
proximate hybrid automaton. Let us fix ✏ > 0 and a time

bound T . Then we construct d
Dyn(q) and \

Guard(q, q0) which
ensure that the executions resulting from their composition
follows the execution of Exec(H, ✏, T), whereH is the hybrid
automaton for the protocol.

Approximating the continuous dynamics.
Let d

Dyn(q)(x1,d1,!, t,x
0
, d

0
) denote an approximate func-

tion for the dynamics. More precisely, d
Dyn(q)(x1,d1,!, t,x

0
,

d
0
) implies that there is a transition (q,x1,d1)

!,t�! (q0,x00
,d00)

inH such that k(x0
,d0)� (x00

,d00)k ✏. To construct such a
result, we borrow the result from [9]. In [9], an algorithm for
constructing a piecewise a�ne function approximating a pa-
rameterized linear system is presented. The algorithm sam-
ples the time domain and the parameter-space at uniform
intervals and constructs a multi-a�ne function which inter-
polates the given function at these points. We implement
an algorithm which outputs an SMT formula corresponding
to this approximate function.

Approximating the discrete dynamics.
Next, we present the approximate guard predicates; they are
similar to the actual guard predicates except that auxiliary
variables x

a

,d
a

,x0
a

,d0
a

are added to capture the actual tran-
sitions in the guard, where as the constraints kx� x

a

k ✏

account for the approximation error in the dynamics.

\
Guard(free, entry)(x,d,x

a

,d
a

,x
0
,d

0
,x

b

,d
b

,x0,d0,!1,!2,

cs1, cs2, tsync

, c, r) = (k(cs1)x � (cs2)xk p)

^((cs1)x + �(cs1)
d

= (cs2)x + �(cs2)
d

)

^(c = (cs1)x + �(cs1)
d

) ^ (k(cs1)x � ck =
p
3r)

^((r!2)
2 = k(cs1)

d

k2) ^ (kx� x
a

k ✏)

^(kx0 � x
b

k ✏) ^ (kd� d
a

k ✏)

^(kd0 � d
b

k ✏) ^ (x0 = x
a

,d0 = d
a

)

^(x
a

= x
b

,d
a

= d
b

, (cs1)x = x
a

, (cs1)
d

= d
a

)

c = x+ �d = y + �e

||x� c|| =
p
3r (r!)2 = ||d||2

x

0 := x, d0 := d

x+ �2d= x

0 + �1d
0! := 0

||x� c|| r

! := �!

The aircraft maintain a minimum
distance between them always

Minimum separation

O

a
p
3r

r

Automatic Gear Box & Cruise Control

5

+
+

+

�

vvref T

Cruise controller

Gear box

p = g(v)

e
Kre

Kr
Tr

R
e(⌧)d⌧

v̇ = fp(v, T)

Velocity v reaches vref

even in the presence of disturbances

Stability

6

Stability

Stability is a fundamental property in control system design

✤ It captures the notion that small perturbations in the initial state or input result in only small
deviations from the nominal behavior

7

Cruise control Robotic arm Bipedal robot walking

✤ Set-point stability

✤ Stability of the periodic orbit

✤ Small perturbations in the initial state lead to small deviations in
the system behavior

8

Stability

Lyapunov and asymptotic stability

�

�
�

�

8✏ > 0, 9� > 0, 8⌧ 0

A system is Lyapunov stable with respect to a trajectory ⌧ if

|⌧(0)� ⌧ 0(0)| < �) 8t � 0 |⌧(t)� ⌧ 0(t)| < ✏

9

Lyapunov Stability

Asymptotic stability in addition requires convergence to the
reference trajectory

Asymptotic Stability

y

x

x

y

x

y

Lyapunov Stable

Unstable

Asymptotically Stable

Challenges in Stability Verification
for Hybrid Systems

10

Stability analysis

Eigen value analysis does not
suffice for switched linear system

Stability can be determined
by eigen values analysis

Linear dynamical systems

Stable Stable

Stable Unstable

x

y
y

x

Linear hybrid systems
y

x

x

y

Current techniques for Stability
Verification

12

Lyapunov’s second method

V

xy

✤ Choose a template

✤ Polynomial with coefficients as parameters

✤ Encode (a relaxation) of the constraints as a sum-of-
square programming problem

✤ Use existing tools for SOS

Template based automated search
✤ Continuously differentiable

✤ Positive definite

✤ Decreases along any trajectory

Lyapunov function:

V : Rn ! R+

@V (x)
@x

F (x) 0 8x

V (x) � 0 8x

A CEGAR framework

✤ Success depends crucially on the choice of the template

✤ The current methods provide no insight into the reason
for the failure, when a template fails to prove stability

✤ No guidance regarding the choice of the next template

Shortcomings:

13

Counter-example guided abstraction
refinement

14

Abstraction

21 3

4 5 6

7 8 9

21 3

4 5 6

7 8 9

15

Safety Analysis

✤ Every trajectory corresponds to a path in the graph

✤ Absence of a path from green to red node implies safety

Abstraction

21 3

4 5 6

7 8 9

✤ The above system is safe

✤ The abstract graph has a counter-example

21 3

4 5 6

7 8 9

✤ Right abstractions are hard to find!

