On Petri nets with Hierarchical Special Arcs

S Akshay1, S. Chakraborty1, Ankush Das2, Vishal Jagannath1, Sai Sandeep1

CONCUR, Berlin
7 Sept 2017

1: Dept of CSE, IIT Bombay,
2: CMU, USA
Preliminaries
Petri nets

- Petri net (PN) is a tuple \((P, T, F, M_0)\),
 - \(P\) is set of places, \(T\) is set of transitions,
 - \(M_0 : P \to \mathbb{N}\) is the initial marking and
 - \(F : (P \times T) \cup (T \times P) \to \mathbb{N}\) is the flow relation.
- usual definitions: marking \(M : P \to \mathbb{N}\), firability, runs...
Petri nets

- Petri net (PN) is a tuple \((P, T, F, M_0)\),
 - \(P\) is set of places, \(T\) is set of transitions,
 - \(M_0 : P \rightarrow \mathbb{N}\) is the initial marking and
 - \(F : (P \times T) \cup (T \times P) \rightarrow \mathbb{N}\) is the flow relation.
- usual definitions: marking \(M : P \rightarrow \mathbb{N}\), firability, runs...
- \(\leq\) is component-wise order over markings
Decision Problems

Definition
Given a Petri net \(N = (P, T, F, M_0) \),

- **Termination (or TERM):** Does there exist an infinite run from marking \(M_0 \)?
- **Reachability (or REACH):** Given a marking \(M \), is there a run from \(M_0 \) which reaches \(M \)?
- **Coverability (or COVER):** Given a marking \(M \), is there a marking \(M' \geq M \) which is reachable from \(M_0 \)?
Decision Problems

Definition

Given a Petri net $N = (P, T, F, M_0)$,

- **Termination** (or **TERM**): Does there exist an infinite run from marking M_0?
- **Reachability** (or **REACH**): Given a marking M, is there a run from M_0 which reaches M?
- **Coverability** (or **COVER**): Given a marking M, is there a marking $M' \geq M$ which is reachable from M_0?
- **Deadlock-freeness** (or **DLFREE**): Does there exist a marking M reachable from M_0, such that no transition is firable at M?
- **(Place-)Boundedness**: Does some (a given) place get unboundedly many tokens?
We can add a few special arcs into Petri nets.

- Inhibitor arcs
We can add a few special arcs into Petri nets.

- Inhibitor arcs
- Reset arcs
• We can add a few special arcs into Petri nets.
 • Inhibitor arcs
 • Reset arcs
 • Transfer arcs
We can add a few special arcs into Petri nets.

- Inhibitor arcs
- Reset arcs
- Transfer arcs

Redefine flow

\[F : (P \times T) \cup (T \times P) \rightarrow \mathbb{N} \cup \{I, R\} \cup \{S_p \mid p \in P\} \]
• Inhibitors are zero-tests

• Petri nets with 2 inhibitors model 2-counter machines.
• Inhibitors are zero-tests
• Petri nets with 2 inhibitors model 2-counter machines.
• One way to deal with this: impose hierarchy on places [Rei08].
 • A total order \sqsupseteq on P such that
 \[\forall (p, t) \in P \times T, \quad F(p, t) \in I \implies (\forall q \sqsubseteq p, \ F(q, t) \in I) \]
• Inhibitors are zero-tests
• Petri nets with 2 inhibitors model 2-counter machines.
• One way to deal with this: impose hierarchy on places [Rei08].
 • A total order \sqsubseteq on P such that
 $\forall (p, t) \in P \times T$, $F(p, t) \in I \implies (\forall q \sqsubseteq p, F(q, t) \in I)$

\[
\begin{array}{c}
p_1 \\
\text{Tr}^P \\
p_2 \\
p_3 \\
\text{Reset} \\
p
\end{array}
\]
Adding priorities to job scheduling!
Adding priorities to job scheduling!
Adding priorities to job scheduling!

