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Markov chains: a basic model for probabilistic systems
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Transition system/automaton with probabilities

Stochastic transition matrix, linear algebraic properties

Distribution over states, transformer of distributions
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Transition matrix M

Transition system/automaton with probabilities

Stochastic transition matrix, linear algebraic properties

Distribution over states, transformer of distributions

2



Markov chain problems Links to Skolem Regularity results Other links

Markov chains: a basic model for probabilistic systems

1

23

42

3

1

3

1

5

2

5

2

5
1

2

1

2

1

2

1

2

(1
2
0 1

2
0)×





















2

3
0 1

3
0

1

2
0 1

2
0

2

5

1

5
0 2

5

1

2

1

2
0 0





















= ( 8

15

1

10

1

6

1

5
)

Transition matrix M

Transition system/automaton with probabilities

Stochastic transition matrix, linear algebraic properties

Distribution over states, transformer of distributions

2



Markov chain problems Links to Skolem Regularity results Other links

Markov chains

1

23

42

3

1

3

1

5

2

5

2

5
1

2

1

2

1

2

1

2





















2

3
0 1

3
0

1

2
0 1

2
0

2

5

1

5
0 2

5

1

2

1

2
0 0





















Transition matrix M

Basic reachability questions

Can you reach a given target state from a given initial state
with some given probability r?

in n steps, where n is given. Trivial!
in the limit, as n tends to ∞.
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Some basic (UG-level) probability theory

If the Markov chain is irreducible and aperiodic, then from any
initial state/distribution, the Markov chain will tend to a
unique stationary distribution.
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In general,

We can break into BSCCs (bottom strongly connected
components) and analyze probabilities in the limit.
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Reachability questions for Markov chains

Basic reachability questions

Given a Markov chain M, can you reach a given target state
from a given initial state with some given probability r?

in n steps, where n is given. Trivial

in the limit, as n tends to ∞. UG-level math
in n steps, for some n.

That is, given states s, t of a Markov chain M and rational r , does
there exist integer n such that 1s ·Mn · 1t = r? (resp. > r)

– Open!
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Reachability (is a) problem in Markov chains

In other words,

given a row-stochastic matrix M,i , j , r ∈ Q, does there exist
n ∈ N, s.t., Mn[i , j ] = r?

That is, can you give a procedure/algorithm to check if such
an n exists (Decision problem)?

6
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It is open, but exactly how hard is it?

Easy to reason about most states/distributions...
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Hard part: Is the limit point attained in finite time?!
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Hard part: Is the limit point attained in finite time?! Does there
exist n ∈ N, s.t., Mn(1, 2) = 4

11
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Reachability (is a) problem in Markov chains

In other words,
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Hard part: Is the limit point attained in finite time?! What is the
behavior around the limit point at all finite times?
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Some related problems

Consider ~v = (1/4, 1/4, 1/2) and

M =

0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6


Does ∃n, such that Mn(1, 1) = 1/3?

Also, ∀n ∈ N, is ~v ·Mn · (1 0 0) > 1/3?

Does ∃n s.t., ~v ·Mn · (1 0 − 1) = 0?
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Reasoning about trajectories of Markov chains

A motivating example (adapted from [Maruthi et al,CMSB’14]):
Variation in pop of yeast under stress as shown by a marker.

A simplistic model as a 3-state Markov chain

States: conc of marked yeast in pop – high, med, low
Transitions: prop. of yeast moving from a conc level to other.

8
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Reasoning about patterns

1 From a given initial distribution, does pop with high conc of
marked yeast always stay above 5/12?
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Reasoning about patterns

1 From a given initial distribution, does pop with high conc of
marked yeast always stay above 5/12?

2 Does the trajectory exhibit a regular property:
– low population having high conc of marked yeast, then high
and then low forever?

8



Markov chain problems Links to Skolem Regularity results Other links

Symbolic dynamics: trajectories

A discretized semantics

We partition distribution space & label using a finite alphabet.
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Symbolic dynamics: trajectories

A discretized semantics

We partition distribution space & label using a finite alphabet.

Does the trajectory exhibit a regular property: low pop having
conc of marked yeast, then high, and then low forever?
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Symbolic dynamics: trajectories

A discretized semantics

We partition distribution space & label using a finite alphabet.
Labeling above threshold by A; below by B, this translates to:
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Symbolic dynamics: trajectories

A discretized semantics

We partition distribution space & label using a finite alphabet.
Labeling above threshold by A; below by B, this translates to:

Is the symbolic trajectory BABω?
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Symbolic dynamics: trajectories

A discretized semantics

We partition distribution space & label using a finite alphabet.

