Timed systems through the lens of logic

S. Akshay1, P. Gastin2, V. Jugé3, S. Krishna1

1 Dept of CSE, Indian Institute of Technology Bombay
2 LSV, ENS-Paris Saclay & CNRS
3 LIGM, Université Paris-Est Marne la Vallée, CNRS

26 June 2019
LICS’2019, Vancouver, Canada
A global view of timed systems

A timed system has several parts:

1. A regular way to generate behaviors: Automata, Expressions
2. Timing features: Clock resets and guards, Event-clocks, Clock updates etc.
A global view of timed systems

A timed system has several parts:

1. A regular way to generate behaviors: Automata, Expressions
2. Timing features: Clock resets and guards, Event-clocks, Clock updates etc.
3. Data structures: stacks, queues, bags, etc.
A global view of timed systems

A timed system has several parts:

1. A regular way to generate behaviors: Automata, Expressions
2. Timing features: Clock resets and guards, Event-clocks, Clock updates etc.
3. Data structures: stacks, queues, bags, etc.

Examples

- Timed automata, event clock automata AD94, AFH99
- Timed pushdown automata BER94, AAS12
- Timed message-passing automata AGKS10, AAK18
A global view of timed systems

A timed system has several parts:

1. A regular way to generate behaviors: Automata, Expressions
2. Timing features: Clock resets and guards, Event-clocks, Clock updates etc.
3. Data structures: stacks, queues, bags, etc.

Examples

- Timed automata, event clock automata \textit{AD94,AFH99}
- Timed pushdown automata \textit{BER94,AAS12}
- Timed message-passing automata \textit{AGKS10,AAK18}

Popular approach: region construction. For each \textit{timing feature} and each \textit{data structure}, redo the proof.

Do we need to do this? Is there something unifying them?
A run of system S is a sequence of instructions

- e.g., with a queue d_1 and stack d_2 consider

$$\tau = \text{nop } w(d_1) \text{ nop } w(d_1) r(d_1) w(d_2) w(d_2) r(d_1) \text{ nop } r(d_2) r(d_2)$$
A run of system S is a sequence of instructions

- e.g., with a queue d_1 and stack d_2 consider

$$\tau = \text{nop } w(d_1) \text{ nop } w(d_1) \text{ r}(d_1) \text{ w}(d_2) \text{ w}(d_2) \text{ r}(d_1) \text{ nop } r(d_2) \text{ r}(d_2)$$

- Gives rise to a node and edge-labeled graph G_τ
A run of system S is a sequence of instructions

G_T is valid: push matches pop, FIFO on stack, LIFO on queue
A unifying graphical view

- A run of timed system S is a sequence of timed instructions
- G_T is valid: push matches pop, FIFO on stack, LIFO on queue
A unifying graphical view

- A run of timed system S is a sequence of timed instructions
- G_τ is valid: push matches pop, FIFO on stack, LIFO on queue
- A run must be realizable, i.e., weighted graph WG_τ should not have negative cycle!
A unifying graphical view

- A run of timed system \(S \) is a sequence of timed instructions
- \(G_\tau \) is valid: push matches pop, FIFO on stack, LIFO on queue
- A run must be realizable, i.e., weighted graph \(WG_\tau \) should not have negative cycle!

\[
\begin{align*}
G_\tau &= 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \\
\tau &= \text{nop} \\
s_1 &= x := 0 \\
s_2 &= w(d_1) \\
s_3 &= y := 0 \\
s_4 &= w(d_1) \\
s_5 &= y \leq 1 \\
s_6 &= r(d_1) \\
s_7 &= w(d_2) \\
s_8 &= w(d_2) \\
s_9 &= r(d_2) \\
s_{10} &= \text{nop} \\
s_{11} &= r(d_2)
\end{align*}
\]

\[
\begin{align*}
WG_\tau &= 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \\
\text{Conditions:} \\
&\leq 0 \\
&\leq 0 < -2 \\
&\leq 1 < 6 \\
&\leq 1 < 3 \\
&\leq 3 < 5 \\
&\leq -2 < -4
\end{align*}
\]