- The case of a single inhibitor arc/transition is an interesting and well-studied subcase!
State of the art: What is known about these problems?
State of the art

<table>
<thead>
<tr>
<th>Term</th>
<th>Cover</th>
<th>Reach</th>
<th>DLFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✓ [May84, Ler12]</td>
</tr>
<tr>
<td>R/T-PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>× [DFS98]</td>
</tr>
<tr>
<td>I-PN</td>
<td>× [Min67]</td>
<td>× [Min67]</td>
<td>× [Min67]</td>
</tr>
<tr>
<td>HIPN</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
</tr>
<tr>
<td>R+HIPN</td>
<td></td>
<td>× [[DFS98], Thm 4]</td>
<td>× [[DFS98], Thm 4]</td>
</tr>
<tr>
<td>T+HIPN</td>
<td></td>
<td>× [[DFS98], Thm 4]</td>
<td>× [[DFS98], Thm 4]</td>
</tr>
</tbody>
</table>

Questions:
- What happens when resets/transfers are added to HIPN?
- Understanding the boundary of decidability and undecidability...
- Can we “weaken” the notion of Hierarchy?
State of the art

<table>
<thead>
<tr>
<th>Term</th>
<th>Cover</th>
<th>Reach</th>
<th>DLFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✓ [May84, Ler12]</td>
</tr>
<tr>
<td>R/T-PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>X [DFS98]</td>
</tr>
<tr>
<td>HIPN</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
</tr>
<tr>
<td>R+HIPN</td>
<td></td>
<td></td>
<td>X[[DFS98], Thm 4]</td>
</tr>
<tr>
<td>T+HIPN</td>
<td></td>
<td></td>
<td>X[[DFS98], Thm 4]</td>
</tr>
</tbody>
</table>

Questions:

- What happens when resets/transfers are added to HIPN?
State of the art

<table>
<thead>
<tr>
<th>Term</th>
<th>Cover</th>
<th>Reach</th>
<th>DLTFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✓ [May84, Ler12]</td>
</tr>
<tr>
<td>R/T-PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✓ [DFS98]</td>
</tr>
<tr>
<td>I-PN</td>
<td>✓ [Min67]</td>
<td>✓ [Min67]</td>
<td>✓ [Min67]</td>
</tr>
<tr>
<td>HIPN</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
</tr>
<tr>
<td>R+HIPN</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
</tr>
<tr>
<td>T+HIPN</td>
<td>✓ [DFS98], Thm 4</td>
<td>✓ [DFS98], Thm 4</td>
<td>✓ [DFS98], Thm 4</td>
</tr>
</tbody>
</table>

Questions:

- What happens when resets/transfers are added to HIPN?
 - Understanding the boundary of decidability and undecidability...
State of the art

<table>
<thead>
<tr>
<th>Term</th>
<th>Cover</th>
<th>Reach</th>
<th>DLFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✓ [May84, Ler12]</td>
</tr>
<tr>
<td>R/T-PN</td>
<td>✓ (see [FS01])</td>
<td>✓ (see [FS01])</td>
<td>✗ [DFS98]</td>
</tr>
<tr>
<td>I-PN</td>
<td>✗ [Min67]</td>
<td>✓ [Min67]</td>
<td>✗ [Min67]</td>
</tr>
<tr>
<td>HIPN</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
<td>✓ [Rei08, Bon13]</td>
</tr>
<tr>
<td>R+HIPN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T+HIPN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Questions:

- What happens when resets/transfers are added to HIPN?
 - Understanding the boundary of decidability and undecidability...
- Can we “weaken” the notion of Hierarchy?
Questions:

- What happens when resets/transfers are added to HIPN?
 - Understanding the boundary of decidability and undecidability...
- (4.) “Weakening” Hierarchy in HIPN using resets and transfers.
Part 1: Termination in R+HIPN
• Difficulty: The traditional Finite Reachability Tree (FRT) doesn’t work for R+HIPN due to inhibitor arcs.

Idea
Modify the definition of FRT (specifically the subsumption condition), to allow inhibitor arcs.
Termination in R+HIPN

- Difficulty: The traditional Finite Reachability Tree (FRT) doesn’t work for R+HIPN due to inhibitor arcs.
- Usual idea: Explore all runs. If the net terminates, then this is a decision procedure. Else, stop when a marking is “subsumed” (which must happen thanks to WQO)!
Termination in \(R+\text{HIPN} \)

- Difficulty: The traditional Finite Reachability Tree (FRT) doesn’t work for \(R+\text{HIPN} \) due to inhibitor arcs.