Thus, symbolic trajectories are words over this finite alphabet
of discretized distribution space.

9
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Symbolic dynamics: Trajectories to languages

What if the initial distribution was not measured accurately?
can be anywhere between 1/2 and 1/3?
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Symbolic dynamics: Trajectories to languages

What if the initial distribution was not measured accurately?
can be anywhere between 1/2 and 1/3?

Now, the question is, does there exist a trajectory that
exhibits BABω

From words to languages
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Considering a set of initial distributions, gives a language.

10



Markov chain problems Links to Skolem Regularity results Other links

Symbolic dynamics: Trajectories to languages

From words to languages

Considering a set of initial distributions, gives a language.

This (symbolic) language is what we are interested in: we
denote it as L(M, Init).

10



Markov chain problems Links to Skolem Regularity results Other links

Symbolic dynamics: Trajectories to languages

From words to languages

Considering a set of initial distributions, gives a language.

This (symbolic) language is what we are interested in: we
denote it as L(M, Init).

Regularity will allow automata-theoretic techniques.
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Symbolic dynamics: Trajectories to languages

From words to languages

Considering a set of initial distributions, gives a language.

This (symbolic) language is what we are interested in: we
denote it as L(M, Init).

Regularity will allow automata-theoretic techniques.

Can model more complex problems!
10
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An abstract summary of the problem statements

M be a Markov chain,

µ, σ be distributions, Init be a set of distributions,

λ be a threshold value,

D be a discretization: for now, consider A,B wrt λ,
w ∈ {A,B}∗

Some questions we encountered and will examine

1 Does there exist an integer n, s.t., µ ·Mn · σ = λ?

2 For all integers n, is µ ·Mn · σ > λ?

3 Is L(µ,M) regular wrt D? Is w = L(µ,M)?

4 Is L(Init,M) regular wrt D? Does w ∈ L(Init,M)?
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Outline

What we saw
1 The problem statements

2 Why they are interesting/relevant?

Links to the Skolem problem

Another seemingly easy but hard problem!

Results on the symbolic dynamics

For a single trajectory.

For a set of trajectories/symbolic languages

Exact results under strong restrictions
Approximation results and a logic

Other links and related problems

Program Termination, Orbit problem, problems for POMDPs
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The Fibonacci Sequence

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .
Fibonacci sequence: un = un−1 + un−2 where u1 = u0 = 1

But rabbits die! So, un = un−1 + un−2 − un−3 where
u2 = 2, u1 = u0 = 1 Question: Can they ever die out?

A sequence 〈u0, u1, . . .〉 of numbers is called an Linear recurrence
(LRS) if there exists k ∈ N (called its order) and constants
a0, . . . , ak−1 s.t., for all n ≥ k,

un = ak−1un−1 + . . .+ a1un−k+1 + a0un−k

13
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The Skolem Problem

Skolem 1934: Also called the Skolem Pisot problem

Given a linear recurrence sequence (with initial conditions) over
integers, does it have a zero? Does ∃n such that un = 0?

i.e., do the rabbits ever die out?

Surprisingly, this problem has been open for 80 years!

Well, in 1934 decidability wasn’t as relevant... but definitely
since 1952.

It is faintly outrageous that this problem is still open; it is
saying that we do not know how to decide the halting
problem even for ’linear’ automata!” – Terence Tao, blog
entry 2007

Variant: (Ultimate) Positivity Problem

Given an LRS 〈u1, u2, . . .〉, ∀n, (n ≥ T ) is un ≥ 0?

14
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It is faintly outrageous that this problem is still open; it is
saying that we do not know how to decide the halting
problem even for ’linear’ automata!” – Terence Tao, blog
entry 2007

Variant: (Ultimate) Positivity Problem

Given an LRS 〈u1, u2, . . .〉, ∀n, (n ≥ T ) is un ≥ 0?

14
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Equivalent formulations of the Skolem Problem

Linear recurrence sequence form

Given an LRS 〈u1, u2, . . .〉 (with initial conditions), does ∃n s.t.,
un = 0?

Matrix Form

Given a k × k matrix M, does ∃n s.t., Mn(1, k) = 0?

Dot Product Form

Given a k × k matrix M, k-dim vectors ~v , ~w , does ∃n s.t.,
~v ·Mn · ~wT = 0?

15
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Results on Skolem/Positivity problems

Skolem-Mahler-Lech Theorem (1934, 1935, 1953)

Theorem

The set of zeros of any LRS is the union of a finite set and a finite
number of arithmetic progressions (periodic sets). Further, it is
decidable to check whether or not the set of zeros is infinite!