So emptiness asks if there exists \(\tau \) generated by \(S \) such that
(i) \(G_\tau \) is valid and (ii) \(WG_\tau \) is realizable?
Related work

Untimed setting - Use Courcelle’s theorem

- Show that graphs G_τ obtained have bounded tree-width
- Write validity in MSO over these graphs G_τ
- Interpret these graphs over trees, and reduce to emptiness of tree automata

Main questions:

- Is realizability MSO definable?
- Do timed graphs WG_τ have bounded tree-width?
- Can you avoid the complexity blowup?
Related work (contd.)

Timed setting - for TPDA and restricted TMPDA

AGK16, AGKS17, AGK18

- Show that timed graphs from TPDA have bounded tree-width
- Directly and carefully build tree automata to check emptiness

Main question:

- how to handle generic data structures, timing features?
- Is there a higher level treatment, whereby we can avoid showing bound on tree-width for each timed system?
Related work (contd.)

Timed setting - for TPDA and restricted TMPDA

- AGK16, AGKS17, AGK18
- Show that timed graphs from TPDA have bounded tree-width
- Directly and carefully build tree automata to check emptiness

Main question:
- how to handle generic data structures, timing features?
- Is there a higher level treatment, whereby we can avoid showing bound on tree-width for each timed system?

Orthogonal technique for TA, TPDA

- Encoding as registers and going via atoms CL15, CLLM17, CL18
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

- width is the size of the largest antichain
- width=1 implies linear order, i.e., graphs coming from sequential systems.
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic
1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues
2. Graphs to Logic
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues
2. Graphs to Logic
 - Using above theorem above get Ψ for realizability over WG
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_{τ} and timing WG_{τ} issues

2. Graphs to Logic
 - Using above theorem above get Ψ for realizability over WG
 - A challenge: how do we relate the decoupled graphs?
Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues

2. Graphs to Logic
 - Using above theorem above get Ψ for realizability over WG
 - Lemma: Given valid τ, WG_τ can be logically interpreted into G_τ. Thus convert Ψ over WG_τ into Ψ' over G_τ
Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues

2. Graphs to Logic
 - Using above theorem above get Ψ for realizability over WG
 - Lemma: Given valid τ, WG_τ can be logically interpreted into G_τ. Thus convert Ψ over WG_τ into Ψ' over G_τ

Theorem

Emptiness of timed system can be reduced to satisfiability of formula in MSO/EQ-ICPDL
Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing $W G_\tau$ issues

2. Graphs to Logic

3. (if you really want emptiness,) Logic back to Automata
 - under-approximate approach to decidability of emptiness.
 - e.g., if tree-width is bounded, then interpret these graphs in trees and obtain tree automata.
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues

2. Graphs to Logic

3. (if you really want emptiness,) Logic back to Automata
 - under-approximate approach to decidability of emptiness.
 - e.g., if tree-width is bounded, then interpret these graphs in trees and obtain tree automata.
 - Note tree-width is now in untimed graphs G_τ!
Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs
 - allows us to decouple data structure G_{τ} and timing WG_{τ} issues

2 Graphs to Logic

3 (if you really want emptiness,) Logic back to Automata
 - under-approximate approach to decidability of emptiness.
 - e.g., if tree-width is bounded, then interpret these graphs in trees and obtain tree automata.
 - Note tree-width is now in untimed graphs G_{τ}!
 - Using EQ-ICPDL instead of MSO gives good complexity
Our results

Theorem
Realizability of weighted graphs is MSO (and EQ-ICPDL) definable iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1. Timed systems to Graphs
 - allows us to decouple data structure G_τ and timing WG_τ issues