16

✤ Every trajectory corresponds to a path in the graph

✤ Absence of a path from green to red node implies safety

Safety Analysis

Refinement

21 3

4 5 6

7 8 9

✤ Refine by analyzing the abstract counter-example

21 3

5 6

7 8 9

4

17

✤ The above system is safe

✤ The abstract graph has a counter-example

✤ Right abstractions are hard to find!

✤ Every trajectory corresponds to a path in the graph

✤ Absence of a path from green to red node implies safety

Safety Analysis

Counter-example guided abstraction refinement

Property
violated

Abstraction
Relation

Analysis
Results

Abstract
Counter-example

Property
Abstract
System

Concrete
System

Abstract Model-Check

ValidateRefine

Yes

No

YesNo

Property
satisfied

✤ CEGAR for discrete systems
[Kurshan et al. 93, Clarke et al. 00,
Ball et al. 02]

✤ CEGAR for hybrid systems safety
verification [Alur et al 03, Clarke et
al 03, Prabhakar et al 13]

18

✤ Success depends crucially on the choice
of the template

✤ No insight into the reason for the failure,
when a template fails to prove stability

✤ No guidance regarding the choice of the
next template

Template based search CEGAR framework

✤ Systematically iterate over the abstract
systems

✤ Returns a counter-example in the case
that the abstraction fails

✤ The counter-example can be used to
guide the choice of the next abstraction

What are the ingredients for
CEGAR?

19

CEGAR questions

✤ What pre-orders preserve stability?

✤ How do we construct abstractions/refinement?

20

21

Simulations and Bisimulations

s1 s2

s01

⌃1

s02

⌃2

R

R

✤ Every path of the first system has a matching path in the second system

✤ Bisimulations preserve several discrete-time properties [Timed automata,
Multi-rate automata, O-minimal automata]

Simulation between T1 and T2 is a binary relation R ✓ S1 ⇥ S2

s1 s2R

s01

�1

s02

�2

R

R

Stability is not bisimulation invariant!

22

y

x

Lyapunov Stable

x

y

Unstable

(x, y) (x0
, y) (x, y + xy) (x0

, y + x

0
y)

Preorders for reasoning about stability of hybrid systems.Pavithra Prabhakar, Geir Dullerud and Mahesh Viswanathan.
15th ACM International Conference on Hybrid Systems: Computation and Control (HSCC), 2012. Honorable mention best paper award.

(0, y), t 7! (t, y) (0, y), t 7! (t, y + yt)

Uniformly continuous (bi)-simulations

x

�

✏
R

✤ Continuous simulations suffice for stability with respect to an equilibrium point

✤ Classical stability analysis techniques —- Lyapunov’s second method and Linearization —-
are instances of stability analysis based on uniformly continuous simulations

23

Theorem

Let R be a uniformly continuous simulation from T1 to T2, and be consistent with ⌧1 and ⌧2.

T2 is stable with respect to ⌧2 implies T1 is stable with respect to ⌧1

R is a uniformly continuous simulation from T1 to T2 if

1. R is a simulation and

2. R is uniformly continuous.

8✏ > 0, 9� > 0 such that 8x 2 Dom(R),

R(B�(x)) ✓ B✏(R(x))

Preorders for reasoning about stability of hybrid systems with inputs. Pavithra Prabhakar, Jun Liu and Richard Murray.
International conference on Embedded Software (EMSOFT), 2013. Invited paper at the 50th Allerton conference.

Abstraction based Analysis

✤ What pre-orders preserve stability?

✤ How do we construct abstractions?

24

25

Piecewise Constant Derivative System

9� > 0, 8✏ 2 (0, �]

✤ Special structure in a small neighborhood
✤ Homogenous linear constraints matter

8✏ > 0, 9� > 0, [(⌧(0) 2 B�(0))) 8t(⌧(t) 2 B✏(0))]

�

0

✏

D
A

B
C

E F

�

✏0

26

PCD examples

Lyapunov stable but
Not asymptotically stable

Both Lyapunov stable and
 asymptotically stable Unstable

Theorem

Verifying Lyapunov/Asymptotic Stability is undecidable in 5 dimensions for
PCDs, but is decidable in 2 dimension for a more general class of systems.