- Usual idea: Explore all runs. If the net terminates, then this is a decision procedure. Else, stop when a marking is “subsumed” (which must happen thanks to WQO)!

- Subsumption: If \(M_1 \leq M_2 \), then we can stop (witness for nontermination), as we can repeat this.

In the presence of inhibitors, this is not true!
Termination in R+HIPN

- Difficulty: The traditional Finite Reachability Tree (FRT) doesn’t work for R+HIPN due to inhibitor arcs.
- Usual idea: Explore all runs. If the net terminates, then this is a decision procedure. Else, stop when a marking is “subsumed” (which must happen thanks to WQO)!
- Subsumption: If $M_1 \leq M_2$, then we can stop (witness for nontermination), as we can repeat this.

In the presence of inhibitors, this is not true!

Idea

Modify the definition of FRT (specifically the subsumption condition), to allow inhibitor arcs.
Theorem

Checking termination in R+HIPN is decidable.

Proof sketch/intuition:

- For any place $p \in P$, we define the index of the place p ($\text{Index}(p)$) as the number of places $q \in P$ such that $q \sqsubseteq p$.
Theorem

Checking termination in R+HIPN is decidable.

Proof sketch/intuition:

- For any place \(p \in P \), we define the index of the place \(p \) \((\text{Index}(p))\) as the number of places \(q \in P \) such that \(q \sqsubseteq p \).
- For \(i \in \mathbb{N} \), \(M_1 \) and \(M_2 \) are \(i \)-Compatible (denoted \(\text{Compat}_i(M_1, M_2) \)) if
 \[
 \forall p \in P \ \text{Index}(p) \leq i \implies M_1(p) = M_2(p)
 \]
Termination in R+HIPN

Theorem

Checking termination in R+HIPN is decidable.

Proof sketch/intuition:

- For any place \(p \in P \), we define the index of the place \(p \) (\(\text{Index}(p) \)) as the number of places \(q \in P \) such that \(q \subseteq p \).
- For \(i \in \mathbb{N} \), \(M_1 \) and \(M_2 \) are \(i \)-Compatible (denoted \(\text{Compat}_i(M_1, M_2) \)) if
 \[
 \forall p \in P \ \text{Index}(p) \leq i \implies M_1(p) = M_2(p)
 \]
- For any transition \(t \in T \), its index is defined as
 \[
 \text{Index}(t) = \max_{F(p,t)=1} \text{Index}(p)
 \]

By convention, if there is no such place, then \(\text{Index}(t) = 0 \).
Definition (Modified subsumption)

Consider a run $M_2 \xrightarrow{\rho} M_1$. Let $t^* = \text{argmax}_{t \in \rho} \text{Index}(t)$.

$$\text{Subsume}(M_2, M_1, \rho) = M_2 \leq M_1 \land (\text{Compat}_{\text{Index}(t^*)}(M_1, M_2))$$
Definition (Modified subsumption)

Consider a run $M_2 \xrightarrow{\rho} M_1$. Let $t^* = \arg\max_{t \in \rho} \text{Index}(t)$.

$$\text{Subsume}(M_2, M_1, \rho) = M_2 \leq M_1 \land \left(\text{Compat}_{\text{Index}(t^*)}(M_1, M_2) \right)$$

Then, we can show

- This must happen if \exists non-terminating run (thanks to WQO).
Termination in R+HIPN

Definition (Modified subsumption)

Consider a run $M_2 \xrightarrow{\rho} M_1$. Let $t^* = \arg\max_{t \in \rho} \text{Index}(t)$.

$$\text{Subsume}(M_2, M_1, \rho) = M_2 \leq M_1 \land \left(\text{Compat}_{\text{Index}(t^*)}(M_1, M_2) \right)$$

