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Probabilistic Inference
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Smart Cities

• Alarm system in every house that responds to either 
burglary or earthquake

• Every alarm system is connected to the central dispatcher 
(of course, automated!)

• Suppose one of the alarm goes off

• Important to predict whether its earthquake or burglary
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Deriving Useful Inferences
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What is the probability of earthquake (𝐸) 

given that alarm  sounded (𝐴)?

= 

Bayes’ rule to the rescue

How do we calculate these 

probabilities?

Pr[event|evidence]



Probabilistic Models

Graphical Models
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Graphical Models
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Calculating 
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Calculating 
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Calculating 
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Moving from Probability to Logic

• 𝑋 = 𝐴, 𝐵, 𝐸

• 𝐹 = 𝐸 ∧ 𝐴

• 𝑊 𝐵 = 0 = 0.2, 𝑊 𝐵 = 1 = 1 − 𝑊 𝐵 = 0 = 0.8

• 𝑊 𝐴 = 0 = 0.1, 𝑊 𝐴 = 1 = 0.9

• 𝑊 𝐸 = 0| 𝐴 = 0, 𝐵 = 0 = ⋯

• 𝑊 𝐴 = 1, 𝐸 = 1, 𝐵 = 1 = 𝑊 𝐵 = 1 ∗ 𝑊 𝐸 = 1 ∗ 𝑊(𝐴 = 1|𝐸 = 1, 𝐵 = 1)

• 𝑅𝐹 = (𝐴 = 1, 𝐸 = 1, 𝐵 = 0 , (𝐴 = 1, 𝐸 = 1, 𝐵 = 1)}

• 𝑊 𝐹 = 𝑊 𝐴 = 1, 𝐸 = 1, 𝐵 = 1 + 𝑊(𝐴 = 1, 𝐸 = 1, 𝐵 = 1)
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𝑾 𝑭 = 𝐏𝐫 [𝑬 ∩ 𝑨]

Weighted Model Count 

(WMC)



Probabilistic Inference to WMC to 
Unweighted Model Counting
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Weighted Model Counting      Unweighted Model Counting       

Polynomial time reductions



Model Counting

• Given a SAT formula F

• RF: Set of all solutions of F

• Problem (#SAT): Estimate the number of solutions of F 
(#F) i.e., what is the cardinality of RF?

• E.g., F = (a v b)

• RF = {(0,1), (1,0), (1,1)}

• The number of solutions (#F) = 3

#P: The class of counting problems for 

decision problems in NP!
12



How do we guarantee that systems work  
correctly ?

Functional Verification

• Formal verification

Challenges: formal requirements, scalability

~10-15% of verification effort 

• Dynamic verification: dominant approach

13
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Dynamic Verification

Design is simulated with test vectors

•Test vectors represent different verification 
scenarios 

Results from simulation compared to intended 
results

Challenge: Exceedingly large test space!
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Constrained-Random Simulation
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a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Problem: How can we uniformly sample the values of a and b 

satisfying the above constraints?



Problem Formulation
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Set of 

Constraints

Sample satisfying assignments 

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)



Agenda

Design Scalable Techniques for 

Uniform Generation and 

Model Counting 

with Strong Theoretical Guarantees 
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Agenda

Design Scalable Techniques for 

Almost-Uniform Generation and 

Approximate-Model Counting 

with Strong Theoretical Guarantees 
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Formal Definitions

• 𝐹: CNF Formula;   RF ∶ Solution Space of 𝐹

• Input:   𝐹                 Output: 𝑦 ∈ 𝑅𝐹

• Uniform Generator: 

 Guarantee: ∀𝑦 ∈ 𝑅𝐹 ,   Pr[𝑦 is output] = 
1

𝑅𝐹

• Almost-Uniform Generator

 Guarantee: ∀𝑦 ∈ 𝑅𝐹 ,      
1

1+𝜀 𝑅𝐹
≤ Pr[𝑦 is output ] ≤ 

1+𝜀

𝑅𝐹

19



Formal Definitions

• 𝐹: CNF Formula;   RF ∶ Solution Space of 𝐹

• Probably Approximately Correct (PAC) Counter

 Input:   𝐹  Output: 𝐶

20



Uniform Generation
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Rich History of Theoretical Work 

• Jerrum, Valiant and Vazirani (1986): 
 Uniform Generator: Polynomial time PTM (Probabilistic Turing 

Machine) given access to σ  𝑃
2  oracle 

Almost-Uniform 

Generator

PAC 

Counter

PTIME

No Practical Algorithms
22

Stockmeyer (1983): Deterministic approximate counting in 3rd level of 

polynomial hierarchy.