27

Predicate abstraction

A
BC

D
E Fp4

p1

p6

p2p3

p5

p1p2

p3

p4 p5

p6

w6

w5

w2

w4

w1

w3

Weights capture information

about distance to the origin

along the executionsd1
d2

p1p2
w(e) =

|d2|
|d1|

28

Weighted Graph Construction

p1

p2

p4

p3

1 1

11

p1

p2

p4

p3

1/2 1

1/21

p1

p2

p4

p3

2 1

21

p1

p2

p4

p3 p1

p2

p4

p3 p1

p2

p4

p3 p1

p2

p4

p3p1

p2

p4

p3

29

A remark on weight computation

x

y

z

~a

~b

p1

d1
d2

w(e) =
|d2|
|d1|

p2
|~b|
|~a|

|~b+~c|
|~a+~c|

~a ! ~b implies ↵~a ! ↵~b

sup
|v2|
|v1|

t � 0, v1 2 f1, v2 2 f2, v2 = v1 + 't

30

Soundness of Abstraction

Theorem

The piecewise constant derivative system is Lyapunov stable if

✤ there are no edges with infinite weights and

✤ the weighted graph does not contain any cycles with product of

weights on the edges greater than 1

Abstraction based model-checking of stability of hybrid systems. P. Prabhakar, M. G. Soto. CAV’13

31

Let H be a hybrid system.

Let P = {P1, . . . , Pk} a finite partition of its state-space

Construct a weighted graph G = (V,E,W), where:

Reach(P1, P, P2) = {(s1, s2) | s1 2 P1, s2 2 P2, s1
P s2}

V = P

(P1, P2) 2 E if there exists P such that Reach(P1, P, P2) 6= ;

✤

✤

✤ W (e) = sup{ ||y||
||x|| | (x, y) 2 Reach(P1, P, P2)}, where e = (P1, P2)

Quantitative Predicate Abstraction

Soundness holds under certain finite variability conditions
on the dynamics with respect to the partition

Foundations for Quantative predicate abstraction for stability analysis of hybrid systems. P. Prabhakar, M. G.
Soto. VMCAI’15

32

Rectangular and polyhedral dynamics

Reach(P1, P, P2) = {(s1, s2) | s1 2 P1, s2 2 P2, s1
P s2}

sup
|v2|
|v1|

t � 0, v1 2 f1, v2 2 f2, v2 = v1 + 't

Constant derivative ẋ = '

Polyhedral dynamics ẋ 2 P , P is a polyhedral set

' 2 P

33

Polyhedral switched systems

✤ Overlapping guards and invariants

x � 0

x 0

y � 0

q1 q2

q3q4

ẋ = �1
ẏ = 1

ẋ = 1
ẏ = �2

x � 0ẋ = �1
ẏ = �1

x� y < 0

x� y < 0 p1

p2p3

v1

✤ The number of switchings is not bounded

✤ Compute the reachability relation for a strongly connected
component

An algorithmic approach to stability verification of polyhedral switched systems. P. Prabhakar, M. G. Soto. ACC’14

34

Polyhedral switched systems contd.

Strongly connected component

q1 q2

x2 = x1 + a1t1 + a2t2 + a1t3 + a2t4 + . . .

x1 2 R, x1 + a1t1 2 R, x1 + a1t1 + a2t2 2 R, . . .

x2 = x1 + a1t
0
1 + a2t

0
2

x1 2 R, x2 2 R

q1 q2

x2

x1

q1 q2

x2 x1

35

Polyhedral switched systems contd.

Strongly connected component

q1 q2

x2 = x1 + a1t1 + a2t2 + a1t3 + a2t4 + . . .

x1 2 R, x1 + a1t1 2 R, x1 + a1t1 + a2t2 2 R, . . .

x2 = x1 + a1t
0
1 + a2t

0
2

x1 2 R, x2 2 R

x2

x1

x2

x1

Summary

✤ Can compute abstractions for PCD and polyhedral hybrid systems

✤ Quantitative predicate abstraction is sound for a general class of hybrid
systems

✤ What happens if the abstraction fails to deduce stability?

✤ It returns a counter-example!