In other words, the hardness is in characterizing the finite set.
All known proofs use p-adic numbers.
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Results on Skolem/Positivity problems

Skolem-Mahler-Lech Theorem (1934, 1935, 1953)

Decidability of Skolem/Positivity for 2,3,4... in 1981, ’85, ’05,
’06, ’09 by various authors.

Almost all of these proofs use results on linear logarithms by
Baker and van der Poorten.
This theory fetched Baker the Field’s medal in 1970!
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and decidable in general for “simple” LRS.
3 decidability for order 6 would imply major breakthroughs in

analytic number theory (Diophantine approx of transcendental
numbers).
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Results on Skolem/Positivity problems

Skolem-Mahler-Lech Theorem (1934, 1935, 1953)

Decidability of Skolem/Positivity for 2,3,4... in 1981, ’85, ’05,
’06, ’09 by various authors.

Recently Ouaknine, Worrell from Oxford have published
several new results - ICALP’14, ICALP’14 (best paper).

1 positivity for LRS of order ≤ 5 is decidable with complexity

coNPPPPPPP
.

Actually, they show that non-positivity is in NPPosSLP .
2 ultimate positivity for LRS of order 5 or less is decidable in P

and decidable in general for “simple” LRS.
3 decidability for order 6 would imply major breakthroughs in

analytic number theory (Diophantine approx of transcendental
numbers).

Bottomline: The general problem is still open!
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Other related problems - The Orbit Problem

The Orbit Problem

Given a k × k matrix M, k-dim vectors ~x and ~y , does ∃n s.t.,
~x ·Mn = ~y?

Stochastic variant: Given a k × k stochastic matrix M and
k-dim stochastic vectors ~x and ~y , does ∃n s.t., ~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?
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Kannan, Lipton – STOC’80, JACM’86

The Orbit problem is decidable
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vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?

Kannan, Lipton – STOC’80, JACM’86

The Orbit problem is decidable in Polynomial time.

Skolem problem (does ∃n s.t., ~v ·Mn · ~wT = 0?) is special
case of the higher order Orbit Problem
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Other related problems - The Orbit Problem

The Orbit Problem

Given a k × k matrix M, k-dim vectors ~x and ~y , does ∃n s.t.,
~x ·Mn = ~y?

Stochastic variant: Given a k × k stochastic matrix M and
k-dim stochastic vectors ~x and ~y , does ∃n s.t., ~x ·Mn = ~y?

Higher Order Orbit Problem: Given k × k matrix M, k-dim
vector ~x , a subspace V of dim ≤ k, does ∃n s.t., ~x ·Mn ∈ V ?

Kannan, Lipton – STOC’80, JACM’86

The Orbit problem is decidable in Polynomial time.

Chonev,Ouaknine, Worrell– STOC’12

High dim Orbit Problem for dim 2 or 3 is in NPRP
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What about lower bounds

Skolem is NP-hard [Blondel, Portier ’02]
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Then, relate transition matrix of the NFA to matrix form of
the Skolem instance.

Thus, Skolem even over {0, 1} entries is NP-hard.

Corollary: Positivity is Co-NP hard. un 6= 0 iff u2
n − 1 ≥ 0.
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- non-universality of NFA over a unary alphabet is NP-hard.

Then, relate transition matrix of the NFA to matrix form of
the Skolem instance.

Thus, Skolem even over {0, 1} entries is NP-hard.

Corollary: Positivity is Co-NP hard. un 6= 0 iff u2
n − 1 ≥ 0.

Ouaknine, Worrell ’14

Positivity/Ultimate Positivity is as hard as a decision problem
for the universal theory of reals.

Known to be between co-NP and PSPACE.
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What about lower bounds

Skolem is NP-hard [Blondel, Portier ’02]

Via an old-automata theoretic result of Stockmeyer, Meyer ’73
- non-universality of NFA over a unary alphabet is NP-hard.

Then, relate transition matrix of the NFA to matrix form of
the Skolem instance.

Thus, Skolem even over {0, 1} entries is NP-hard.

Corollary: Positivity is Co-NP hard. un 6= 0 iff u2
n − 1 ≥ 0.

Ouaknine, Worrell ’14

Positivity/Ultimate Positivity is as hard as a decision problem
for the universal theory of reals.

Known to be between co-NP and PSPACE.

Surprisingly, nothing more is known!
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An aside: a new even simpler proof for NP-hardness!

(Part of ongoing work with Nikhil Balaji and Nikhil Vyas...)

