Distributed

Probabilistic
Systems

Ratul Saha

National University of Singapore



| Collaborators

Current Collaborators:

— S Akshay ,
IIT Bombay, India — Ansuman Banerjee

Javier Espa rza ISI Kolkata, India
N
TU Munich, Germany — Madhavan MUkund

— Grant Ingersoll i nde
CTO, LucidWorks®
Previous Collaborators:
— Sumit KJha — P S Thiagarajan

Univ. of Central Florida, USA Harvard Medical School, USA



Distributed



] Network of Agents
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] The Synchronization

— Joint probabilistic move after the
synchronization action
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| Restriction: This is allowed
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| Distributed Markov Chains (DMC)

— Network of communicating probabilistic
transition systems

— Synchronize on shared actions

— Followed by joint probabilistic move

— Key restriction: no two enabled
synchronizations will involve the same agent

— Syntactically, local state uniquely determines its
communicating partners



J DMC: Events

— Event: One synchronization executed at a
time, followed by a probabilistic move
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J DMC: Coin Toss Example
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Two players. Each toss a fair coin (a; and a-)
Both tails: they toss again (tt)
Both heads:

(i) they toss again with prob 0.9 (hh), or
(ii) go to an uncertain state with prob 0.1 (u)

Different outcome: who tosses Heads wins (ht and th)



J DMC: Coin Toss Example
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J DMC: Coin Toss Example




J Global Transition System

— Associate a global transition system based
on event occurrences

— This is interleaved semantics



| Clobal Transition System: Coin Toss

agent 1 tossing T >
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| Global Transition System: Coin Toss

agent 1 tossing T > (IN1,T2) agent 2 tossing T
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| Global Transition System: Coin Toss
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| Global Transition System: Coin Toss
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| Global Transition System: Coin Toss
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| Global Transition System: Coin Toss
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| Global Transition System: Coin Toss
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l The Trajectory Space

— We wish to reason about the behavior of the
system using the interleaved semantics

Problem: It is hard to define a probability
measure over the set of maximal trajectories
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l The Trajectory Space

Due to mix of concurrency and stochasticity,
TS is not a Markov chain in general
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] The Solution
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l Equivalence Classes of Trajectories

—
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J Independence over Events
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— e; I e; — agent 1 tossing tail and agent 2
tossing head are independent
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l Equivalence over Event Sequences
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] Markov Chain Semantics
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] Markov Chain Semantics

(INy, IN,)
(IN1,T2)
e, 0.5 €05 {er,€f},0.25
(T17 TQ)

— {e;, e?} is a maximal step at (INy, IN-)

— The probability of a step is the product of
probabilities associated with the events in
the step
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] Coin Toss: Global Markov Chain
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] Defining the Probability Measure
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Theoretical Results



J Expressiveness

— Close connection with Petri nets
— More expressive than Free-choice

— Open: But how much more?
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| Termination Properties

— Attach non-neg real weights to events

— Interpret weights: Probability, expected cost
and expected time of termination

— Perform both exact and approximate
verification

— Open: Can we attach time interval to the
local/global states?
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J Syntactic Reduction

— Reduce the system preserving termination
properties

— Free-choice subclass: can be reduced to
summarization

— Open: Can we identify the reason behind
the gap?
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J Ambitious Open Problems

— Extend termination properties to full PCTL
(or variant)

— Model partially observable systems

— Learning parameters with Big Data
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Application
Domains



l Application Domains

— Stochastic analysis of Business Process
Management (BPM) systems

(i) Throughput analysis
(ii) Simulation with statistical guarantee
— Model distributed cloud computing systems

(i) Model shard-replica systems

(ii) Predict fault-tolerance and eventual
consistency
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Thank you!

Questions?



