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Probabilistic Intference

How do we infer useful information from the data
filled with uncertainty?
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Smart Cities
- Alarm system in every house that responds to either
burglary or earthquake

- Every alarm system 1s connected to the central dispatcher
(of course, automated!)

- Suppose one of the alarm goes off

- Important to predict whether its earthquake or burglary




Deriving Useful Inferences

What 1s the probability of earthquake (E)
given that alarm sounded (A4)?

Pr| | evidence]

Bayes’ rule to the rescue

Pr(En A]

Pr|E|A]| = PriA]




Probabilistic Models




Graphical Models
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Calculating Pr[E N A]
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Calculating Pr[E N A]
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Calculating Pr[E N A]

= Pr[E] * Pr[B] * Pr[A|E, B]
+ Pr[E]  Pr[=B] * Pr[A|E, —B]




Moving from Probability to Logic

- X ={A,B,E}

- F=EAA

- WB=0=02WB=1)=1-W([B=0)=0.8

- W(A=0)=01LW(A=1) =09

- W(E=0]A=0,B=0)=--

- WA=1,E=1B=1)=WB=1)+WE=1)+«WA=1E=1B=1)
- Rp={(A=1,E=1,B=0),(A=1E=1,B=1)}

- WF)=WA=1L,E=1,B=1)+WA=1,E=1B=1)

”

Weighted Model Count




Probabilistic Interence to WMC to
Unweighted Model Counting

Weighte
+ NN 3 d Model
Countin

Roth, 1996
Weighted Model Counting ‘Unweighted Model Counting

Polynomial time reductions




Model Counting

- Given a SAT formula F
- Rp: Set of all solutions of I

- Problem (#SAT): Estimate the number of solutions of F
(#F) 1.e., what 1s the cardinality of Ry?

-E.g., F=(avb)
’ RF = {(091)9 (190)9 (191)}

- The number of solutions #F) =3

#P: The class of counting problems for
decision problems in NP!




How do we guarantee that systems work

correctly ?
- Formal verification

- Challenges: formal requirements, scalability
- ~10-15% of verification effort

Functional Verification

- Dynamaic verification: dominant approach




Dynamic Verification

=Design 1s simulated with test vectors

- Test vectors represent different verification
scenarios

=Results from simulation compared to intended
results

=Challenge: Exceedingly large test space!




Constrained-Random Simulation

Sources for Constraints
. . * Designers:
64 bit 64 bit 1. a+g 11 *32 b =19
2. a<g (b>>4)
« Past Experience:
1. 40 <4z, 34 + a <z, 5050
2. 120 <g4 b <z, 230

64 bit « Users:
1. 232 *,,a+b!=1100
C 2 1020 <64 (b /64 2) +64 a <64 2200

Problem: How can we uniformly sample the values of a and b
satisfying the above constraints?




Problem Formulation

Set of
a b Constraints

|

SAT Formula

|

64 bit Sample satisfying assignments
uniformly at random

Scalable Uniform Generation of SAT Witnesses




Agenda

Design Scalable Techniques for
Uniform Generation and
Model Counting

with Strong Theoretical Guarantees




Agenda

Design Scalable Techniques for
Almost-Uniform Generation and
Approximate-Model Counting

with Strong Theoretical Guarantees




Formal Definitions

- F: CNF Formula; Rg : Solution Space of F
» Input: F Output: y € Ry

- Uniform Generator:

* Guarantee: Vy € Rp, Pr[yis output] = ﬁ
F

- Almost-Uniform Generator

* Guarantee: Vy € Ry, (1+€1)|RF| < Pr[yisoutput] < (llRJ;el)




Formal Definitions

- F: CNF Formula; Rg : Solution Space of F

- Probably Approximately Correct (PAC) Counter
 Input: F Output: C

. |RF|
(1+¢)

P <C<Z<|R:|(1+&)|=1-6




Uniform Generation




Rich History of Theoretical Work

- Jerrum, Valiant and Vazirani (1986):

* Uniform Generator: Polynomial time PTM (Probabilistic Turing
Machine) given access to Y5 oracle

Almost-Uniform | PTIME | PAC

Generator Counter

Stockmeyer (1983): Deterministic approximate counting in 3rd level of
polynomial hierarchy.
Can be used to design a BPPANP procedure -- too large NP instances

No Practical Algorithms




Rich History of Theoretical Work

- Bellare, Goldreich, and Petrank (2000)