Reduction from Subset-Sum problem

Consider an instance of Subset-sum: A = {a1, . . . am},S ∈ N.

For each i ∈ {1, . . . ,m}, let pi be the i th prime.

Consider the LRS ui
n which starts with zeros till pi

th position
where there is ai and then this repeats.

Let un =
∑m

i=1 ui
n − S .

(un) has a zero iff there exists T ⊆ A,
∑

T = S .

Gives a (slightly) different NP-complete subclass of Skolem.

Skolem instances where the eigenvalues are roots of unity
(roots of reals?).

Known to be decidable, but complexity bounds?
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Links between Skolem and Markov reachability

Recall:

Markov Reachability. Given a finite stochastic matrix M
with rational entries and a rational number r , does there
exist n ∈ N such that (Mn)1,2 = r?

Skolem Problem. Given a k × k integer matrix M, does
there exist n such that (Mn)1,2 = 0?

Theorem [IPL’15]

The Markov Reachability Problem is as hard as the Skolem problem

In particular, we show that the Skolem problem can be reduced to
the reachability problem for Markov chains in polynomial time.
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Links between Skolem and Markov reachability

Proof sketch

Take instance of Skolem, i.e., a k × k integer matrix M.
1 Remove negative entries in M.

Any rational r can be written as the difference of two positive
rationals r1 − r2.
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Replace each entry mij of M by the symmetric 2× 2 matrix(

pij qij

qij pij

)
, such that pij − qij = mi,j .

Then (M)1,2 = ~eTP1 ~v1, where ~e = (1, 0, . . . , 0)T and
~v1 = (0, 0, 1,−1, 0, . . . , 0)T are 2k-dimensional vectors.
By induction, (Mn)1,2 = ~eTPn

1 ~v1.
- the map sending

(
a b
b a

)
to a − b is a homomorphism from the ring of 2 × 2 symmetric

integer matrices to Z
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~v1 = (0, 0, 1,−1, 0, . . . , 0)T are 2k-dimensional vectors.
By induction, (Mn)1,2 = ~eTPn

1 ~v1.

2 Rescale: Pick biggest entry in P1 and divide;put remaining
mass in a new column. Also add all 1’s vector to v1.
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Proof sketch

Take instance of Skolem, i.e., a k × k integer matrix M.
1 Remove negative entries in M.

Any rational r can be written as the difference of two positive
rationals r1 − r2.
Replace each entry mij of M by the symmetric 2× 2 matrix(

pij qij

qij pij

)
, such that pij − qij = mi,j .

Then (M)1,2 = ~eTP1 ~v1, where ~e = (1, 0, . . . , 0)T and
~v1 = (0, 0, 1,−1, 0, . . . , 0)T are 2k-dimensional vectors.
By induction, (Mn)1,2 = ~eTPn

1 ~v1.

2 Rescale: Pick biggest entry in P1 and divide;put remaining
mass in a new column. Also add all 1’s vector to v1.

(Mn)1,2 = 0 iff ~eTPn
2 ~v2 = 1, where P2 is stochastic 2k + 1-dim

matrix and ~v2 has only 0, 1, 2 entries.
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Final Step: Obtaining a co-ordinate vector - fixing v2

Construct a new Markov chain with double the nodes (+3).
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4 .
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Corollaries

Thus, reduced Skolem to Markov reachability with quadratic
size blow-up.

Same reduction works for Positivity.

Many probabilistic logics have been defined over trajectories
of a Markov chain.

PMLO (Beaquier, Rabinovich, Slissenko, 2002),
iLTL (Kwon, Agha, 2004)
LTLI (Agrawal, A., Genest, Thiagarajan, 2012)

Corollary

Model checking (i.e., checking whether the system satisfies a
property written in the logic) for all these logics is “Skolem-hard”.
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Outline

The Markov reachability problem

1 The problem statements

2 Why they are interesting/relevant?

Links to the Skolem problem

Another seemingly easy but hard problem!

Results on the symbolic dynamics

For a single trajectory.

For a set of trajectories/symbolic languages

Exact results under strong restrictions
Approximation results and a logic

Other links and related problems

Program Termination, Orbit problem, problems for POMDPs

24



Markov chain problems Links to Skolem Regularity results Other links

Outline

The Markov reachability problem

1 The problem statements

2 Why they are interesting/relevant?

Links to the Skolem problem

Another seemingly easy but hard problem!

Results on the symbolic dynamics

For a single trajectory.

