Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Analyzing Timed Systems Using Tree Automata

S Akshay!, Paul Gastin? and Krishna Shankara Narayanan?

1 Dept of CSE, IIT Bombay, India,
2 LSV, ENS Cachan, France.

Timed automata and timed runs

x <3
. a,x =0 .

Timed automata and timed runs

Timed automata and timed runs

a3 b,4 a,b a,8 a,’

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Timed automata and timed runs

v 0 a,3 b.4 a5
x 0 a3 b,5 a7
v 0 a,3 b, 4 a,5 a,8 EN

@ The timed language L71(A) = set of such good timed words
e Emptiness problem : Given A, is L1(A) =07

Emptiness for timed automata

A well-studied problem with a now standard approach

Emptiness for timed automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

® Timed pushdown automata:

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

@ [imed pushdown automata: Lifting region construction —
[Bouajjani et al. '94], [Abdulla et al. 2012]

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’'90], and
many optimizations since...

° . Lifting region construction —
[Bouajjani et al. '94], [Abdulla et al. 2012]

@ An orthogonal approach: [Clemente-Lasota 2015]

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’'90], and
many optimizations since...

° . Lifting region construction —
[Bouajjani et al. '94], [Abdulla et al. 2012]

e Common feature:

e represent behaviors as timed words and,
e use abstractions to reduce to finite automata over words

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’'90], and
many optimizations since...

° . Lifting region construction —
[Bouajjani et al. '94], [Abdulla et al. 2012]

e Common feature:

e represent behaviors as timed words and,
e use abstractions to reduce to finite automata over words

Our point-de-depart
@ represent behaviors as graphs with timing constraints

@ use tree interpretations to reduce to tree automata

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

e Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

° : Lifting region construction —
[Bouajjani et al. '94], [Abdulla et al. 2012]

e Common feature:

e represent behaviors as timed words and,
e use abstractions to reduce to finite automata over words

Our point-de-depart
@ represent behaviors as graphs with timing constraints

@ use tree interpretations to reduce to tree automata

e A higher level and more powerful formalism
e Yields simpler proofs for more complicated systems
e A new technique which does not depend on regions/zones

Introduction
Outline

© Timed behaviours as graphs

@ Checking realizability

© Interpreting graphs into trees

© Bounding the (split-)width of graphs

© Conclusion & future work

Abstracting paths of a timed system as graphs

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

@ set of such time-constrained graphs, TC-words = L1cw(A).

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

@ set of such time-constrained graphs, TC-words = Lrcw/(.A).
e What are some properties of such graphs?

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

@ set of such time-constrained graphs, TC-words = Lrcw(A).

e What are some properties of such graphs?
o What is the link between Lrcw(A) and L1(A)?

TC-words and their relation to timed words

Properties of TC-words and timed words
© Not all (linearly-ordered) graphs are TC-words J

P

TC-words and their relation to timed words

© Not all (linearly-ordered) graphs are TC-words

B

Properties of TC-words and timed words J

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words
© Not all (linearly-ordered) graphs are TC-words J

T
T~

This graph cannot be generated by any timed automaton.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words
© Not all (linearly-ordered) graphs are TC-words J

This graph cannot be generated by any timed automaton.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words
© Not all (linearly-ordered) graphs are TC-words J

. t@

This graph cannot be generated by any timed automaton.
But, it can be generated by a timed pushdown automaton!.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words
@ Not all (linearly-ordered) graphs are TC-words
@ A TC-word can be by (infinitely) many timed words

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

@ Not all (linearly-ordered) graphs are TC-words

@ A TC-word can be by (infinitely) many timed words
© However, a TC-word may be by no timed word too!
<3 =2
‘Zo_y -
>4
<2 <2

SR
Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

@ Recall: for a timed system A, L1cw/(A) denotes the set of
TC-words accepted by it.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

@ Recall: for a timed system A, L1cw/(A) denotes the set of
TC-words accepted by it.

Difference between Lrcw (A) and L1(A):

e p g €0 225 b42 aia

® Lrcw/(A) is over a finite alphabet, while L1(.A) is not.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

@ Recall: for a timed system A, L1cw (A) denotes the set of
TC-words accepted by it.

Theorem:

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

@ Recall: for a timed system A, L1cw (A) denotes the set of
TC-words accepted by it.

Theorem:

The Emptiness problem

For a given timed (pushdown) automaton A,

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

@ Realization of a TC-word is a timed word satisfying constraints
@ A TC-word is realizable if it has a timed word realization.