- Uniform Generator: Polynomial time PTM given access to NP
oracle

- Employs n-universal hash functions




Universal Hashing

- H(n,m,r): Set of r-universal hash functions from {0,1}" —
10,1}™

Yy, Vs, V- (distinct) € {0,1}" and Va4, a, -+ a,- € {0,1}™
1

Prin(yi = adl = % Uniformity)

Pr[ h(y; = ay) A+ A (h(y,) = a,)] = 27(m7)

(Independence)

- (r-1) degree polynomials — r-universal hash functions




Concentration Bounds

- t-wise (t = 4) random variables X;,X,, -+ X,;, € [0,1]
X= 22X ;u=E[X]

t

N
Pr[ |X —H|SA]21—8(W; )2

- Fort=2




* Polynomial of degree n-1
BGP Method  SAT Solvers can not handle
large polynomials!

Choose m
Choose h € H(n, m, n)

« For right choice of m, all the cells are small (# of solutions < 2n?)
* Check if all the cells are small (NP- Query)
« If yes, pick a solution randomly from randomly gitked cell
In practice, the query is too long and
can not be handled by SAT Solvers!




To Recap

- Jerrum, Valiant and Vazirani (1986):

* Uniform Generator: Polynomial time PTM given access to

L oracle

- Almost-Uniform Generation is inter-reducible to PAC counting

- Bellare, Goldreich, and Petrank (2000)

- Uniform Generator: Polynomial time PTM given access to NP
oracle

Does not work in practice!




Prior Work

Guarantees

SAT-
Based

Performance



Desires

(zenerator Relative runtime
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Experiments over 200+ benchmarks
*: According to EDA experts




Our Contribution

Guarantees

SAT-
Based

Performance



Key ldeas

Choose m
Choose h € H(n, m,*)

* For right choice of m, large number of cells are “small”
« “almost all” the cells are “roughly” equal

 (Check if a randomly picked cell 1s “small”
« If yes, pick a solution randomly from randomly picked cell




Key Challenges

- F: Formula X: Set of variables Ry: Solution space

* Rp p ot Set of solutions for F A (h(X) = a) where
heH(n,mx*);a € {01}

1. How large 1s “small” cell ?

2. How much universality do we need?

3. What 1s the value of m?




S1ze of cell / a

1
Size of cell

Pr[ v 1s output | = zim * Pr[Cell 1s small| y 1s in the cell] *

Let Size of cell € [loThresh, hiThresh], Then:

1 1 1 1
— < —
2m naE hiThresh ~— < Prly is output] 2m taE loThresh
1 < Pr| tput] < (1+¢)
> 1S outpu >
A+ olRg — NP Re|
: _ pivot
hiThresh = (1 + €) * pivot; loThresh = T+ ¢

_ 1
pivot = k (1 + €2>



Losing Independence

Our desire:
1
Pr [ loThresh < |Rgpq| < hiThresh] 2 p (= 5)

pivot
1+ ¢

1
Pr < |RF,h,a| <1+ e)pivot] >p (= E)

pwot

Suppose h € H(n,m,x) and m = log

Then, E ‘RFha‘ —l—pwot

Concentration bound =) Kk-universal (small constant)




How many cells?

pwot
- But determining |R;| is expensive (#P complete)

- Our desire: m = log

- How about approximation?
* ApproxMC (F, &, §) returns C:

Pr{ 2L <C<(1+8)|Rel| 21— 6
- q =logC —logpivot

- Concentrate on m = q-1, q, g+1




UniGen(F,¢)

1. C=ApproxMC(F,¢) One time execution

2. Compute pivot, loThresh, hiThresh
3. q =log|C| —logpivot
4. for1in {q-1, q, q+1}: T

5. Choose h randomly* from H(n,1,3)

6. Choose a randomly from {0,1}™
7. If (loThresh < ‘Rp,h,a‘ < hiThresh):

8. Pick y € Rg ., randomly

Run for
every sample

required
>_




Are we back to JVV?

NOT Really

-JVV makes linear (in n ) calls to Approximate
counter compared to just 1 1n UniGen

-# of calls to ApproxMC 1s only 1 regardless of
the number of samples required unlike JVV




PAC Counter: ApproxMC(F,e, §)

Choose m
Choose h € H(n,m, 3)

* For right choice of m, large number of cells are “small”
« “almost all” the cells are “roughly” equal

 (Check if a randomly picked cell 1s “small”
o If yes, then estimate =# of solutions in cell * 2™



ApproxMC(F,e¢, §)

Hsols < NO X

pivot




ApproxMC(F,e¢, §)




ApproxMC(F,e, §)




ApproxMC(F,e¢, §)

