Quantitative Analysis of

Distributed Probabilistic Systems

Ratul Saha
National University of Singapore

Collaborators

Current Collaborators:

- \rightarrow S Akshay IIT Bombay, India
- → Javier Esparza
 TU Munich, Germany
- → Grant Ingersoll

- → Ansuman Banerjee

 ISI Kolkata, India
- → Madhavan Mukund

Previous Collaborators:

- → Sumit K Jha
 Univ. of Central Florida, USA
- → P S Thiagarajan

 Harvard Medical School, USA

Distributed

Network of Agents

Probabilistic

Distributed

The Synchronization

→ Joint probabilistic move after the synchronization action

Probabilistic

Distributed

Deterministic

Restriction: This is allowed

Restriction: This is not allowed

Distributed Markov Chains (DMC)

- Network of communicating probabilistic transition systems
 - → Synchronize on shared actions
 - → Followed by joint probabilistic move
- → Key restriction: no two enabled synchronizations will involve the same agent
 - → Syntactically, local state uniquely determines its communicating partners

DMC: Events

→ Event: One synchronization executed at a time, followed by a probabilistic move

$$e = ((s_1, s_2), a, (s'_1, s'_2))$$
 is an event, $p_e = 0.2$

DMC: Coin Toss Example

- \rightarrow Two players. Each toss a fair coin (a_1 and a_2)
- \rightarrow Both tails: they toss again (tt)
- → Both heads:
 - (i) they toss again with prob 0.9 (*hh*), or (ii) go to an uncertain state with prob 0.1 (*u*)
- → Different outcome: who tosses Heads wins (ht and th)

DMC: Coin Toss Example

DMC: Coin Toss Example

Global Transition System

→ Associate a global transition system based on event occurrences

→ This is interleaved semantics

```
agent 1 tossing T
e_t^1, 0.5
(IN_1, IN_2)
```


(unmarked events have probability 1)

The Trajectory Space

 We wish to reason about the behavior of the system using the interleaved semantics

Problem: It is *hard* to define a probability measure over the set of maximal trajectories

The Trajectory Space

Due to mix of concurrency and stochasticity, TS is not a Markov chain in general

The Solution

Equivalence Classes of Trajectories

Independence over Events

 $\rightarrow e_t^1 I e_h^2$ — agent 1 tossing tail and agent 2 tossing head are independent

Equivalence over Event Sequences

 $\rightarrow [e_t^1 e_h^2] = \{e_t^1 e_h^2, e_h^2 e_t^1\}$ — equivalence class over event sequences

Markov Chain Semantics

Markov Chain Semantics

- $ightarrow \{m{e}_t^1, m{e}_t^2\}$ is a maximal step at (IN_1, IN_2)
- → The probability of a step is the product of probabilities associated with the events in the step

Coin Toss: Global Markov Chain

Defining the Probability Measure

- **Theoretical Results**

Expressiveness

→ Close connection with Petri nets

→ More expressive than Free-choice

→ Open: But how much more?

Termination Properties

- → Attach non-neg real weights to events
- → Interpret weights: Probability, expected cost and expected time of termination
- Perform both exact and approximate verification
- → Open: Can we attach time interval to the local/global states?

Syntactic Reduction

- Reduce the system preserving termination properties
- → Free-choice subclass: can be reduced to summarization
- → Open: Can we identify the reason behind the gap?

Ambitious Open Problems

→ Extend termination properties to full PCTL (or variant)

→ Model partially observable systems

→ Learning parameters with Big Data

Application Domains

Application Domains

- → Stochastic analysis of Business Process Management (BPM) systems
 - (i) Throughput analysis
 - (ii) Simulation with statistical guarantee
- → Model distributed cloud computing systems
 - (i) Model shard-replica systems
 - (ii) Predict fault-tolerance and eventual consistency

Thank you!

Questions?