2. Graphs to Logic

3. (if you really want emptiness,) Logic back to Automata
 - under-approximate approach to decidability of emptiness.
 - e.g., if tree-width is bounded, then interpret these graphs in trees and obtain tree automata.
 - Note tree-width is now in untimed graphs G_τ!
 - Using EQ-ICPDL instead of MSO gives good complexity

Extensions: Capture rich timing interplay & model checking
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with \(p \in \Sigma \) and \(\gamma \in \Gamma \):

\[
\begin{align*}
\Phi & ::= E \sigma : \neg \Phi : \Phi \lor \Phi \\
\sigma & ::= \top : p : \sigma \lor \sigma : \neg \sigma : \langle \pi \rangle \sigma : \text{loop}(\pi) \\
\pi & ::= \gamma : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi
\end{align*}
\]
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$\Phi ::= E\sigma : \neg\Phi : \Phi \lor \Phi$$

$$\sigma ::= \top : p : \sigma \lor \sigma : \neg\sigma : \langle \pi \rangle\sigma : \text{loop}(\pi)$$

$$\pi ::= \gamma \rightarrow : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi$$

- Φ are sentences, E existential node quantifier.
- σ node or state formulae with one (implicit) free FOvar.
- π path or program formulae with two (implicit) free FOvar.
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$
\Phi ::= E\sigma : \neg\Phi : \Phi \lor \Phi \\
\sigma ::= \top : p : \sigma \lor \sigma : \neg\sigma : \langle \pi \rangle\sigma : \text{loop(}\pi\text{)} \\
\pi ::= \gamma \rightarrow : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi
$$

(\Sigma, \Gamma)-labeled graph, $\Sigma = \{p, q, r, s\}$, $\Gamma = \{c, e, d, f, \prec\}$
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$\Phi ::= E \sigma : \neg \Phi : \Phi \lor \Phi$$

$$\sigma ::= \top : p : \sigma \lor \sigma : \neg \sigma : \langle \pi \rangle \sigma : \text{loop}(\pi)$$

$$\pi ::= \gamma : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi$$

(\Sigma, \Gamma)-labeled graph, $\Sigma = \{p, q, r, s\}$, $\Gamma = \{c, e, d, f, \prec\}$
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$\Phi ::= E\sigma : \neg \Phi : \Phi \lor \Phi$$

$$\sigma ::= \top : p : \sigma \lor \sigma : \neg \sigma : \langle \pi \rangle \sigma : \text{loop}(\pi)$$

$$\pi ::= \gamma : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi$$

(Σ, Γ)-labeled graph, $\Sigma = \{p, q, r, s\}$, $\Gamma = \{c, e, d, f, \prec\}$

$$E \langle (\text{test}\{p \lor q\} \cdot \prec)^* \rangle r$$

$$\neg E \langle \prec \rangle (p \land s)$$

$$E \lor_{(d, d') \in (\Gamma \backslash \{\prec\})^2, d \neq d'} \text{loop}(d \cdot d'^{-1})$$
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$
\Phi ::= E \sigma : \neg \Phi : \Phi \lor \Phi \\
\sigma ::= \top : p : \sigma \lor \sigma : \neg \sigma : \langle \pi \rangle \sigma : \text{loop}(\pi) \\
\pi ::= \gamma : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi
$$

(\Sigma, \Gamma)-labeled graph, $\Sigma = \{p, q, r, s\}$, $\Gamma = \{c, e, d, f, \prec\}$
What logic shall we use?

Propositional dynamic logic with Intersection & Converse (ICPDL)

We have the following, with $p \in \Sigma$ and $\gamma \in \Gamma$:

$$
\begin{align*}
\Phi &::= E\sigma : \neg\Phi : \Phi \lor \Phi \\
\sigma &::= \top : p : \sigma \lor \sigma : \neg\sigma : \langle\pi\rangle\sigma : \text{loop}(\pi) \\
\pi &::= \gamma : \text{test}\{\sigma\} : \pi + \pi : \pi \cdot \pi : \pi^* : \pi^{-1} : \pi \cap \pi
\end{align*}
$$