Key Lemmas
Let m* = log|Rr| — logpivot

Lemma 1: The algorithm terminates with m € [m* —1,m”]
with high probability

Lemma 2: The estimate from a randomly picked cell for m €
Im* — 1,m*] 1s correct with high probability




Results: Performance Comparison
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Results: Performance Comparison
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Can Solve a Large Class of Problems
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Large class of problems that lie beyond the exact
counters but can be computed by ApproxMC




Mean Error: Only 4% (allowed: 75%)

3.6E+16 -
1.1E+15
3.5E+13 -

1.1E+12 -

3.4E+10 -

Y
S 1.1E+09 -
]

—Cachet*1.75
—Cachet/1.75
— ApproxMC

Q 3.4E+07 -
@)
1.0E+06 -
3.3E+04 -
1.0E+03 -

3.2E+01 -

1.0E+00 T T T T T T r T 7
0 10 20 30 40 50 60 70 80 90
Benchmarks

Mean error: 4% — much smaller than the
theoretical guarantee of 756%




Runtime Performance

of UniGen




1-2 Orders of Magnitude Faster
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Results: Uniformity

Frequency
\\
S
3
?

#Solutions

 Benchmark: casel10.cnf; #var: 287; #clauses: 1263
* Total Runs: 4x10%; Total Solutions : 16384




Results: Uniformity

450 = US
V\ UniGen

Frequency
\\;
S
3
?

#Solutions

 Benchmark: casel10.cnf; #var: 287; #clauses: 1263
* Total Runs: 4x10%; Total Solutions : 16384




So far

- The first scalable approximate model counter
- The first scalable uniform generator

- Qutperforms state-of-the-art generators/counters

Are we done?




Where are we?

(zenerator Relative runtime

State-of-the-art: 50000
XORSample’

UniGen ~5000
Ideal Uniform 10
Generator*

SAT Solver 1

Experiments over 200+ benchmarks
*: According to EDA experts




XOR-Based Hashing

- Partition 2" space into 2™ cells
- Variables: X;, X,, X,,....., X

- Pick every variable with prob. % ,XOR them and add 0/1
with prob. %

¢ X1+X3+X6+.... Xn-l + O
- To construct h: {0,1}" - {0,1}", choose m random XORs

-a €{0,1}™ - Set every XOR equation to O or 1 randomly
- The cell: F A XOR (CNF+XOR)




XOR-Based Hashing

- CryptoMiniSAT: Efficient for CNF+XOR
- Avg Length : n/2

- Smaller XORs = better performance

How to shorten XOR clauses?




Independent Support

- Set I of variables such that assignments to these uniquely
determine assignments to rest of variables (for satistying
assignments)

-If @1@nd®2 agree on I then [§1=52
-c < (a VDb); Independent Support I: {a, b}
- Key Idea: Hash only on the independent variables




Independent Support

- Hash only on the Independent Support
- Average size of XOR: n/2 to |1]/2




Formal Definition

Input Formula: F, Solution space: Rpg

Voi,00 € Rp, If 01 and o5 agree on I, then o1 = 09

F(ZE‘l,. )/\Fy177yn /\ /\ i :>/\(xj:

i|lx, €1

where F(yl,...,yn) =F($1 — Y1y Ty — Yn)




Minimal Unsatisfiable Subset

- Given¥ = H; AH, ---H,,,

- Find subset {H;;,H;5, - H;;, } of {H{,H,,--- H;} such that
Hil N HiZ Hik A Q1s UNSAT

Unsatisfiable subset

- Find minimal subset {H;;,H;», - H; } of {H{,H,, - H,,} such that
Hil N\ HiZ Hik iS UNSAT
Minimal Unsatisfiable subset




Key ldea

Flxy,...,20) ANF(Y1,- -+, Yn) A /\ (x; = y;) :>/\(£U —

73|a';z-€I

QF,[:F(wl,... )/\Fyl,...,yn /\ /\ (/\(acjyj)>

tlx, €1

Theorem: ()r  is unsatisfiable if and only if I is independent support




Key ldea

H1:{$1:y1}, SR Hn:{xn:yn}
Q:F(xl,...,mn)/\F(yl,...,yn)/\(ﬁ/\(%zyj))

I = {x;} is Independent Support iff H' A Q is
unsatisfiable where H! = {H; |x; € I}




Group-Oriented Minimal Unsatisfiable
Subset

- Given¥WY = H, AH,---H,_, AQ

- Find subset {H;;,H;5, - H;;, } of {H{,H,, - H,;} such that H;; A
Hi2 Hik A Q1s UNSAT