36

Validation: Counter-example Analysis

37

38

Counter-example
✤ If the abstract system fails to prove stability, then it returns a counter-

example.

p1

p2

p4

p3

2 1

21

✤ A cycle with product of weight
greater than 1

✤ Need to check if it is spurious — can the system follow the cycle to exhibit
trajectories which diverge

✤ Validation — checking spuriousness — is not a bounded model-checking
problem

39

9↵ > 1 : x1
P1 x2

P2 x3 . . .
Pk xk ^ xk = ↵x1

Theorem

if and only if

A counter example p1 ! p2 ! p3 ! · · · ! p1 is valid

Validation

p1 p2 p4p3 p1pk�1

x1 x2 xkx3 x4 xk�1

40

9↵ > 1 : x1
P1 x2

P2 x3 . . .
Pk xk ^ xk = ↵x1

Validation

y1 7! ↵y1 7! ↵2y1 7! ↵3y1

41

Validation

y1 7! y2 7! y3 7! y4

Need not have a pair yi+1 = ↵yi for ↵ > 1

y1

y2
y3

y4

y0

42

Validation

y 7! Y

S S

G : S ! 2S

↵y⇤ 2 G(y⇤)

y⇤ 7! y⇤
Has some similarity with fix point

43

Validation

Let S be a non-empty, compact and convex set.
Let H be a set-valued function S to S such that
✤ its graph is a closed set
✤ H(s) is non-empty and convex for all s in S
Then H has a fixpoint

S S
y 7! Y

G : S ! 2S
G0 : S ! 2S given by s 7! G(s)

w

S0
with states from which there are infinite executions following the cycle

Kakutani’s Theorem

Validation and Refinement Summary

✤ If the counter-example is spurious, perform a backward
propagation along the weights on the edges to compute the point
of refinement

✤ Refine as before by splitting the region at the point of refinement

✤ Some improvements:

✤ If an infinite execution (not necessarily diverging) does not
exist, then can try to “eliminate” the cycle.

✤ If infinite executions exist, but no diverging executions, then
reduce the weight on some edge of the cycle.

44

Linear Hybrid Systems

45

Linear dynamical systems

Linear dynamical systems
✓
x

y

◆✓
a b
c d

◆✓
ẋ

ẏ

◆
=

46

A very important class of control system

✤ Solution is an exponential function
✤ Need a representation on which optimization can be performed
✤ Approximation methods [Girard et al., Frehse et al., PP]

Reach(P1, P, P2) = {(s1, s2) | s1 2 P1, s2 2 P2, s1
P s2}

47

Switched Linear Systems

x

y

Wednesday, May 15, 2013

(a) ẋ = Ax

x

y

y

Wednesday, May 15, 2013

(b) ẋ = Bx

Figure 1: Phase portraits

x

y

x

Wednesday, May 15, 2013

(a) System M1

x

y

Wednesday, May 15, 2013

(b) System M2

Figure 2: Sample trajectories

trajectory for each of the system M1 and M2 is shown in
Figure 2. Note that system M1 is Lyapunov stable, whereas
M2 is not.

The graphs G1 and G2 in Figure 3 are quantitative predicate
abstractions of M1 and M2 respectively, using the expres-
sions x and y. The nodes f1 and f3 correspond to the posi-
tive and negative x axes, respectively, and the nodes f2 and
f4 to the positive and negative y axes, respectively. The
reach sets were computed using the tool SpaceEx [7] and
the linear optimization problems were solved using GLPK.
Note that we have eliminated the nodes corresponding to
the quadrants, the reason being that those edges are not
required for the analysis of Condition C2 as long as Condi-
tion C1 holds, that is, the edges involving them have finite
weight. Note that G1 satisfies Condition C2 and hence im-
plies Lyapunov stability of M1. On the other hand, G2 does
not satisfy Condition C2. Though we cannot conclude in-
stability of M2, G2 returns a counter-example, namely, the
cycle f1f2f3f4f1 with weight > 1, explaining a potential
reason for instability. The counter-example suggests that an
infinite diverging execution is feasible by following the cy-
cle infinite time. Such an execution exists in this case, but
might not exist in general due to the conservativeness of the
abstraction.

Remark To illustrate the theoretical foundations behind
the quantitative predicate abstraction, we have presented
a simple construction of the weighted graph in Section 4.

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(a) Weighted graph G1

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(b) Weighted graph G2

Figure 3: Quantitative Abstractions

However, in a practical application of the technique to a class
of systems, it will be essential to modify the construction to
yield useful abstractions, as in the previous example, where
the nodes corresponding to the quadrants were eliminated.
In general, if a self loop has weight > 1, then it results in
a failed analysis. However, the weight might correspond to
the distance of executions from the origin increasing locally
within a region and does not match with the intuition that
the weight corresponds to scaling of an execution between
boundaries. This can, for instance, be fixed by splitting the
node v with the self loop into two copies v1 and v2, with
all the incoming edges of v directed to v1, all the outgoing
edges of v going out from v2 and the weight of the edge
from v1 to v2 being the weight on the self loop of v. Future
work will focus on optimizing the graph construction for the
particular class of systems and predicates.

