
Timed systems through the lens of logic

S. Akshay1, P. Gastin2, V. Jugé3, S. Krishna1
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A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.
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A global view of timed systems

A timed system has several parts:

1 A regular way to generate behaviors: Automata, Expressions

2 Timing features: Clock resets and guards, Event-clocks, Clock
updates etc.

3 Data structures: stacks, queues, bags, etc.

Examples

Timed automata, event clock automata AD94,AFH99

Timed pushdown automata BER94,AAS12

Timed message-passing automata AGKS10,AAK18

Popular approach: region construction. For each timing
feature and each data structure, redo the proof.

Do we need to do this? Is there something unifying them?
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A unifying graphical view

A run of system S is a sequence of instructions

e.g., with a queue d1 and stack d2 consider
τ = nop w(d1) nop w(d1) r(d1) w(d2) w(d2) r(d1) nop r(d2) r(d2)
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A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3
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y := 0

4

w(d1)
y ≤ 1

5

r(d1)
2 < d1 − y

6

w(d2)
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7
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8
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2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3
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r(d2)

d1
d1 d2

d2
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A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

A run must be realizable, i.e., weighted graph WG τ should
not have negative cycle!

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3

nop
y := 0

4

w(d1)
y ≤ 1

5

r(d1)
2 < d1 − y

6

w(d2)
x := 0

7

w(d2)

8

r(d1)
4 < d1≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3

11

r(d2)

d1
d1 d2

d2

WG τ = 1 2 3 4 5 6 7 8 9 10 11

≤ 0

≤ 0 < −2

≤ 1

< 6
≤ 5

< −4

< 3

≤ −2

3



A unifying graphical view

A run of timed system S is a sequence of timed instructions

Gτ is valid: push matches pop, FIFO on stack, LIFO on queue

A run must be realizable, i.e., weighted graph WG τ should
not have negative cycle!

Gτ =

τ =

1

nop
x := 0
y := 0

2

w(d1)
x = 0

3

nop
y := 0

4
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y ≤ 1

5
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6

w(d2)
x := 0

7

w(d2)

8
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4 < d1≤ 5

2 ≤ x

9

nop
y − x < 6

10

r(d2)
x − d2 < 3

11

r(d2)

d1
d1 d2

d2

WG τ = 1 2 3 4 5 6 7 8 9 10 11

≤ 0

≤ 0 < −2

≤ 1

< 6
≤ 5

< −4

< 3

≤ −2

So emptiness asks if there exists τ generated by S such that

(i) Gτ is valid and (ii) WG τ is realizable?
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Related work

Untimed setting- Use Courcelle’s theorem
MP11,AKG12,AG14

Show that graphs Gτ obtained have bounded tree-width

Write validity in MSO over these graphs Gτ

Interpret these graphs over trees, and reduce to emptiness of
tree automata

Main questions:

Is realizability MSO definable?

Do timed graphs WGτ have bounded tree-width?

Can you avoid the complexity blowup?
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Related work (contd.)

Timed setting - for TPDA and restricted TMPDA
AGK16,AGKS17,AGK18

Show that timed graphs from TPDA have bounded tree-width

Directly and carefully build tree automata to check emptiness

Main question:

how to handle generic data structures, timing features?

Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?

5



Related work (contd.)

Timed setting - for TPDA and restricted TMPDA
AGK16,AGKS17,AGK18

Show that timed graphs from TPDA have bounded tree-width

Directly and carefully build tree automata to check emptiness

Main question:

how to handle generic data structures, timing features?

Is there a higher level treatment, whereby we can avoid
showing bound on tree-width for each timed system?

Orthogonal technique for TA, TPDA

Encoding as registers and going via atoms CL15,CLLM17,CL18
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Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

width is the size of the largest antichain

width=1 implies linear order, i.e., graphs coming from
sequential systems.
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A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG
A challenge: how do we relate the decoupled graphs?
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Our results
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allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic

Using above theorem above get Ψ for realizability over WG
Lemma: Given valid τ , WGτ can be logically interpreted into
Gτ . Thus convert Ψ over WGτ into Ψ′ over Gτ

Theorem

Emptiness of timed system can be reduced to satisfiability of
formula in MSO/EQ-ICPDL
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Our results

Theorem

Realizability of weighted graphs is MSO (and EQ-ICPDL) definable
iff the set of graphs has width 1.

A template to analyze timed systems via graphs and logic

1 Timed systems to Graphs

allows us to decouple data structure Gτ and timing WGτ issues

2 Graphs to Logic
3 (if you really want emptiness,) Logic back to Automata

under-approximate approach to decidability of emptiness.
e.g., if tree-width is bounded, then interpret these graphs in
trees and obtain tree automata.
Note tree-width is now in untimed graphs Gτ !
Using EQ-ICPDL instead of MSO gives good complexity

Extensions: Capture rich timing interplay & model checking
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What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π
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What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

Φ are sentences, E existential node quantifier.

σ node or state formulae with one (implicit) free FOvar

π path or program formulae with two (implicit) free FOvar
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E 〈(test{p ∨ q} · ≺·−→)∗〉r

¬E 〈 ≺·−→〉(p ∧ s)

E
∨

(d ,d ′)∈(Γ\{≺·})2,d 6=d ′ loop(
d−→ · d ′−→−1

)

E 〈test{s} · e−→ · test{r} · f−→ · test{s} · d−→−1 · c−→〉p

≺· ≺· ≺· ≺· ≺·
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What logic shall we use?