@ Recall: for a timed system A, L1cw/(A) denotes the set of
TC-words accepted by it.

Theorem: J

The Emptiness problem

For a given timed (pushdown) automaton A,

Thus, the question is: how to reason about these graphs?

Checking realizability of a single TC-word

<3 <2 <2
m
>0 >0 >0 >0 >0

Checking realizability of a single TC-word

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Checking realizability of a single TC-word

>4 >4
; 2 2
Pl e T
0 0 0 0 0
—4 —4

A simple exercise

A TC-word is realizable iff its directed graph has no negative cycle.

J

The Emptiness problem

For a given timed (pushdown) automaton A,

Does there exist a TC-word in Lrcw/(A), whose directed graph
has no negative cycle?

@ How to reason about the set of graphs Lrcw/(.A)?

The Emptiness problem

For a given timed (pushdown) automaton A,

Does there exist a TC-word in Lrcw/(A), whose directed graph
has no negative cycle?

@ If we can show that:

@ Graphs have a bounded-width.
© Each property is expressible in MSO.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

o If we can show that:
@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

o If we can show that:
@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

@ If we can show that:

@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Same strategy as [Madhusudan & Parlato’11, Aiswarya et al
'12] for untimed pushdown systems.

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

o If we can show that:
@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

We show
@ Step 1: graphs from T(PD)A have a bounded (split-)width. J

The Emptiness problem

For a given timed (pushdown) automaton A,

Does there exist a TC-word in Lrcw/(A), whose directed graph
has no negative cycle?

TINRS 1 l l

v 7% 1 T 18 L
Graphs from timed systems are different!

We show
e Step 1: graphs from T(PD)A have a bounded (split-)width. J

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

o If we can show that:
@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

We show
@ Step 1: graphs from T(PD)A have a bounded (split-)width. J

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

o If we can show that:
@ Graphs have a bounded-width.
@ Each property is expressible in MSO.

v Graphs are well-formed
v Graphs define an abstract path in the given timed system.
7 Graphs are realizable, i.e., no negative weight cycle.

We show
@ Step 1: graphs from T(PD)A have a bounded (split-)width. J

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,

@ If we can show that:
@ Graphs have a bounded-width.
© Each property is expressible in MSO.
v" Graphs are well-formed
v Graphs define an abstract path in the given timed system.
7 Graphs are realizable, i.e., no negative weight cycle.

We show
e Step 1: graphs from T(PD)A have a bounded (split-)width.

@ Step 2: directly build a finite bottom-up tree automaton.

Emptiness

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results

@ For timed automaton A with clocks X, all simple TC-words
of A have (split-)width K < |X| +4 .

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results

© For timed automaton A with clocks X, all simple
TC-words of A have (split-)width K < |X| + 4

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
© For timed automaton A with clocks X, all simple
TC-words of A have (split-)width K < |X| + 4
@ We can build a tree automaton of size exponential in K? to
check realizability (details in paper).

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
© For timed automaton A with clocks X, all simple
TC-words of A have (split-)width K < |X| + 4
@ We can build a tree automaton of size exponential in K? to
check realizability (details in paper).

© Corollary: PSPACE () emptiness for timed
() automata.

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

e Step 1: Bound on (split-)width for timed (pushdown) systems

@ Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
© For timed automaton A with clocks X, all simple
TC-words of A have (split-)width K < |X| + 4
@ We can build a tree automaton of size exponential in K? to
check realizability (details in paper).

© Corollary: PSPACE () emptiness for timed
() automata.

Lift to timed multi-pushdown systems with bounded rounds

e Easy generalization, new decidability result & complexity too!

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion
Step 0: Simplifying the TC-words

@ We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion
Step 0: Simplifying the TC-words

@ We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.
For example,

—— 1|]
1 1

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion
Step 0: Simplifying the TC-words

@ We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.
For example,

s ¢ vl l..l.

C x v — F | L | S LI

is converted to:

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion
Step 0: Simplifying the TC-words

@ We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

For example,

— 1| L 1L
/— x v —F 1 ¢ — %

is converted to:

“Jh 3 i P4 l l

e % 1 t = LE

@ To maintain atomicity, we use a single extra clock & add a

constraint to each event:
[0,0]

11

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, "15])...

LI 1y [

X y

so—

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, "15])...

@ Eve tries to disconnect the graph by cutting process edges.
@ Positions are simple TC-words with holes.

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, "15])...

