
Timed systems through the lens of logic

S. Akshay1, P. Gastin2, V. Jugé3, S. Krishna1

1 Dept of CSE, Indian Institute of Technology Bombay
2 LSV, ENS-Paris Saclay & CNRS

3 LIGM, Université Paris-Est Marne la Vallée, CNRS

26 June 2019
LICS’2019, Vancouver, Canada

1



A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

2



A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

3 Data structures: stacks, queues, bags, etc.

2



A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

3 Data structures: stacks, queues, bags, etc.

Examples

Timed automata, event clock automata AD94,AFH99

Timed pushdown automata BER94,AAS12

Timed message-passing automata AGKS10,AAK18

2



A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

3 Data structures: stacks, queues, bags, etc.

Examples

Timed automata, event clock automata AD94,AFH99

Timed pushdown automata BER94,AAS12

Timed message-passing automata AGKS10,AAK18

Popular approach: region construction. For each timing
feature and each data structure, redo the proof.

Do we need to do this? Is there something unifying them?

2



A unifying graphical view

A run of system S is a sequence of instructions

e.g., with a queue d1 and stack d2 consider
τ = nop w(d1) nop w(d1) r(d1) w(d2) w(d2) r(d1) nop r(d2) r(d2)

3



A unifying graphical view

A run of system S is a sequence of instructions

e.g., with a queue d1 and stack d2 consider
τ = nop w(d1) nop w(d1) r(d1) w(d2) w(d2) r(d1) nop r(d2) r(d2)

Gives rise to a node and edge-labeled graph Gτ

Gτ =

τ =

1

nop

2

w(d1)

3

nop

4

w(d1)

5

r(d1)

6

w(d2)

7

w(d2)

8

r(d1)

9

nop

10

r(d2)

11

r(d2)

d1
d1 d2

d2

3



A unifying graphical view

A run of system S is a sequence of instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

Gτ =

τ =

1

nop

2

w(d1)

3

nop

4

w(d1)

5

r(d1)

6

w(d2)

7

w(d2)

8

r(d1)

9

nop

10

r(d2)

11

r(d2)

d1
d1 d2

d2

3



A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3

nop
y := 0

4

w(d1)
y ≤ 1

5

r(d1)
2 < d1 − y

6

w(d2)
x := 0

7

w(d2)

8

r(d1)
4 < d1≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3

11

r(d2)

d1
d1 d2

d2

3



A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

A run must be realizable, i.e., weighted graph WG τ should
not have negative cycle!

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3

nop
y := 0

4

w(d1)
y ≤ 1

5

r(d1)
2 < d1 − y

6

w(d2)
x := 0

7

w(d2)

8

r(d1)
4 < d1≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3

11

r(d2)

d1
d1 d2

d2

WG τ = 1 2 3 4 5 6 7 8 9 10 11

≤ 0

≤ 0 < −2

≤ 1

< 6
≤ 5

< −4

< 3

≤ −2

3



A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

A run must be realizable, i.e., weighted graph WG τ should
not have negative cycle!

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3

nop
y := 0

4

w(d1)
y ≤ 1

5

r(d1)
2 < d1 − y

6

w(d2)
x := 0

7

w(d2)

8

r(d1)
4 < d1≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3

11

r(d2)

d1
d1 d2

d2

WG τ = 1 2 3 4 5 6 7 8 9 10 11

≤ 0

≤ 0 < −2

≤ 1

< 6
≤ 5

< −4

< 3

≤ −2

So emptiness asks if there exists τ generated by S such that

(i) Gτ is valid and (ii) WG τ is realizable?

3



Related work

Untimed setting- Use Courcelle’s theorem
MP11,AKG12,AG14

Show that graphs Gτ obtained have bounded tree-width

Write validity in MSO over these graphs Gτ

Interpret these graphs over trees, and reduce to emptiness of
tree automata

Main questions:

Is realizability MSO definable?

Do timed graphs WGτ have bounded tree-width?

Can you avoid the complexity blowup?

4



Related work (contd.)

Timed setting - for TPDA and restricted TMPDA
AGK16,AGKS17,AGK18

Show that timed graphs from TPDA have bounded tree-width

Directly and carefully build tree automata to check emptiness

Main question:

how to handle generic data structures, timing features?

Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?

5



Related work (contd.)

Timed setting - for TPDA and restricted TMPDA
AGK16,AGKS17,AGK18

Show that timed graphs from TPDA have bounded tree-width

Directly and carefully build tree automata to check emptiness

Main question:

how to handle generic data structures, timing features?

Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?

Orthogonal technique for TA, TPDA

Encoding as registers and going via atoms CL15,CLLM17,CL18

5



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

width is the size of the largest antichain

width=1 implies linear order, i.e., graphs coming from
sequential systems.

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG
A challenge: how do we relate the decoupled graphs?