Can be used to design a BPP^NP procedure -- too large NP instances 



Rich History of Theoretical Work 

• Bellare, Goldreich, and Petrank (2000)

• Uniform Generator: Polynomial time PTM given access to NP 
oracle 

• Employs n-universal hash functions

23



Universal Hashing

• 𝐻 𝑛, 𝑚, 𝑟 : Set of r-universal hash functions from 0,1 𝑛 →
0,1 𝑚

∀𝑦1, 𝑦2, ⋯ 𝑦𝑟  (distinct) ∈ 0,1 𝑛 and ∀𝛼1, 𝛼2 ⋯ 𝛼𝑟 ∈ 0,1 𝑚

Pr ℎ 𝑦𝑖 = 𝛼𝑖 =  
1

2𝑚

Pr  ℎ 𝑦1 = 𝛼1 ∧ ⋯ ∧ ℎ 𝑦𝑟 = 𝛼𝑟 = 2− 𝑚𝑟

• (r-1) degree polynomials → r-universal hash functions 

24

(Independence)

(Uniformity)



Concentration Bounds

• t-wise 𝑡 ≥ 4 random variables 𝑋1 , 𝑋2, ⋯ 𝑋𝑛 ∈ 0,1

𝑋 =  σ 𝑋𝑖
 
  ;  𝜇 = 𝐸 𝑋

• For t = 2

25



BGP Method

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚, 𝑛

• For right choice of m, all the cells are small (# of solutions ≤ 2𝑛2)
• Check if all the cells are small (NP- Query) 

• If yes, pick a solution randomly from randomly picked cell  

In practice, the query is too long and 

can not be handled by SAT Solvers!

• Polynomial of degree n-1

• SAT Solvers can not handle 

large polynomials!

26



To Recap

• Jerrum, Valiant and Vazirani (1986): 
 Uniform Generator: Polynomial time PTM given access to 

σ  𝑃
2  oracle 

 Almost-Uniform Generation is inter-reducible to PAC counting

• Bellare, Goldreich, and Petrank (2000)

• Uniform Generator: Polynomial time PTM given access to NP 
oracle 

Does not work in practice!
27



Prior Work

28Performance

G
u

a
ra

n
te

e
s 

MCMC

SAT-

Based

BGP BDD



Desires

Generator Relative runtime

State-of-the-art: 

XORSample’

50000

Ideal Uniform 

Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks

*: According to EDA experts
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Our Contribution
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Key Ideas

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚,∗

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small” 

• If yes, pick a solution randomly from randomly picked cell  

31



Key Challenges

• F: Formula X: Set of variables  𝑅𝐹 : Solution space

• 𝑅𝐹,ℎ,𝛼: Set of solutions for 𝐹 ∧ (ℎ 𝑋 = 𝛼) where

 ℎ ∈ 𝐻 𝑛, 𝑚,∗  ; 𝛼 ∈ 0,1 𝑚

1. How large is “small” cell ?

2. How much universality do we need?

3. What is the value of m?

32



Size of cell

Pr[ y is output ] = 
1

2𝑚 ∗ Pr[Cell is small| y is in the cell] ∗
1

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑐𝑒𝑙𝑙  

Let Size of cell ∈ [𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ], Then: 

q

33



Losing Independence

Our desire:

Suppose ℎ ∈ 𝐻 𝑛, 𝑚,∗  𝑎𝑛𝑑 𝑚 = log
𝑅𝐹

𝑝𝑖𝑣𝑜𝑡

Then, 𝐸[ 𝑅𝐹,ℎ,𝛼 ] = 
|𝑅𝐹|

2𝑚
= 𝑝𝑖𝑣𝑜𝑡

Concentration bound               k-universal (small constant) 
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How many cells? 

• Our desire:  𝑚 = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡

 But determining 𝑅𝐹 is expensive (#P complete)

• How about approximation?
 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 𝜀, 𝛿 returns C:

Pr[ 
𝑅𝐹

1+𝜀
≤ 𝐶 ≤ 1 + 𝜀 |𝑅𝐹|] ≥ 1 − 𝛿

 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡 

 Concentrate on m = q-1, q, q+1 

35



UniGen(F,

1. C = ApproxMC(F,𝜀) 

2. Compute pivot, loThresh, hiThresh

3. 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡 

4. for i in {q-1, q, q+1}:

5. Choose h randomly* from H(n,i,3) 

6. Choose 𝛼 randomly from 0,1 𝑚

7. If (𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ ≤ 𝑅𝐹,ℎ,𝛼 ≤ ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ):

8. Pick 𝑦 ∈ 𝑅𝐹,ℎ,𝛼   randomly 

36

One time execution

Run for 

every sample 

required



Are we back to JVV?