6. CONCLUSION
We presented a quantitative predicate abstraction for stabil-
ity analysis, which extends the finite graph construction of
the standard predicate abstraction with weights on the edges
to capture information about the evolution of the distance
of the executions from the origin. We established a formal
connection between the abstract graph and the concrete hy-
brid system using the notion of continuous simulation and
presented conditions on the graph which imply stability of
the concrete hybrid system.

The quantitative predicate abstraction for stability analysis
has several advantages in comparison to traditional methods
based on Lyapunov function search. Firstly, if the abstrac-
tion fails to prove stability, that is, the abstract graph does
not satisfy the conditions, then it provides insights into the
reason for failure by exhibiting a counter-example. Secondly,
adding more predicates to the abstraction procedure pro-
vides a qualitatively better abstraction and hence more pre-
cise analysis. Thirdly, the construction of the abstraction is
compositional; abstraction for each subsystem (for example,
graphs corresponding to matrices A and B in the example)
can be constructed independently and merged. Composi-
tional analysis for stability based on this approach is a topic
for further investigation.

There are several arenas to explore to fully realize the frame-
work presented in the paper. One challenge is to develop
a fully automated abstraction refinement framework analo-
gous to CEGAR [5]. This requires validating the abstract

x

y

Wednesday, May 15, 2013

(a) ẋ = Ax

x

y

y

Wednesday, May 15, 2013

(b) ẋ = Bx

Figure 1: Phase portraits

x

y

x

Wednesday, May 15, 2013

(a) System M1

x

y

Wednesday, May 15, 2013

(b) System M2

Figure 2: Sample trajectories

trajectory for each of the system M1 and M2 is shown in
Figure 2. Note that system M1 is Lyapunov stable, whereas
M2 is not.

The graphs G1 and G2 in Figure 3 are quantitative predicate
abstractions of M1 and M2 respectively, using the expres-
sions x and y. The nodes f1 and f3 correspond to the posi-
tive and negative x axes, respectively, and the nodes f2 and
f4 to the positive and negative y axes, respectively. The
reach sets were computed using the tool SpaceEx [7] and
the linear optimization problems were solved using GLPK.
Note that we have eliminated the nodes corresponding to
the quadrants, the reason being that those edges are not
required for the analysis of Condition C2 as long as Condi-
tion C1 holds, that is, the edges involving them have finite
weight. Note that G1 satisfies Condition C2 and hence im-
plies Lyapunov stability of M1. On the other hand, G2 does
not satisfy Condition C2. Though we cannot conclude in-
stability of M2, G2 returns a counter-example, namely, the
cycle f1f2f3f4f1 with weight > 1, explaining a potential
reason for instability. The counter-example suggests that an
infinite diverging execution is feasible by following the cy-
cle infinite time. Such an execution exists in this case, but
might not exist in general due to the conservativeness of the
abstraction.

Remark To illustrate the theoretical foundations behind
the quantitative predicate abstraction, we have presented
a simple construction of the weighted graph in Section 4.

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(a) Weighted graph G1

x

y

Wednesday, May 15, 2013

Figure 7: Sample execution of System M1

f4

f1

f2

f3

0.52

0.340.52

0.34

Figure 8: Annotated Abstract Graph for System M1

f4

f1

f2

f3

3.2

2.13.2

2.1

Figure 9: Annotated Abstract Graph for System M2

Figure 10: SpaceX: Graphical representation of the
reach set

(b) Weighted graph G2

Figure 3: Quantitative Abstractions

However, in a practical application of the technique to a class
of systems, it will be essential to modify the construction to
yield useful abstractions, as in the previous example, where
the nodes corresponding to the quadrants were eliminated.
In general, if a self loop has weight > 1, then it results in
a failed analysis. However, the weight might correspond to
the distance of executions from the origin increasing locally
within a region and does not match with the intuition that
the weight corresponds to scaling of an execution between
boundaries. This can, for instance, be fixed by splitting the
node v with the self loop into two copies v1 and v2, with
all the incoming edges of v directed to v1, all the outgoing
edges of v going out from v2 and the weight of the edge
from v1 to v2 being the weight on the self loop of v. Future
work will focus on optimizing the graph construction for the
particular class of systems and predicates.