EQ-ICPDL(Σ, Γ) allows \exists-quant over new propositional variables

$$
\Psi = \exists p_1, \ldots, p_n \Phi \text{ where } AP = \{p_1, \ldots, p_n\} \text{ is disjoint from } \Sigma \text{ and } \Phi \in \text{ICPDL}(\Sigma \uplus AP, \Gamma).
$$
Why this dynamic logic

Reasons for using EQ-ICPDL

- The talk got scheduled in session titled “dynamic logics”!
Why this dynamic logic

Reasons for using EQ-ICPDL

- The talk got scheduled in session titled “dynamic logics”!
- Many properties are easier to write!
Why this dynamic logic

Reasons for using EQ-ICPDL

- The talk got scheduled in session titled “dynamic logics”!
- Many properties are easier to write!
- EQ-ICPDL is strictly contained in MSO
Why this dynamic logic

Reasons for using EQ-ICPDL

- The talk got scheduled in session titled “dynamic logics”!
- Many properties are easier to write!
- EQ-ICPDL is strictly contained in MSO
- The following theorem by Göller, Lohrey, Lutz

Theorem [GLL09]

Given $k \geq 1$ in unary and a formula Ψ in $\text{EQ-ICPDL}(\Sigma, \Gamma)$ of intersection width bounded by a constant, checking whether $G \models \Psi$ for some (Σ, Γ)-labeled graph G whose tree-width is at most k can be solved in EXPTIME.
Solving realizability by modulo counting

\(G \) is realizable

iff \(\exists ts : V \to \mathbb{R} \) s.t

- \(\forall u \rightsquigarrow^a v, ts(v) - ts(u) \leq a \)
- \(\forall u \rightarrow v, 0 \leq ts(v) - ts(u) \)
Assume only closed guards: G is realizable

iff $\exists ts : V \rightarrow \mathbb{N}$ s.t

- $\forall u \xrightarrow{a} v, ts(v) - ts(u) \leq a$
- $\forall u \rightarrow v, 0 \leq ts(v) - ts(u)$
Assume only closed guards: \(G \) is realizable

iff \(\exists ts : V \rightarrow \mathbb{N} \) s.t

- \(\forall u \xrightarrow{a} v, ts(v) - ts(u) \leq a \)
- \(\forall u \rightarrow v, 0 \leq ts(v) - ts(u) \leq M - 1 \), where \(M \) is max const

\[M = 5 \]
Assume only closed guards: G is realizable

iff $\exists ts : V \rightarrow \mathbb{N}$ s.t $\forall u \sim^a v$, $ts(v) - ts(u) \leq a$.

$M = 5$

$0 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 0$

$0 \rightarrow 0 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 0$

$0 \rightarrow 0 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 0$

$0 \rightarrow 0 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 0$

$0 \rightarrow 0 \rightarrow 3 \rightarrow 4 \rightarrow 8 \rightarrow 9 \rightarrow 0$
Solving realizability by modulo counting

Assume only closed guards: G is realizable

 iff $\exists ts : V \rightarrow \mathbb{N}$ s.t $\forall u \sim^a v, ts(v) - ts(u) \leq a.$

$M = 5$

$\exists tsm : V \rightarrow \{0, \ldots, M - 1\}$ s.t $\forall u \sim^a v,$

- if $u \preceq v,$ then $(tsm(v) - tsm(u))[M] \leq a$
- if $v \prec u,$ then $(tsm(v) - tsm(u))[M] \geq -a$
Assume only closed guards: G is realizable

iff $\exists ts : V \rightarrow \mathbb{N}$ s.t $\forall u \leftrightarrow^a v, ts(v) - ts(u) \leq a$.