HE EEE

@ Eve tries to disconnect the graph by cutting process edges.
@ Positions are simple TC-words with holes.

@ Adam chooses which connected component to continue.

12

Introduction Graph behaviors Realizability Emptiness Split-width

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, "15])...

= =
I —)

e Game ends at atomic nodes (no process edges left).

Conclusion

12

Introduction Graph behaviors Realizability Emptiness Split-width

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, "15])...

[l 00

Ll
= 4=
! O

@ Width of such a split simple TC-word = no. of blocks in it.
@ Cost of play = max width of split TC-word seen along play.

@ Split-width = min cost that Eve can achieve.

Conclusion

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

@ To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

13

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

@ To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

“lll_“_i % ! ! l ! l
u?gv;? 1 % < %

13

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

@ To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

@ Let's play the game...

Mhl_"_i 1 l 4 l 3 xl
TA?;%»_{ | LY — LI

13

Split-width for timed automata

“lh 3T ! l l

< v

<

14

Split-width for timed automata

!
<
<

<v

14

Split-width for timed automata

“lh i ! l l
<> Y
_“4“_11’1 3 i ! i l l

<}

14

*Introduction Graph behaviors Realizability =~ Emptiness ~ Splitwidth ~ Conclusion
Split-width for timed automata

Jl#vti } vll
*,Jlx_h’lvii } ‘vll
*,Jl#lvi¢] Vll
*,‘IT113V*4] |

=

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

<}

<

<}

<}

For any TC-word of a timed automaton
In any move of the game, we have:

@ Each hole is attached to last reset of a clock, holes only widen!

14

Introduction Graph behaviors Realizability Emptiness Split-width

Conclusion

Split-width for timed automata

“lh T i ! X l ¥ xl

=}

<}

o “h TR !

For any TC-word of a timed automaton

In any move of the game, we have:

@ Each hole is attached to last reset of a clock, holes only widen!
@ Thus, no. of blocks < No. of clocks + 4.

14

Split-width for timed pushdown automata

“111 3 1 ! l l
S S 1 23 —s L

15

 Introduction " Graph behaviers 1 Realfzabiity T Emptiness T Spliwidth 1 Conclusion
Split-width for timed pushdown automata

15

Split-width for timed pushdown automata

“111 3 1 ! l l
S S 1 ¥ = 3
“h TR ¢ ! l

AR S TrCt—F | N
Uh ¥ 11 ! }

15

Split-width for timed pushdown automata

lllnﬁy; e ,ol”l
Mh"*¢IT 1 u.l”
== e H’l”

g A

15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

l“h 3 1 } l l
#;?_f | L3 == ¥

Tfoh«**TT l‘ ‘vl‘f

Ty DR’ Li ! |

VTT ¥ [A%

For any TC-word of a timed pushdown automaton
In any move of the game, we have:
@ Number of blocks < 4- No. of clocks + 6.

15

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,

16

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,

© Write behaviors as graphs with timing constraints Lrcw (A).

16

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
© Write behaviors as graphs with timing constraints Lrcw (A).
@ Show a bound on width of graphs in L1cw (A).

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
@ Write behaviors as graphs with timing constraints Lrcw (\A).
@ Show a bound on width of graphs in Lrcw(A).
© Interpret graphs into trees and reduce to a tree automaton 3

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
@ Write behaviors as graphs with timing constraints Lrcw (\A).
@ Show a bound on width of graphs in L1cw (A).

© Interpret graphs into trees and reduce to a tree automaton 3
s.t.,

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion
Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
@ Write behaviors as graphs with timing constraints Lrcw (\A).
@ Show a bound on width of graphs in Lrcw (A).

© Interpret graphs into trees and reduce to a tree automaton B
s.t.,

@ A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
@ Write behaviors as graphs with timing constraints Lrcw (\A).
@ Show a bound on width of graphs in Lrcw (A).

© Interpret graphs into trees and reduce to a tree automaton B
s.t.,

@ A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

@ Robust framework: diagonal guards, etc.

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
@ Write behaviors as graphs with timing constraints Lrcw (\A).
@ Show a bound on width of graphs in Lrcw (A).

© Interpret graphs into trees and reduce to a tree automaton 3
s.t.,

@ A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

@ Robust framework: diagonal guards, etc.

Future work
@ Concurrent recursive timed programs
@ MSO definability of realizability
e Going beyond emptiness. What about model-checking?

16

	Introduction
	Graph behaviors
	Realizability
	Emptiness
	Split-width
	Conclusion