6. CONCLUSION
We presented a quantitative predicate abstraction for stabil-
ity analysis, which extends the finite graph construction of
the standard predicate abstraction with weights on the edges
to capture information about the evolution of the distance
of the executions from the origin. We established a formal
connection between the abstract graph and the concrete hy-
brid system using the notion of continuous simulation and
presented conditions on the graph which imply stability of
the concrete hybrid system.

The quantitative predicate abstraction for stability analysis
has several advantages in comparison to traditional methods
based on Lyapunov function search. Firstly, if the abstrac-
tion fails to prove stability, that is, the abstract graph does
not satisfy the conditions, then it provides insights into the
reason for failure by exhibiting a counter-example. Secondly,
adding more predicates to the abstraction procedure pro-
vides a qualitatively better abstraction and hence more pre-
cise analysis. Thirdly, the construction of the abstraction is
compositional; abstraction for each subsystem (for example,
graphs corresponding to matrices A and B in the example)
can be constructed independently and merged. Composi-
tional analysis for stability based on this approach is a topic
for further investigation.

There are several arenas to explore to fully realize the frame-
work presented in the paper. One challenge is to develop
a fully automated abstraction refinement framework analo-
gous to CEGAR [5]. This requires validating the abstract

48

Arbitrary switching example
y

x

Sunday, January 26, 2014

Fig. 6. ẋ = A3x

y

x

Sunday, January 26, 2014

Fig. 7. ẋ = A4x

y

x

Thursday, February 6, 2014

Fig. 8. ẋ = �A4x

Remark 2. For stability analysis, the only interesting linear hybrid automata
are those in which the invariants and guards are polyhedral sets defined by
homogenous linear constraints. This is because of the observation that both
Lyapunov stability and asymptotic stability are properties which depend only
on a neighborhood of the equilibrium point. Hence, from now on we make this
assumption.

5 Hybrid Predicate Abstraction for Stability Analysis of
Linear Hybrid Automata

In this section, we present our approach for stability analysis of Linear Hy-
brid Systems based on abstraction using predicates. Our method consists of two
phases:

1. Phase 1 - Hybridization: A polyhedral hybrid automaton abstracting a
linear hybrid automaton is constructed such that the Lyapunov (asymptotic)
stability of the former implies the same about the latter.

2. Phase 2 - Quantitative Predicate abstraction: A finite weighted graph
abstracting the polyhedral hybrid automaton is constructed such that certain
conditions on the former implies the Lyapunov and asymptotic stability of
the latter.

Predicate abstraction [13] is a standard technique for constructing finite state
systems which simulates a given (potentially) infinite state system. Hybridiza-
tion is a technique of constructing a hybrid system with simpler dynamics which
simulates a given hybrid system with complex dynamics. Both predicate ab-
straction [2, 1, 6] and hybridization [30, 3, 7] has been extensively studied in the
context of safety verification. These abstractions simulate the original system;
however, it has been shown in [26], that simulations do not su⇥ce to preserve
stability in general. Hence, a modified predicate abstraction was proposed in
[27] for piecewise constant derivative systems and extended in [28] for analyzing
stability of polyhedral hybrid automata. First, we present the abstraction based
stability analysis method [28] and discuss the issues in extending the method for
the class of linear hybrid automata. Next, we consider hybridization methods
proposed in the literature for safety analysis, and discuss their shortcoming for
stability analysis. Finally, we present our novel hybridization technique tailored

y

x

Sunday, January 26, 2014

Fig. 6. ẋ = A3x

y

x

Sunday, January 26, 2014

Fig. 7. ẋ = A4x

y

x

Thursday, February 6, 2014

Fig. 8. ẋ = �A4x

Remark 2. For stability analysis, the only interesting linear hybrid automata
are those in which the invariants and guards are polyhedral sets defined by
homogenous linear constraints. This is because of the observation that both
Lyapunov stability and asymptotic stability are properties which depend only
on a neighborhood of the equilibrium point. Hence, from now on we make this
assumption.

5 Hybrid Predicate Abstraction for Stability Analysis of
Linear Hybrid Automata

In this section, we present our approach for stability analysis of Linear Hy-
brid Systems based on abstraction using predicates. Our method consists of two
phases:

1. Phase 1 - Hybridization: A polyhedral hybrid automaton abstracting a
linear hybrid automaton is constructed such that the Lyapunov (asymptotic)
stability of the former implies the same about the latter.

2. Phase 2 - Quantitative Predicate abstraction: A finite weighted graph
abstracting the polyhedral hybrid automaton is constructed such that certain
conditions on the former implies the Lyapunov and asymptotic stability of
the latter.