For a set of trajectories/symbolic languages

Exact results under strong restrictions
Approximation results and a logic

Other links and related problems

Program Termination, Orbit problem, problems for POMDPs

24



Markov chain problems Links to Skolem Regularity results Other links

Outline

The Markov reachability problem

1 The problem statements

2 Why they are interesting/relevant?

Links to the Skolem problem

Another seemingly easy but hard problem!

Results on the symbolic dynamics

For a single trajectory.

For a set of trajectories/symbolic languages

Exact results under strong restrictions
Approximation results and a logic

Other links and related problems

Program Termination, Orbit problem, problems for POMDPs

24



Markov chain problems Links to Skolem Regularity results Other links

Properties of trajectories

Recall: Given a Markov chain M and a distribution µ, we define

(symbolic) trajectory w ∈ {A,B}, where wi = A iff µ ·M i ≥ λ
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(symbolic) trajectory w ∈ {A,B}, where wi = A iff µ ·M i ≥ λ
Qn: How hard is it to describe them? Are they periodic?
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Properties of trajectories

Recall: Given a Markov chain M and a distribution µ, we define

(symbolic) trajectory w ∈ {A,B}, where wi = A iff µ ·M i ≥ λ

Some properties about such trajectories

Trajectories may not be ultimately periodic.

Threshold λ = 1/3, initial distribution δ0.

Trajectory projected on first component is not regular.

Reason is that eigenvalues are 1, re iθ, re−iθ with
r =
√

19/10, θ = cos−1(4/
√

19).
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Markov reachability problems are decidable for Markov chains
whose eigenvalues are roots of reals.
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Properties of trajectories

Recall: Given a Markov chain M and a distribution µ, we define

(symbolic) trajectory w ∈ {A,B}, where wi = A iff µ ·M i ≥ λ

Some properties about such trajectories

Trajectories may not be ultimately periodic.

If eigenvalues of M are roots of real numbers, then, every
trajectory from any initial distribution is ultimately periodic.

Corollary

Markov reachability problems are decidable for Markov chains
whose eigenvalues are roots of reals.

What about the language/regularity of symbolic dynamics?
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Results on the symbolic dynamics: Approximate

Recall:

Let Init, the set of initial distributions Init, be a convex
polytope (or product of intervals).

The language L(M, Init) of a Markov chain M is the set of
words over the set of all initial distributions.

Approximation results

“For all ε > 0, does there exist nε s.t., prob to be in Goal after
nε steps is at least 1/2− ε?” is decidable.
–[Chadha et al., ’14] tackle such problems in unary PFA.

Decidability for more general approximations of symbolic
dynamics, valid for LTL-style queries
– [Agarwal et. al, ’12,’15]
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Results on the symbolic dynamics: Exact

Theorem [ A., Genest, Karelovic, Vyas,’16]

If all eigenvalues are distinct positive real numbers, then the
(symbolic) language is regular.

There exists a Markov chain whose eigenvalues are distinct
roots of real numbers, whose symbolic language is not regular.

The source of difficulty

Under above conditions, all trajectories are ult. constant.

For each trajectory σ, there exists nσ ∈ N, after which it is
constant Aω or Bω.

However, to show regularity, we need a uniform bound
applicable to all trajectories, which is not easy to obtain.

Idea: Break into ultimate and finite prefixes and analyze the points
where sign changes (switches from A to B or vice versa).
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Other related problems - Program Termination

Basic undecidability result – Turing 1936

Termination of a generic program with a loop is undecidable:

while (conditions) {commands}

But now, let us consider a much simpler case:

An initialized homogeneous linear program

~x := ~b; while (~cT~x > ~0) {~x := A~x}

Termination problem for simple linear programs

Does an instance of the above program i.e., 〈~b;~c ; A〉, terminate?

This problem is equivalent to the positivity problem!
– Can rewrite as ∀n ≥ 0, is ~cT · An · ~b > 0?
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Termination of Linear Programs

Thus, termination for initialized homogenous linear programs

~x := ~b; while (~cT~x > ~0) {~x := A~x} = positivity

What about the uninitialized case?

while (B~x > 0) {~x := A~x}

Tiwari CAV’04 : termination is decidable (in P) over reals.

Braverman CAV’06: decidable over rationals.
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Conclusion

Simple problems with hard solutions

Interplay of Markov chain theory, algorithmic complexity
theory, number theory...

Many applications: probabilistic verification, program
termination.

And many links: Orbit problem, Petri nets
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Conclusion

Simple problems with hard solutions

Interplay of Markov chain theory, algorithmic complexity
theory, number theory...

Many applications: probabilistic verification, program
termination.

And many links: Orbit problem, Petri nets

A yawning gap in complexity/decidability
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