Then, we can show

- This must happen if \exists non-terminating run (thanks to WQO).
- Also, if it happens, there is a non-terminating run.
 - Let $M_1 \leq M_2$, $i \in \mathbb{N}$, $\text{Compat}_i(M_1, M_2)$. Then for any run ρ over $T_i = \{t | t \in T \land \text{Index}(t) \leq i\}$, if $M_1 \xrightarrow{\rho} M_1'$, then $M_2 \xrightarrow{\rho} M_2'$, where $M_1' \leq M_2'$ and $\text{Compat}_i(M_1', M_2')$.
Definition (Modified subsumption)

Consider a run $M_2 \xrightarrow{\rho} M_1$. Let $t^* = \arg\max_{t \in \rho} \text{Index}(t)$.

$$\text{Subsume}(M_2, M_1, \rho) = M_2 \leq M_1 \land \left(\text{Compat}_{\text{Index}(t^*)}(M_1, M_2) \right)$$

Then, we can show

- This must happen if \exists non-terminating run (thanks to WQO).
- Also, if it happens, there is a non-terminating run.
 - Let $M_1 \leq M_2$, $i \in \mathbb{N}$, $\text{Compat}_i(M_1, M_2)$. Then for any run ρ over $T_i = \{ t \mid t \in T \land \text{Index}(t) \leq i \}$, if $M_1 \xrightarrow{\rho} M'_1$, then $M_2 \xrightarrow{\rho} M'_2$, where $M'_1 \leq M'_2$ and $\text{Compat}_i(M'_1, M'_2)$.

From this and effectivity, we get our result.
Part 2: Moving on to transfer arcs
But first – A detour to program termination!
Basic undecidability result – Turing 1936

Termination of a generic program with a loop is undecidable:

\[
\text{while (conditions) \{commands\}}
\]
Termination of linear loop programs

Basic undecidability result – Turing 1936
Termination of a generic program with a loop is undecidable:

\[
\text{while } (\text{conditions}) \ {\text{commands}}
\]

But now, let us consider a much simpler case:

An initialized homogeneous linear program
\[
\vec{x} := \vec{b}; \ \text{while } (\vec{c}^T \vec{x} > \vec{0}) \ {\vec{x} := A\vec{x}}
\]
Termination of linear loop programs

Basic undecidability result – Turing 1936
Termination of a generic program with a loop is undecidable:

\[\text{while } (\text{conditions}) \{ \text{commands} \} \]

But now, let us consider a much simpler case:

An initialized homogeneous linear program
\[\vec{x} := \vec{b}; \quad \text{while } (\vec{c}^T \vec{x} > \vec{0}) \{ \vec{x} := A\vec{x} \} \]

Termination problem for simple linear programs
Does an instance of the above program i.e., \(\langle \vec{b}; \vec{c}; A \rangle\), terminate?
Termination of linear loop programs

Basic undecidability result – Turing 1936
Termination of a generic program with a loop is undecidable:

\[
\text{while (conditions)} \{ \text{commands} \}
\]

But now, let us consider a much simpler case:

An initialized homogeneous linear program
\[
\vec{x} := \vec{b}; \text{ while } (\vec{c}^T \vec{x} > \vec{0}) \{ \vec{x} := A\vec{x} \}
\]

Termination problem for simple linear programs
Does an instance of the above program i.e., \(\langle \vec{b}; \vec{c}; A \rangle\), terminate?

This problem is also called the positivity problem!
Termination of linear loop programs

Basic undecidability result – Turing 1936
Termination of a generic program with a loop is undecidable:

\[
\textbf{while } (\text{conditions}) \quad \{ \text{commands} \}
\]

But now, let us consider a much simpler case:

An initialized homogeneous linear program
\[
\vec{x} := \vec{b}; \quad \textbf{while } (\vec{c}^T \vec{x} > \vec{0}) \quad \{ \vec{x} := A\vec{x} \}
\]

Termination problem for simple linear programs
Does an instance of the above program i.e., \(\langle \vec{b}; \vec{c}; A \rangle \), terminate?