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG
Lemma: Given valid τ , WGτ can be logically interpreted into
Gτ . Thus convert Ψ over WGτ into Ψ′ over Gτ

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG
Lemma: Given valid τ , WGτ can be logically interpreted into
Gτ . Thus convert Ψ over WGτ into Ψ′ over Gτ

Theorem

Emptiness of timed system can be reduced to satisfiability of
formula in MSO/EQ-ICPDL

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic
3 (if you really want emptiness,) Logic back to Automata

under-approximate approach to decidability of emptiness.
e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic
3 (if you really want emptiness,) Logic back to Automata

under-approximate approach to decidability of emptiness.
e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.
Note tree-width is now in untimed graphs Gτ !

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic
3 (if you really want emptiness,) Logic back to Automata

under-approximate approach to decidability of emptiness.
e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.
Note tree-width is now in untimed graphs Gτ !
Using EQ-ICPDL instead of MSO gives good complexity

6



Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic
3 (if you really want emptiness,) Logic back to Automata

under-approximate approach to decidability of emptiness.
e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.
Note tree-width is now in untimed graphs Gτ !
Using EQ-ICPDL instead of MSO gives good complexity

Extensions: Capture rich timing interplay & model checking

6



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

Φ are sentences, E existential node quantifier.

σ node or state formulae with one (implicit) free FOvar

π path or program formulae with two (implicit) free FOvar

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

{p, s} {q, s} {p, q} {r} {q} {q, s}

(Σ, Γ)-labeled graph, Σ = {p, q, r , s}, Γ = {c , e, d , f ,≺·}

≺· ≺· ≺· ≺· ≺·

d

e
f

c

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

{p, s} {q, s} {p, q} {r} {q} {q, s}

(Σ, Γ)-labeled graph, Σ = {p, q, r , s}, Γ = {c , e, d , f ,≺·}

E 〈(test{p ∨ q} · ≺·−→)∗〉r

¬E 〈 ≺·−→〉(p ∧ s)
≺· ≺· ≺· ≺· ≺·

d

e
f

c

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

{p, s} {q, s} {p, q} {r} {q} {q, s}

(Σ, Γ)-labeled graph, Σ = {p, q, r , s}, Γ = {c , e, d , f ,≺·}

E 〈(test{p ∨ q} · ≺·−→)∗〉r

¬E 〈 ≺·−→〉(p ∧ s)

E
∨

(d ,d ′)∈(Γ\{≺·})2,d 6=d ′ loop(
d−→ · d ′−→−1

)

≺· ≺· ≺· ≺· ≺·

d

e
f

c

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

{p, s} {q, s} {p, q} {r} {q} {q, s}

(Σ, Γ)-labeled graph, Σ = {p, q, r , s}, Γ = {c , e, d , f ,≺·}

E 〈(test{p ∨ q} · ≺·−→)∗〉r

¬E 〈 ≺·−→〉(p ∧ s)

E
∨

(d ,d ′)∈(Γ\{≺·})2,d 6=d ′ loop(
d−→ · d ′−→−1

)

E 〈test{s} · e−→ · test{r} · f−→ · test{s} · d−→−1 · c−→〉p

≺· ≺· ≺· ≺· ≺·

d

e
f

c

7



What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

EQ-ICPDL(Σ, Γ) allows ∃-quant over new propositional variables

Ψ = ∃p1, . . . , pn Φ where AP = {p1, . . . , pn} is disjoint from Σ and
Φ ∈ ICPDL(Σ ] AP, Γ).

7



Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!

8



Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!

Many properties are easier to write!

8



Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!

Many properties are easier to write!

EQ-ICPDL is strictly contained in MSO

8



Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!

Many properties are easier to write!

EQ-ICPDL is strictly contained in MSO

The following theorem by Göller, Lohrey, Lutz

Theorem [GLL09]

Given k ≥ 1 in unary and a formula Ψ in EQ-ICPDL(Σ, Γ) of
intersection width bounded by a constant, checking whether
G |= Ψ for some (Σ, Γ)-labeled graph G whose tree-width is at
most k can be solved in EXPTIME.

8



Solving realizability by modulo counting

G is realizable

iff ∃ts : V → R s.t

∀u ya v , ts(v)− ts(u) ≤ a

∀u → v , 0 ≤ ts(v)− ts(u)

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t

∀u ya v , ts(v)− ts(u) ≤ a

∀u → v , 0 ≤ ts(v)− ts(u)

M = 5 0 0 3 4 6 20 21 21

3 3 1

−3
−4

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t

∀u ya v , ts(v)− ts(u) ≤ a

∀u → v , 0 ≤ ts(v)− ts(u)≤ M − 1, where M is max const

M = 5 0 0 3 4 6 8 9 9

3 3 1

−3
−4

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 6 8 9 9

3 3 1

−3
−4

00

4

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

iff

∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

iff

∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

2

iff

∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

2

iff

∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and modulo
counting didn’t grow big in between