Propositional dynamic logic with Intersection & Converse(ICPDL)

We have the following, with p ∈ Σ and γ ∈ Γ:

Φ ::= Eσ : ¬Φ : Φ ∨ Φ

σ ::= > : p : σ ∨ σ : ¬σ : 〈π〉σ : loop(π)

π ::=
γ−→ : test{σ} : π + π : π · π : π∗ : π−1 : π ∩ π

EQ-ICPDL(Σ, Γ) allows ∃-quant over new propositional variables

Ψ = ∃p1, . . . , pn Φ where AP = {p1, . . . , pn} is disjoint from Σ and
Φ ∈ ICPDL(Σ ] AP, Γ).
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Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!
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Why this dynamic logic

Reasons for using EQ-ICPDL

The talk got scheduled in session titled “dynamic logics”!

Many properties are easier to write!

EQ-ICPDL is strictly contained in MSO

The following theorem by Göller, Lohrey, Lutz

Theorem [GLL09]

Given k ≥ 1 in unary and a formula Ψ in EQ-ICPDL(Σ, Γ) of
intersection width bounded by a constant, checking whether
G |= Ψ for some (Σ, Γ)-labeled graph G whose tree-width is at
most k can be solved in EXPTIME.
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Solving realizability by modulo counting

G is realizable

iff ∃ts : V → R s.t

∀u ya v , ts(v)− ts(u) ≤ a

∀u → v , 0 ≤ ts(v)− ts(u)
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Solving realizability by modulo counting

Assume only closed guards: G is realizable

iff ∃ts : V → N s.t ∀u ya v , ts(v)− ts(u) ≤ a.

M = 5 0 0 3 4 1 3 4 4

3 3 1

−3
−4

00

4

2

iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and modulo
counting didn’t grow big in between

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or modulo
counting grew big in between

(u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M
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Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

BigPath =
∑

0≤i,j,k<M
(j−i)[M]+(k−j)[M]≥M

test{pi} · →+ · test{pj} · →+ · test{pk} · →∗
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Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

BigPath =
∑

0≤i,j,k<M
(j−i)[M]+(k−j)[M]≥M

test{pi} · →+ · test{pj} · →+ · test{pk} · →∗

(u, v)is not big = ¬E
∨

−M<α<M

loop(BigPath · ≤α−−→−1
)
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Writing it in EQ-ICPDL

Realizable iff ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

where (u, v) is big if ∃u ≺ w ≺ x � v s.t

(tsm(w)− tsm(u))[M] + (tsm(x)− tsm(w))[M] ≥ M

Realizable = ∃p1, . . . , pM−1 Partition ∧ Forward ∧ Backward

Partition = A
∨

0≤i<M

[pi ∧
∧
j 6=i

¬pj ]

Forward = ¬E
∨

−M<α<M

loop(BigPath ·
≤α
−−−→−1) ∧ ¬E

∨
0≤i,j<M

(j−i)[M]>α

loop(test{pi} ·
≤α
−−−→ · test{pj} · (→−1)+)

Similarly for Backward, but need to define ¬BigPath (see paper)
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What about strict/open guards

What happens when there are both closed and open guards?

Realizable =⇒ ∃tsm : V → {0, . . .M − 1} s.t ∀u ya v ,

if u � v , then (tsm(v)− tsm(u))[M] ≤ a and (u, v) is not big

if v ≺ u, then (tsm(v)− tsm(u))[M] ≥ −a or (u, v) is big

But the reverse direction is not true, since strictness could
invalidate assigments.

Capturing strict guards

Consider the orderings of fractional parts.

These should not form a cycle which a strict constraint within!

Uses intersection (but with intersection-width 2).

Realizable = ∃p1, . . . , pM−1 Partition∧Forward∧Backward∧noFracCycle
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Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.
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Realizability is not MSO definable without the linear order

Width of a partial order = maximal size of anti-chain.

Linear order has width 1.

Consider the following example with width 2.

The graph is realizable iff #blue edges is ≥ #red edges.

Cannot be expressed in MSO (formal proof by backward
translation).
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Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic
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Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Example: event-clock nexta

edge between current event and next occurrence of a.∑
a∈AP

test{(nexta / α)}· → ·(test{¬a}· →)∗ · test{a}
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Application and extensions

A two step template to capture rich timing features

Capture timing as edges on graph

Relate the events in logic

Clock tracking/renaming

τ = x1 := 0
x2 := 0
x3 := 0

d1 := x1

x2 := 0
x2 := d1

x1 := 0
x4 := x2

d2 := x2

x2 := 0
x3 := x4

x4 := d2

x3 < 3
x4 < 4

d1 d2

Figure: Intricate flow of information in complex updates.
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Application and extensions

A two step template to capture rich timing features
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Relate the events in logic

Clock tracking/renaming

τ = x1 := 0
x2 := 0
x3 := 0
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x2 := d1

x1 := 0
x4 := x2

d2 := x2

x2 := 0
x3 := x4

x4 := d2

x3 < 3
x4 < 4
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< 3

< 4

Figure: Intricate flow of information in complex updates.

More in the paper: Model checking

Untimed and some limited timed specifications.
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Conclusion

Highlights

Realizability is MSO definable over sequential systems

Template for analyzing rich time features in systems with data
structures using graphs and logic

Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

More consequences and applications.

Distributed systems.

A converse characterization?!

14



Conclusion

Highlights

Realizability is MSO definable over sequential systems

Template for analyzing rich time features in systems with data
structures using graphs and logic

Use EQ-ICPDL instead of MSO to obtain good complexity

Future work

More consequences and applications.

Distributed systems.

A converse characterization?!

14