This problem is also called the positivity problem!
– rewrite as \(\forall n \geq 0, \text{ is } \vec{c}^T \cdot A^n \cdot \vec{b} > 0? \)
Decidability of the Positivity problem

- Decidability of Skolem/Positivity for 2,3,4... in 1981, ’85, ’05, ’06, ’09 by various authors.

- In 2014, Ouaknine and Worrell showed the best known result:
 - positivity of order ≤ 5 is decidable with complexity $\text{coNP}^{PP^{PP^{PP}}}$.
 - decidability for order 6 would imply major breakthroughs in analytic number theory (Diophantine approx of transcendental numbers).
Decidability of Skolem/Positivity for 2, 3, 4... in 1981, ’85, ’05, ’06, ’09 by various authors.

In 2014, Ouaknine and Worrell showed the best known result:

- positivity of order ≤ 5 is decidable with complexity $\text{coNP}^{PP^{PP^{PP}}}$.
- decidability for order 6 would imply major breakthroughs in analytic number theory (Diophantine approx of transcendental numbers).

Bottomline: The general problem is still wide open!
Question
Can you model program termination with Petri nets?

Simulating a program
Consider the following while loop program
\[v = v_0; \text{while} (v \geq 0) v = Mv. \]
• Clearly, this program is non-terminating iff \[M^k v_0 \geq 0 \text{ for all } k. \]
• We construct a net \(N \) which simulates the program, i.e., terminates iff the program does.
Question
Can you model program termination with Petri nets?

Theorem
Program termination/positivity reduces to termination of Petri nets with one transfer and one inhibitor arc!
Question
Can you model program termination with Petri nets?

Theorem
Program termination/positivity reduces to termination of Petri nets with one transfer and one inhibitor arc!

Simulating a program
Consider the following while loop program
\[v = v_0; \text{ while } (v \geq 0) \ v = Mv. \]

- Clearly, this program is non-terminating iff \(M^k v_0 \geq 0 \) for all \(k \).
- We construct a net \(N \) which simulates the program, i.e., terminates iff the program does.
Consider

\[M = \begin{bmatrix}
1 & -4 & 7 \\
2 & -5 & -8 \\
-3 & -6 & 9
\end{bmatrix} \]
Reduction from Positivity to T+HIPN

\[
\begin{bmatrix}
1 & -4 & 7 \\
2 & -5 & -8 \\
-3 & -6 & 9
\end{bmatrix}
\]
Reduction from Positivity to T+HIPN

\[
\begin{bmatrix}
1 & -4 & 7 \\
2 & -5 & -8 \\
-3 & -6 & 9 \\
\end{bmatrix}
\times
\begin{bmatrix}
5 \\
6 \\
7 \\
\end{bmatrix}
\]

E.g: First entry of col vec \(Mv = 5(1) + 6(-4) + 7(7) \)
Reduction from Positivity to T+HIPN
Initial marking assigns \((v_0)_i\), to place \(u_i\), and \(\sum_{1 \leq i \leq n}(\sum_{1 \leq j \leq n}|M_{ji}|)(v_0)_i\) tokens to \(G\), all others 0.

Lemma: \(\exists\) a non-term run in \(N\) iff \(M^k v_0 \geq 0 \ \forall k \in \mathbb{N}\).
Links to program termination

- We do not have a two-way reduction... so termination for T+HIPN could still be undecidable. (Open problem 1)
Links to program termination

- We do not have a two-way reduction... so termination for T+HIPN could still be undecidable. (Open problem 1)
- Can we reduce positivity to termination of R+HIPN?
• We do not have a two-way reduction... so termination for T+HIPN could still be undecidable. (Open problem 1)
• Can we reduce positivity to termination of R+HIPN? (Open problem 2) :P
Links to program termination

- We do not have a two-way reduction... so termination for T+HIPN could still be undecidable. (Open problem 1)
- Can we reduce positivity to termination of R+HIPN? (Open problem 2) :P
- If not, what about other problems? Reachability is already undecidable.
We do not have a two-way reduction... so termination for T+HIPN could still be undecidable. (Open problem 1)

Can we reduce positivity to termination of R+HIPN? (Open problem 2) :P

If not, what about other problems? Reachability is already undecidable.
What about coverability?
Theorem