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

2

iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and modulo
counting didn’t grow big in between

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

9



Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

2

iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and modulo
counting didn’t grow big in between

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

(u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

9



Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

BigPath =
∑

0≤i,j,k<M
(j−i)[M]+(k−j)[M]≥M

test{pi} · →+ · test{pj} · →+ · test{pk} · →∗

10



Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

BigPath =
∑

0≤i,j,k<M
(j−i)[M]+(k−j)[M]≥M

test{pi} · →+ · test{pj} · →+ · test{pk} · →∗

(u, v)is not big = ¬E
∨

−M<α<M

loop(BigPath · ≤α−−→−1
)

10



Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

Realizable = ∃p1, . . . , pM−1 Partition ∧ Forward ∧ Backward

Partition = A
∨

0≤i<M

[pi ∧
∧
j 6=i

¬pj ]

Forward = ¬E
∨

−M<α<M

loop(BigPath ·
≤α
−−−→−1) ∧ ¬E

∨
0≤i,j<M

(j−i)[M]>α

loop(test{pi} ·
≤α
−−−→ · test{pj} · (→−1)+)

Similarly for Backward, but need to define ¬BigPath (see paper)

10



What about strict/open guards

What happens when there are both closed and open guards?

Realizable =⇒ ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

But the reverse direction is not true, since strictness could
invalidate assigments.

Capturing strict guards

Consider the orderings of fractional parts.

These should not form a cycle which a strict constraint within!

Uses intersection (but with intersection-width 2).

Realizable = ∃p1, . . . , pM−1 Partition∧Forward∧Backward∧noFracCycle

11



What about strict/open guards

What happens when there are both closed and open guards?

Realizable =⇒ ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

But the reverse direction is not true, since strictness could
invalidate assigments.

Capturing strict guards

Consider the orderings of fractional parts.

These should not form a cycle which a strict constraint within!

Uses intersection (but with intersection-width 2).

Realizable = ∃p1, . . . , pM−1 Partition∧Forward∧Backward∧noFracCycle

11



What about strict/open guards

What happens when there are both closed and open guards?

Realizable =⇒ ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

But the reverse direction is not true, since strictness could
invalidate assigments.

Capturing strict guards

Consider the orderings of fractional parts.

These should not form a cycle which a strict constraint within!

Uses intersection (but with intersection-width 2).

Realizable = ∃p1, . . . , pM−1 Partition∧Forward∧Backward∧noFracCycle

11



Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.

12



Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.

Consider the following example with width 2.

1

1 1 1 1

1

−1

−1−1−1−1

−1

12



Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.

Consider the following example with width 2.

The graph is realizable iff #blue edges is ≥ #red edges.

1

1 1 1 1

1

−1

−1−1−1−1

−1

12



Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.

Consider the following example with width 2.

The graph is realizable iff #blue edges is ≥ #red edges.

Cannot be expressed in MSO (formal proof by backward
translation).

1

1 1 1 1

1

−1

−1−1−1−1

−1

12



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

13



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Example: event-clock nexta

13



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Example: event-clock nexta

edge between current event and next occurrence of a.∑
a∈AP

test{(nexta / α)}· → ·(test{¬a}· →)∗ · test{a}

13



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Clock tracking/renaming

τ = x1 := 0
x2 := 0
x3 := 0

d1 := x1

x2 := 0
x2 := d1

x1 := 0
x4 := x2

d2 := x2

x2 := 0
x3 := x4

x4 := d2

x3 < 3
x4 < 4

d1 d2

Figure: Intricate flow of information in complex updates.

13



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Clock tracking/renaming

τ = x1 := 0
x2 := 0
x3 := 0

d1 := x1

x2 := 0
x2 := d1

x1 := 0
x4 := x2

d2 := x2

x2 := 0
x3 := x4

x4 := d2

x3 < 3
x4 < 4

d1 d2

< 3

< 4

Figure: Intricate flow of information in complex updates.

13



Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Clock tracking/renaming

τ = x1 := 0
x2 := 0
x3 := 0

d1 := x1

x2 := 0
x2 := d1

x1 := 0
x4 := x2

d2 := x2

x2 := 0
x3 := x4

x4 := d2

x3 < 3
x4 < 4

d1 d2

< 3

< 4

Figure: Intricate flow of information in complex updates.

More in the paper: Model checking

Untimed and some limited timed specifications.

13



Conclusion

Highlights

Realizability is MSO definable over sequential systems

Template for analyzing rich time features in systems with data
structures using graphs and logic

Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

More consequences and applications.

Distributed systems.

A converse characterization?!

14



Conclusion

Highlights

Realizability is MSO definable over sequential systems

Template for analyzing rich time features in systems with data
structures using graphs and logic

Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

More consequences and applications.

Distributed systems.

A converse characterization?!

14