Predicate abstraction [13] is a standard technique for constructing finite state
systems which simulates a given (potentially) infinite state system. Hybridiza-
tion is a technique of constructing a hybrid system with simpler dynamics which
simulates a given hybrid system with complex dynamics. Both predicate ab-
straction [2, 1, 6] and hybridization [30, 3, 7] has been extensively studied in the
context of safety verification. These abstractions simulate the original system;
however, it has been shown in [26], that simulations do not su⇥ce to preserve
stability in general. Hence, a modified predicate abstraction was proposed in
[27] for piecewise constant derivative systems and extended in [28] for analyzing
stability of polyhedral hybrid automata. First, we present the abstraction based
stability analysis method [28] and discuss the issues in extending the method for
the class of linear hybrid automata. Next, we consider hybridization methods
proposed in the literature for safety analysis, and discuss their shortcoming for
stability analysis. Finally, we present our novel hybridization technique tailored

5.4 Comparison with Lyapunov function based techniques

Consider the linear hybrid automaton Harb which switches arbitrarily between
the dynamics in Figure 6 and Figure 7. There does not exist a common quadratic
Lyapunov function for Harb. The stability verification tool Stabhyli [20] finds a
common sextic Lyapunov function given by:

V (x) = 19.576x1
6 + 11.627x1

5x2 + 15.267x1
4x2 + 3.0857x1

3x2
3+

8.9471x1
2x2

4 � 1.3629x1x2
5 + 1.0539x2

6.

The tool searches iteratively with increasing degree of polynomial templates until
it finds a solution. It is well-understood that in general the success of the tem-
plate based methods crucially depends on the ingenuity of the user in providing
the right template, as iterating over all possible templates is computationally
expensive. Also, it is important to note that a failed parameter search for a
template provides no insights into the potential reasons for instability or in any
way guide the choice of the next template. In addition, these methods su�er
from numerical instability of the Linear Matrix Inequality and Sum-of-Squares
optimization tools which are used to find the coe⇤cient of the parameters (for
quadratic and high order polynomials, respectively). Therefore, they can return
incorrect Lyapunov functions.

In contrast, our method has the following benefits.

Systematically searches the proof-space and returns counter-examples. The ab-
straction refinement approach systematically explores the proof search-space.
Adding predicates results in a refinement of the abstraction. More importantly,
our methods returns a counter-example when an abstraction fails to prove sta-
bility. The counter-example can be analysed either manually or automatically
to guide the next predicates to be added. At this point, we have not considered
automatic refinement based on counter-examples, that will be a direction for
future work.

Construction of abstraction parallelizable and incremental. The computation of
the abstraction can be carried out independently for every mode-region pair, in
both stages of the abstraction - from linear hybrid automaton to polyhedral hy-
brid automaton, and from polyhedral hybrid automaton to the weighted graph.
Hence, the construction of abstraction is highly parallelizable. Next, the abstrac-
tions can be constructed incrementally with the introduction of new predicates.
We need to only update the part of the polyhedral hybrid automaton or the
weighted graph which are a�ected by the newly introduced predicates. Therefore,
the abstraction can be constructed incrementally over consecutive iterations.

Negligible Numerical Instability. Computing the polyhedral approximation can
be performed exactly. It requires computing the set ⇤y ⇥ R, x = Ay, where R is a
polyhedral region and A is a matrix. Assuming all the coe⇤cient are rational, it
can be computed exactly using quantifier elimination. In our implementation, we
use the Z3 SMT solver [8]. Further, to compute the weights we use an exact linear
programming solver; these methods use interior point algorithms for e⇤ciency,
but finally update the solutions using a simplex algorithm to provide the exact

q1 q2

p1

p2

49

Hybridization for stability

P = {Ax |x 2 R}

y2

y1

a1

z1

p2 p1

x1

x2

a2

z2
ẋ = Ax

p2 p1

R

ẋ 2 P

p2 p1

✤ Conical partitions do not ensure bounded error approximation of
the reachability relation

✤ However, they ensure bounded error approximation of the scaling

50

Completeness for linear systems

For every linear dynamical system that is asymptotically stable, there

exists a polyhedral hybrid system abstraction that is asymptotically stable.

Theorem

✤ Inspired from a classical result from differential inclusions theory, that states that if
the Hausdorff distance between two differential inclusions is bounded by g, then
the solutions within time T are bounded by some exponential function of (g, T)

Proof Idea
ẋ 2 f(x) ẋ 2 g(x)

d(f(x), g(x)) < ✏ implies d(�f (x0, t),�g(x0, t)) m(✏, T) for a time bound T

51

Completeness for linear systems

For every linear dynamical system that is asymptotically stable, there

exists a polyhedral hybrid system abstraction that is asymptotically stable.