Coverability is undecidable for Petri nets with 2 resets and 1 inhibitor arc.
Theorem

Coverability is undecidable for Petri nets with 2 resets and 1 inhibitor arc.
<table>
<thead>
<tr>
<th>Term</th>
<th>Cover</th>
<th>Reach</th>
<th>DLFRee</th>
</tr>
</thead>
<tbody>
<tr>
<td>PN</td>
<td>✓ (see [FS01]) ✓ (see [FS01]) ✓ (May84, Ler12) ✓ [CEP95, Hac74]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/T-PN</td>
<td>✓ (see [FS01]) ✓ (see [FS01]) × [DFS98] × [MIn67]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-PN</td>
<td>× [Min67] × [Min67]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIPN</td>
<td>✓ [Rei08, Bon13] ✓ [Rei08, Bon13] ✓ [Rei08, Bon13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R+HIPN</td>
<td>✓ [DFS98, Thm 4] ✓ [Red.frm [DFS98], Thm 4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T+HIPN</td>
<td>× [DFS98, Thm 4] × [Red.frm [DFS98], Thm 4]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(see paper!)
Part 3: “Weakening” Hierarchy?
Adding resets/transfers within hierarchy
Definition of HIPN

A total order \sqsubseteq on P such that

$$\forall (p, t) \in P \times T, \ F(p, t) \in I \implies (\forall q \sqsubseteq p, \ F(q, t) \in I).$$
Adding resets and transfers within Hierarchy

Definition of HIPN

A total order \sqsubseteq on P such that
$$\forall (p, t) \in P \times T, \ F(p, t) \in I \implies (\forall q \sqsubseteq p, \ F(q, t) \in I).$$

What if we change this to:
Definition of HIRPN: A seemingly larger class!

A total order \sqsubseteq on P such that
\[
\forall (p, t) \in P \times T, \quad F(p, t) \in I \implies (\forall q \sqsubseteq p, \ F(q, t) \in (I \lor R)).
\]
Definition of HIRPN: A seemingly larger class!

A total order \sqsubseteq on P such that
\[
\forall (p, t) \in P \times T, \ F(p, t) \in I \implies (\forall q \sqsubseteq p, \ F(q, t) \in (I \lor R)).
\]

Reset

- This is not a HIPN (or a R+HIPN), but it is a HIRPN!
Adding resets and transfers within Hierarchy

Definition of HIRPN: A seemingly larger class!
A total order \(\sqsubseteq \) on \(P \) such that
\[
\forall (p, t) \in P \times T, \quad F(p, t) \in I \implies (\forall q \sqsubseteq p, \quad F(q, t) \in (I \lor R))
\]

- This is not a HIPN (or a R+HIPN), but it is a HIRPN!
- A R+HIPN which is not a HIRPN.
Adding resets and transfers within Hierarchy

Definition of HIRPN: A seemingly larger class!

A total order \(\sqsubseteq \) on \(P \) such that

\[
\forall (p, t) \in P \times T, \quad F(p, t) \in I \implies (\forall q \sqsubseteq p, \quad F(q, t) \in (I \lor R)).
\]

- This is not a HIPN (or a R+HIPN), but it is a HIRPN!
- A R+HIPN which is not a HIRPN.
- Can do the same with transfers...
Theorem

HIRPNs are still easy: Can reduce to HIPNs, which preserving reachability. Hence obtain decidability of properties.
Theorem

HIRPNs are still easy: Can reduce to HIPNs, which preserving reachability. Hence obtain decidability of properties.
Theorem
HIRPNs are still easy: Can reduce to HIPNs, which preserving reachability. Hence obtain decidability of properties.

Theorem
Hierarchy is useless with transfers: i.e., HITPNs have same properties as $T+\text{HIPNs}$.
Conclusion
Results: Summary

Table 1: Results for all other extensions are subsumed by these results. Can add boundedness column too!
• Reducing the number of counters.
• What about complexity?
• Coverability for Petri nets with 1 reset and 1 inhibitor arc (without hierarchy)?
• An approach towards the positivity/Skolem problem via WSTS?
References