NOT Really

•JVV makes linear (in n ) calls to Approximate 
counter compared to just 1 in UniGen

•# of calls to ApproxMC is only 1 regardless of 
the number of samples required unlike JVV 37



PAC Counter: ApproxMC(F,

Choose m
Choose ℎ ∈ 𝐻 𝑛, 𝑚, 3

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small” 

• If yes, then estimate = # of solutions in cell * 2𝑚

38



ApproxMC(F,

#sols < 

pivot

NO
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ApproxMC(F,

#sols < 

pivot

NO

40



ApproxMC(F,

#sols < 

pivot
YES

Estimate: 

# of sols * 2𝑚

41



ApproxMC(F,

Key Lemmas

Let 𝑚∗ = log 𝑅𝐹  − log 𝑝𝑖𝑣𝑜𝑡 

Lemma 1: The algorithm terminates with 𝑚 ∈ 𝑚∗ − 1 , 𝑚∗

with high probability 

Lemma 2: The estimate from a randomly picked cell for 𝑚 ∈
𝑚∗ − 1 , 𝑚∗ is correct with high probability 

42



Results: Performance Comparison
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Results: Performance Comparison
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Can Solve a Large Class of Problems

45
Large class of problems that lie beyond the exact 

counters but can be computed by ApproxMC
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Mean Error: Only 4% (allowed: 75%)
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Mean error: 4% – much smaller than the 

theoretical guarantee of 75%
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Runtime Performance 
of UniGen

47



1-2 Orders of Magnitude Faster
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Results: Uniformity

49
• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
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Results: Uniformity
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So far

• The first scalable approximate model counter

• The first scalable uniform generator

• Outperforms state-of-the-art generators/counters

Are we done? 

51



Where are we?

Generator Relative runtime

State-of-the-art: 

XORSample’

50000

UniGen ~5000

Ideal Uniform 

Generator*

10

SAT Solver 1

Experiments over 200+ benchmarks

*: According to EDA experts 52



XOR-Based Hashing

• Partition 2n space into  2m cells

• Variables: X1, X2, X3,….., Xn

• Pick every variable with prob. ½ ,XOR them and add  0/1 
with prob. ½ 

• X1+X3+X6+…. Xn-1 + 0

• To construct h: 0,1 𝑛 → 0,1 𝑚, choose m random XORs

• 𝛼 ∈ 0,1 𝑚 → Set every XOR equation to 0 or 1 randomly

• The cell:  F ∧ XOR (CNF+XOR)

53



XOR-Based Hashing

• CryptoMiniSAT: Efficient for CNF+XOR

• Avg Length : n/2 

• Smaller XORs  better performance

How to shorten XOR clauses? 
54



Independent Support

• Set I of variables such that assignments to these uniquely 
determine assignments to rest of variables (for satisfying 
assignments)

• If                    agree on I then 

• c ⟷ (a V b) ; Independent Support I: {a, b}

• Key Idea: Hash only on the independent variables

55

		s1	and	s2 		s1		=	s2



Independent Support

• Hash only on the Independent Support

• Average size of XOR: n/2 to |I|/2

56



Formal Definition

57



Minimal Unsatisfiable Subset

• Given Ψ = 𝐻1 ∧ 𝐻2 ⋯ 𝐻𝑚   

 Find subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘 } of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that                
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Unsatisfiable subset

 Find minimal subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘} of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that 
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘  is UNSAT

Minimal Unsatisfiable subset
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Key Idea
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Key Idea

60

𝐼 = {𝑥𝑖} is Independent Support iff 𝐻𝐼 ∧ Ω is 

unsatisfiable where 𝐻𝐼 = 𝐻𝑖  𝑥𝑖 ∈ 𝐼}



Group-Oriented Minimal Unsatisfiable
Subset

• Given Ψ = 𝐻1 ∧ 𝐻2 ⋯ 𝐻𝑚 ∧ Ω  

 Find subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘 } of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Group Oriented Unsatisfiable subset

 Find minimal subset {𝐻𝑖1 , 𝐻𝑖2 , ⋯ 𝐻𝑖𝑘} of {𝐻1 , 𝐻2 , ⋯ 𝐻𝑚} such that 
𝐻𝑖1 ∧ 𝐻𝑖2 ⋯ 𝐻𝑖𝑘 ∧ Ω is UNSAT

Group Oriented Minimal Unsatisfiable subset
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Minimal Independent Support

62

𝐼 = {𝑥𝑖} is minimal Independent Support iff 𝐻𝐼 is 

minimal unsatisfiable subset where 𝐻𝐼 = 𝐻𝑖  𝑥𝑖 ∈
𝐼}



Key Idea
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Minimal 

Independent 

Support (MIS) 

Minimal 

Unsatisfiable

Subset (MUS)



Impact on Sampling and Counting 
Techniques

64

MIS

Sampling
Tools
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What about complexity

• Computation of MUS: 𝐹𝑃𝑁𝑃

• Why solve a 𝐹𝑃𝑁𝑃 for almost-uniform 
generation/approximate counter (PTIME PTM with NP 
Oracle) 

Settling the debate through practice!