$\exists tsm : V \rightarrow \{0, \ldots, M - 1\}$ s.t $\forall u \leftrightarrow^a v$,

- if $u \preceq v$, then $(tsm(v) - tsm(u))[M] \leq a$
- if $v \prec u$, then $(tsm(v) - tsm(u))[M] \geq -a$ or modulo counting grew big in between
Solving realizability by modulo counting

Assume only closed guards: \(G \) is realizable iff

\[
\exists ts : V \rightarrow \mathbb{N} \text{ s.t. } \forall u \sim^a v, \; ts(v) - ts(u) \leq a.
\]

\(M = 5 \)

\[
\exists tsm : V \rightarrow \{0, \ldots M - 1\} \text{ s.t. } \forall u \sim^a v,
\]

- if \(u \preceq v \), then \((tsm(v) - tsm(u))[M] \leq a \)
- if \(v \prec u \), then \((tsm(v) - tsm(u))[M] \geq -a \) or modulo counting grew big in between
Assume only closed guards: \(G \) is realizable

iff \(\exists ts : V \to \mathbb{N} \text{ s.t } \forall u \overset{a}{\leadsto} v, ts(v) - ts(u) \leq a. \)

\[
M = 5
0 \rightarrow 0 \rightarrow 3 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 4
\]

\(\exists tsm : V \to \{0, \ldots, M - 1\} \text{ s.t } \forall u \overset{a}{\leadsto} v, \)

- if \(u \preceq v \), then \((tsm(v) - tsm(u))[M] \leq a\) and modulo counting didn’t grow big in between
- if \(v \preceq u \), then \((tsm(v) - tsm(u))[M] \geq -a\) or modulo counting grew big in between
Assume only closed guards: \(G \) is realizable
\[\exists ts : V \rightarrow \mathbb{N} \text{ s.t } \forall u \sim^a v, ts(v) - ts(u) \leq a. \]

\[M = 5 \]

\[\iff \exists tsm : V \rightarrow \{0, \ldots, M - 1\} \text{ s.t } \forall u \sim^a v, \]

- if \(u \preceq v \), then \((tsm(v) - tsm(u))[M] \leq a \) and modulo counting didn’t grow big in between
- if \(v \prec u \), then \((tsm(v) - tsm(u))[M] \geq -a \) or modulo counting grew big in between
Solving realizability by modulo counting

Assume only closed guards: \(G \) is realizable

\[
\text{iff } \exists ts : V \to \mathbb{N} \text{ s.t } \forall u \overset{a}{\rightsquigarrow} v, ts(v) - ts(u) \leq a.
\]

\[
M = 5
\]

\[
\begin{array}{c}
0 \\
3 \\
4 \\
1 \\
3 \\
4 \\
0
\end{array}
\]

\[
\begin{array}{ccc}
0 & 3 & 2 \\
3 & 4 & 1 \\
1 & 3 & 4 \\
4 & 0 & 0
\end{array}
\]

\[
\text{iff } \exists tsm : V \to \{0, \ldots, M - 1\} \text{ s.t } \forall u \overset{a}{\rightsquigarrow} v,
\]

- if \(u \preceq v \), then \((tsm(v) - tsm(u))[M] \leq a\) and modulo counting didn’t grow big in between
- if \(v \prec u \), then \((tsm(v) - tsm(u))[M] \geq -a\) or modulo counting grew big in between

\((u, v) \) is big if \(\exists u \prec w \prec x \preceq v \) s.t

\[
(tsm(w) - tsm(u))[M] + (tsm(x) - tsm(w))[M] \geq M
\]
Realizable iff \(\exists tsm : V \to \{0, \ldots, M - 1\} \) s.t \(\forall u \preceq^a v, \)

- if \(u \preceq v \), then \((tsm(v) - tsm(u))[M] \leq a \) and \((u, v) \) is not big
- if \(v \prec u \), then \((tsm(v) - tsm(u))[M] \geq -a \) or \((u, v) \) is big

where \((u, v) \) is big if \(\exists u \prec w \prec x \preceq v \) s.t

\[
(tsm(w) - tsm(u))[M] + (tsm(x) - tsm(w))[M] \geq M
\]

\[
\text{BigPath} = \sum_{0 \leq i, j, k < M} \text{test}\{p_i\} \cdot \to^+ \text{test}\{p_j\} \cdot \to^+ \text{test}\{p_k\} \cdot \to^*
\]

\[
(j - i)[M] + (k - j)[M] \geq M
\]
Realizable iff $\exists tsm : V \rightarrow \{0, \ldots, M - 1\}$ s.t $\forall u \rightsquigarrow^a v$,