Group Oriented Unsatisfiable subset

- Find minimal subset {H;;,H;», - H; } of {H{,H,, - H,,} such that
Hil N HiZ Hik A Q1s UNSAT

Group Oriented Minimal Unsatisfiable subset




Minimal Independent Support

H1:{$1:y1}, SR Hn:{xn:yn}
Q:F(xl,...,wn)/\F(yl,...,yn)/\(ﬁ/\(%zyj))

I = {x;} is minimal Independent Support iff H! is
minimal unsatisfiable subset where H' = {H; |x; €

I}




Key ldea

Minimal Minimal

Independent )  Unsatisfiable
Support (MIS) Subset (MUS)




Impact on Sampling and Counting
Techniques

Samplin
Tools ©

Counting
Tools




What about complexity

- Computation of MUS: FPNF

- Why solve a FPN? for almost-uniform
generation/approximate counter (PTIME PTM with NP
Oracle)

Settling the debate through practice!




Performance Impact on Approximate

Model Counting
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Where are we?

(Generator Relative runtime

State-of-the-art: 50000
XORSample’

UniGen 5000
UniGenl 470

Ideal Uniform Generator* 10

SAT Solver 1




Back to basics

# of solutions in “small” cell € [loThresh, hiThresh]
We pick one solution
“Wastage” of loThresh solutions

Pick loThresh samples!




3-Universal and Independence of
Samples

3-Universal hash functions:
* Choose hash function randomly

- For arbitrary distribution on solutions=> All cells are roughly
equal 1n expectation

- But:
- While each input is hashed uniformly
- And each 3-solutions set 1s hashed independently
A 4-solutions set might not be hashed independently




Balancing Independence

For he H(n,m, 3)

- Choosing up to 3 samples => Full independence among
samples

- Choosing loThresh (>> 3) samples => Loss of independence




Why care about Independence

Convergence
requires
multiplication of
probabilities

If every sample 1s independent => Faster convergence




The principle of principled compromaise!

- Choosing up to 3 samples => Full independence among
samples

- Choosing loThresh (>> 3) samples => Loss of independence
- “Almost-Independence” among samples
- Still provides strong theoretical guarantees of coverage




Strong Guarantees

. L = # of samples < |RFp|
L L
_ < Pr|y 1s output| < 1.02(1 + ¢
1+ o)Re] =00 bt IR,
. Constant number of SAT

calls per sample
- After one call to ApproxMC




Bug-finding effectiveness

bug f f=10
ug frequency f = —
RF|
UniGen UniGen2
relative number | hiThresh(14v)(1+e) biThresh  (145)(140¢)
QAT ~alle 3-hiThresh ) € 3-hiThresh (147 £)
of SAT calls 0.52 0.62-loThresh  1—7o

S1mply put,
#Hof SAT calls for UniGen2 << # of SAT calls for
UniGen




Bug-finding effectiveness

bug frequency f = 1/104
find bug with probability > 1/2

I O

Expected 4.35 x 107 3.38 x 106
number of SAT

calls

An order of magnitude difference!




~20 times faster than UniGenl
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Where are we?

(Generator Relative runtime

State-of-the-art: 50000
XORSample’

UniGen 5000
UniGenl 470
UniGen2 20

Ideal Uniform Generator*® 10

SAT Solver 1




The Final Push....

- UniGen requires one time computation of
ApproxMC

- Generation of samples in fully distributed fashion
(Previous algorithms lacked the above property)

- New paradigms!




Current Paradigm of
Simulation-based Verification

Simulator

« Can not be
parallelized since
test generators
maintain “global
state”

Simulator

* LLoses theoretical
guarantees (if any)

Simulator of uniformity
80




New Paradigm of Simulation-
based Verification

Simulator Simulator
y 2

.f""’_
(A
- *

z

Simulator Simulator




Closing 1n...

(Generator Relative runtime

State-of-the-art: 50000
XORSample’

UniGen 5000
UniGenl 470
UniGen2

Ideal Uniform Generator®

SAT Solver 1



S0 what happened....

I




Future Directions




Extension to More Expressive domains

- Efficient hashing schemes

- Extending bit-wise XOR to richer constraint domains provides
guarantees but no advantage of SMT progress

- Solvers to handle F + Hash efficiently

* CryptoMiniSAT has fueled progress for SAT domain
- Similar solvers for other domains?




Handling Distributions

- Given: CNF formula F and Weight function W over
assignments

- Weighted Counting: sum the weight of solutions

- Weighted Sampling: Sample according to weight of
solution

- Wide range of applications in Machine Learning

- Extending universal hashing works only in theory so far