65



Performance Impact on Approximate 
Model Counting
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Performance Impact on Uniform Sampling
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Where are we?

Generator Relative runtime

State-of-the-art: 

XORSample’

50000

UniGen 5000

UniGen1 470

Ideal Uniform Generator* 10

SAT Solver 1
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Back to basics

69

# of solutions in “small” cell ∈ 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ, ℎ𝑖𝑇ℎ𝑟𝑒𝑠ℎ
We pick one solution 

“Wastage” of loThresh solutions

Pick 𝑙𝑜𝑇ℎ𝑟𝑒𝑠ℎ samples!
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3-Universal hash functions:
 Choose hash function randomly

 For arbitrary distribution on solutions=> All cells are roughly 
equal in expectation

 But:

 While each input is hashed uniformly

 And each 3-solutions set is hashed independently

 A 4-solutions set might not be hashed independently

3-Universal and Independence of 
Samples



Balancing Independence

For ℎ ∈ 𝐻 𝑛, 𝑚, 3

• Choosing up to 3 samples => Full independence among 
samples

• Choosing loThresh (>> 3) samples => Loss of independence 
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Why care about Independence
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🕷🕷

If every sample is independent => Faster convergence

Convergence 

requires 

multiplication of 

probabilities 



The principle of principled compromise!

• Choosing up to 3 samples => Full independence among 
samples

• Choosing loThresh (>> 3) samples => Loss of independence
 “Almost-Independence” among samples

 Still provides strong theoretical guarantees of coverage
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Strong Guarantees

•

•Polynomial Constant number of SAT 
calls per sample

After one call to ApproxMC
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Bug-finding effectiveness

75

bug frequency f = 

Simply put, 

#of SAT calls for UniGen2 <<  # of SAT calls for 

UniGen



Bug-finding effectiveness

UniGen UniGen2

Expected 

number of SAT 

calls

4.35 × 107 3.38 × 106

76

bug frequency f = 1/104

find bug with probability ≥ 1/2

An order of magnitude difference!



~20 times faster than UniGen1
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Where are we?

Generator Relative runtime

State-of-the-art: 

XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Ideal Uniform Generator* 10

SAT Solver 1
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The Final Push….

•UniGen requires one time computation of 
ApproxMC

•Generation of samples in fully distributed fashion

(Previous algorithms lacked the above property)

•New paradigms! 
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Current Paradigm of 
Simulation-based Verification

Test 2 Test 3

Test 4Test 1

Test Generator

Simulator

Simulator
Simulator

Simulator

• Can not be 

parallelized since 

test generators 

maintain “global 

state” 

• Loses theoretical 

guarantees (if any) 

of uniformity



Test Generator

New Paradigm of Simulation-
based Verification

Simulator

Simulator

Simulator

Simulator

Test Generator

Test Generator

Test Generator

Preprocessin

g

• Preprocessing needs to be done only once

• No communication required between 

different copies of the test generator

• Fully distributed!
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Closing in…

Generator Relative runtime

State-of-the-art: 

XORSample’

50000

UniGen 5000

UniGen1 470

UniGen2 20

Multi-core UniGen2 10 (two cores)

Ideal Uniform Generator* 10

SAT Solver 1 82



So what happened….
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Sampling and 

Counting 

Important 

Applications

Beautiful Theory

But does not work in 

practice    

Theoretical 

Contributions

(Practice drives 

theory)

New Applications 

(Theory drives 

practice)



Future Directions
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Extension to More Expressive domains

• Efficient hashing schemes 
 Extending bit-wise XOR to richer constraint domains provides 

guarantees but no advantage of SMT progress

• Solvers to handle F + Hash efficiently
 CryptoMiniSAT has fueled progress for SAT domain

 Similar solvers for other domains? 
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Handling Distributions

• Given: CNF formula F and Weight function W over 
assignments

• Weighted Counting: sum the weight of solutions

• Weighted Sampling: Sample according to weight of 
solution

• Wide range of applications in Machine Learning

• Extending universal hashing works only in theory so far
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