- if $u \preceq v$, then $(tsm(v) - tsm(u))[M] \leq a$ and (u, v) is not big
- if $v < u$, then $(tsm(v) - tsm(u))[M] \geq -a$ or (u, v) is big

where (u, v) is big if $\exists u < w < x \preceq v$ s.t

$$(tsm(w) - tsm(u))[M] + (tsm(x) - tsm(w))[M] \geq M$$

$$\text{BigPath} = \sum_{0 \leq i, j, k < M} \text{test}\{p_i\} \cdot \rightarrow^+ \cdot \text{test}\{p_j\} \cdot \rightarrow^+ \cdot \text{test}\{p_k\} \cdot \rightarrow^*$$

$$(j - i)[M] + (k - j)[M] \geq M$$

(u, v) is not big $= \neg E \bigvee_{-M < \alpha < M} \text{loop}(\text{BigPath} \cdot \xrightarrow{\leq \alpha}^{-1})$
Writing it in EQ-ICPDL

Realizable iff $\exists tsm : V \rightarrow \{0, \ldots, M - 1\}$ s.t $\forall u \ni^a v$,

- if $u \preceq v$, then $(tsm(v) - tsm(u))[M] \leq a$ and (u, v) is not big
- if $v \prec u$, then $(tsm(v) - tsm(u))[M] \geq -a$ or (u, v) is big

where (u, v) is big if $\exists u \prec w \prec x \preceq v$ s.t

$$(tsm(w) - tsm(u))[M] + (tsm(x) - tsm(w))[M] \geq M$$

Realizable $= \exists p_1, \ldots, p_{M-1}$ Partition \land Forward \land Backward

Partition $= A \bigvee_{0 \leq i < M} [p_i \land \bigwedge_{j \neq i} \neg p_j]$

Forward $= \neg E \bigvee_{-M < \alpha < M} \text{loop}(\text{BigPath} \cdot \frac{\leq \alpha}{\rightarrow^{-1}}) \land \neg E \bigvee_{0 \leq i, j < M} \text{loop}(\text{test}\{p_i\} \cdot \frac{\leq \alpha}{\rightarrow} \cdot \text{test}\{p_j\} \cdot (\rightarrow^{-1})^+)$

Similarly for Backward, but need to define $\neg \text{BigPath}$ (see paper)
What about strict/open guards

What happens when there are both closed and open guards?

Realizable $\iff \exists tsm : V \rightarrow \{0, \ldots M - 1\} \text{ s.t } \forall u \leftarrow^a v$,

- if $u \leq v$, then $(tsm(v) - tsm(u))[M] \leq a$ and (u, v) is not big
- if $v \prec u$, then $(tsm(v) - tsm(u))[M] \geq -a$ or (u, v) is big

But the reverse direction is not true, since strictness could invalidate assignments.

Capturing strict guards

Consider the orderings of fractional parts. These should not form a cycle which a strict constraint within!

Uses intersection (but with intersection-width 2).
What about strict/open guards

What happens when there are both closed and open guards?

Realizable $\iff \exists tsm : V \to \{0, \ldots, M - 1\}$ s.t $\forall u \sim^a v$,
- if $u \preceq v$, then $(tsm(v) - tsm(u))[M] \leq a$ and (u, v) is not big
- if $v \prec u$, then $(tsm(v) - tsm(u))[M] \geq -a$ or (u, v) is big

But the reverse direction is not true, since strictness could invalidate assignments.
What about strict/open guards

What happens when there are both closed and open guards?