Theorem

Proof Idea
ẋ 2 f(x) ẋ 2 g(x)

d(f(x), g(x)) < ✏ implies d(�f (x0, t),�g(x0, t)) m(✏, T) for a time bound T

p2 p1

R
P = {Ax |x 2 R}

ẋ = Ax

ẋ 2 P

Polyhedral

ẋ = Ax

Polyhedral-like

ẋ 2 P ||x||
d(f(x), g(x)) < ✏||x||

52

Proof continued ….
p2 p1

R P = {Ax |x 2 R}

ẋ = Ax

ẋ 2 P

ẋ = Ax

Polyhedral Polyhedral-like

ẋ 2 P ||x||
d(f(x), g(x)) < ✏||x||

Polyhedral system stable iff Polyhedral-like system stable

If the linear system is asymptotically stable, then there exists
a polyhedral-like system that is stable

d(�f (x0, t),�g(x0, t)) < m(✏, T)

53

Proof continued ….

If the linear system is asymptotically stable, then
there exists a polyhedral-like system that is stable

Asymptotically stable linear systems are uniformly
converging — choose the such that the error in the
solutions between polyhedral-like and linear systems is
bounded by 1/4 for the time T it takes for the trajectories of
the linear system to be 1/2 the distance where they started

✏

p2 p1

R P = {Ax |x 2 R}

ẋ = Ax

ẋ 2 P

ẋ = Ax

Polyhedral Polyhedral-like

ẋ 2 P ||x||
d(f(x), g(x)) < ✏||x||
d(�f (x0, t),�g(x0, t)) < m(✏, T)

T

AVERIST : Algorithmic VERIfier for STability

54

Hybridization

Quantitative
Predicate Abstraction

Model-Checking

Linear Hybrid
Automaton

Polyhedral Hybrid
Automaton

Validation

Refinement
Parma

Polyhedral
Library

Linear
Optimization

Solver
(GLPK)

Graph
analyzer

(NetworkX)

SMT Solver
(Z3)

AVERIST

Experiments

55

AVERIST STABHYLI

Dimension/
name

Regions Runtime Proved
Stability

Degree LF found Runtime

2D AS1 129 31 Yes 6 Yes 8

SS4 1 9 <1 Yes 8 − 452

SS8 1 17 <1 Yes 6 − 443

SS16 1 33 1 Yes 4 − 177

3D AS 4 147 194 Yes 6 − 410

SS4 4 771 484 Yes 2 Yes 75

SS8 4 771 470 Yes 2 Yes 15

SS16 4 771 568 Yes 2 Yes 138

4D AS 7 81 625 Yes 2 − 12

SS4 7 81 119 Yes 2 − 101

SS8 7 153 234 Yes 2 − 1071

SS16 7 297 533 Yes 2 − 339

AS 9 − out No 4 Yes 34

SS4 9 81 125 Yes 4 − 105

SS8 9 153 247 Yes 2 − 16

Lyapunov’s method suffers from numerical
instability

✤ 6th degree polynomial returned, but no 8th
degree polynomial

✤ LF found for arbitrary switched system, but
not for restricted switched system

✤ Common LF found, but no multiple LF

AVERIST

✤ Prove stability in many more cases than
Stabhyli

✤ The verification time increases slower with
respect to the number of regions as compared
to the degree of the polynomial

✤ Abstraction computation is parallelizable

✤ Stabhyli can handle non-linear hybrid
systems

Conclusion

✤ An algorithmic verification method for stability analysis based
on abstraction-refinement and hybridization

✤ Works for polyhedral and linear hybrid systems

✤ Future Work: Non-linear systems and case studies

56

57

References

✤ Pre-orders for reasoning about stability.
P. Prabhakar, G. E. Dullerud, M. Viswanathan. HSCC’12

✤ Pre-orders for reasoning about stability properties with respect to inputs of hybrid systems.
P. Prabhakar, J. Liu, R. M. Murray. EMSOFT’13

✤ On the decidability of stability of hybrid systems.
P. Prabhakar, M. Viswanathan. HSCC’13

✤ Abstraction based model-checking of stability of hybrid systems.
P. Prabhakar, M. G. Soto. CAV’13

✤ An algorithmic approach to stability verification of polyhedral switched systems.
P. Prabhakar, M. G. Soto. ACC’14

✤ Foundations for Quantative predicate abstraction for stability analysis of hybrid systems.
P. Prabhakar, M. G. Soto. VMCAI’15

✤ Hybridization for stability analysis of switched linear systems.
P. Prabhakar, M. G. Soto. HSCC’16