Realizable \(\iff \exists tsm : V \rightarrow \{0, \ldots, M - 1\} \text{ s.t } \forall u \preccurlyeq^a v,
\begin{align*}
&\text{if } u \leq v, \text{ then } (tsm(v) - tsm(u))[M] \leq a \text{ and } (u, v) \text{ is not big} \\
&\text{if } v \prec u, \text{ then } (tsm(v) - tsm(u))[M] \geq -a \text{ or } (u, v) \text{ is big}
\end{align*}

But the reverse direction is not true, since strictness could invalidate assignments.

Capturing strict guards

- Consider the orderings of fractional parts.
- These should not form a cycle which a strict constraint within!
- Uses intersection (but with intersection-width 2).

Realizable = \(\exists p_1, \ldots, p_{M-1} \text{ Partition } \wedge \text{Forward } \wedge \text{Backward } \wedge \text{noFracCycle} \)
Realizability is not MSO definable without the linear order

- Width of a partial order $=$ maximal size of anti-chain.
- Linear order has width 1.
Realizability is not MSO definable without the linear order

- Width of a partial order $=$ maximal size of anti-chain.
- Linear order has width 1.
- Consider the following example with width 2.
Realizability is not MSO definable without the linear order

- Width of a partial order $=$ maximal size of anti-chain.
- Linear order has width 1.
- Consider the following example with width 2.
- The graph is realizable iff $\#$ blue edges is \geq $\#$ red edges.
Realizability is not MSO definable without the linear order

- Width of a partial order $=$ maximal size of anti-chain.
- Linear order has width 1.
- Consider the following example with width 2.
- The graph is realizable iff $\#$blue edges is $\geq \#$red edges.
- Cannot be expressed in MSO (formal proof by backward translation).
A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic
Application and extensions

A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic

Example: event-clock $next_a$
A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic

Example: event-clock $next_a$
- edge between current event and next occurrence of a

$$\sum_{a \in AP} \text{test}\{ (next_a \triangleleft \alpha) \} \cdot \rightarrow \cdot (\text{test}\{ \neg a \} \cdot \rightarrow)^* \cdot \text{test}\{ a \}$$
Application and extensions

A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic

Clock tracking/renaming

\[
\tau = x_1 := 0 \\
x_2 := 0 \\
x_3 := 0 \\
\]
\[
d_1 := x_1 \\
x_2 := 0 \\
x_1 := 0 \\
x_4 := x_2 \\
\]
\[
d_2 := x_2 \\
x_2 := 0 \\
x_3 := x_4 \\
x_3 < 3 \\
\]
\[
x_4 := d_2 \\
x_4 < 4 \\
\]

Figure: Intricate flow of information in complex updates.
A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic

Clock tracking/renaming

\[
\begin{align*}
\tau &= x_1 := 0 \\
x_2 &= 0 \\
x_3 &= 0 \\
d_1 &= x_1 \\
x_2 &= d_1 \\
x_1 &= 0 \\
x_4 &= x_2 \\
x_3 &= x_4 \\
d_2 &= x_2 \\
x_2 &= 0 \\
x_4 &= d_2 \\
x_3 &= 3 \\
x_4 &= 4
\end{align*}
\]

Figure: Intricate flow of information in complex updates.
Application and extensions

A two step template to capture rich timing features

- Capture timing as edges on graph
- Relate the events in logic

Clock tracking/renaming

Figure: Intricate flow of information in complex updates.

More in the paper: Model checking
Untimed and some limited timed specifications.
Conclusion

Highlights

- Realizability is MSO definable over sequential systems
- Template for analyzing rich time features in systems with data structures using graphs and logic
- Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

- More consequences and applications.
- Distributed systems.
- A converse characterization?!
Conclusion

Highlights

- Realizability is MSO definable over sequential systems
- Template for analyzing rich time features in systems with data structures using graphs and logic
- Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

- More consequences and applications.
- Distributed systems.
- A converse characterization?!