
Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Analyzing Timed Systems Using Tree Automata

S Akshay1, Paul Gastin2 and Krishna Shankara Narayanan1

1 Dept of CSE, IIT Bombay, India,
2 LSV, ENS Cachan, France.

CONCUR 2016, Quebec
26 Aug 2016

1

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Timed automata and timed runs

q1 q2
x ≤ 3

a, x := 0

X
0 a, 3 b, 4 a, 5

2

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Timed automata and timed runs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

X
0 a, 3 b, 4 a, 5

2

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Timed automata and timed runs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

X
0 a, 3 b, 4 a, 5

× 0 a, 3 b, 5 a, 7

× 0 a, 3 b, 4 a, 5 a, 8 a, 7

2

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Timed automata and timed runs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

X
0 a, 3 b, 4 a, 5

× 0 a, 3 b, 5 a, 7

× 0 a, 3 b, 4 a, 5 a, 8 a, 7

The timed language LT (A) = set of such good timed words

Emptiness problem : Given A, is LT (A) = ∅ ?

2

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata:

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata:

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata:

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata: Lifting region construction –
[Bouajjani et al. ’94], [Abdulla et al. 2012]

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata: Lifting region construction –
[Bouajjani et al. ’94], [Abdulla et al. 2012]

An orthogonal approach: [Clemente-Lasota 2015]

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata: Lifting region construction –
[Bouajjani et al. ’94], [Abdulla et al. 2012]

Common feature:

represent behaviors as timed words and,
use abstractions to reduce to finite automata over words

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata: Lifting region construction –
[Bouajjani et al. ’94], [Abdulla et al. 2012]

Common feature:

represent behaviors as timed words and,
use abstractions to reduce to finite automata over words

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

Timed automata: Region construction [Alur-Dill’90], and
many optimizations since...

Timed pushdown automata: Lifting region construction –
[Bouajjani et al. ’94], [Abdulla et al. 2012]

Common feature:

represent behaviors as timed words and,
use abstractions to reduce to finite automata over words

Our point-de-depart

represent behaviors as graphs with timing constraints

use tree interpretations to reduce to tree automata

A higher level and more powerful formalism
Yields simpler proofs for more complicated systems
A new technique which does not depend on regions/zones

3

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Outline

1 Timed behaviours as graphs

2 Checking realizability

3 Interpreting graphs into trees

4 Bounding the (split-)width of graphs

5 Conclusion & future work

4

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a

≤ 3
≤ 2

≥ 4

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a

≤ 3
≤ 2

≥ 4

a b a b a

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

a b a b a
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

a b a b a
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

set of such time-constrained graphs, TC-words = LTCW (A).

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

a b a b a
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

set of such time-constrained graphs, TC-words = LTCW (A).

What are some properties of such graphs?

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Abstracting paths of a timed system as graphs

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

a b a b a
≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

set of such time-constrained graphs, TC-words = LTCW (A).
What are some properties of such graphs?
What is the link between LTCW (A) and LT (A)?

5

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

a b a

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

X
a b a

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

× a b a

This graph cannot be generated by any timed automaton.

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

× a a a b b

This graph cannot be generated by any timed automaton.

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

X
a a a b b

This graph cannot be generated by any timed automaton.
But, it can be generated by a timed pushdown automaton!.

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

2 A TC-word can be realized by (infinitely) many timed words

X
a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

ǫ, 0 a, 3 b, 4 a, 5

ǫ, 0 a, 2.4 b, 4.3 a, 4.3

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

1 Not all (linearly-ordered) graphs are TC-words

2 A TC-word can be realized by (infinitely) many timed words

3 However, a TC-word may be realized by no timed word too!

a b a≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

a b a b a

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

6

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

Recall: for a timed system A, LTCW (A) denotes the set of
TC-words accepted by it.

7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

Recall: for a timed system A, LTCW (A) denotes the set of
TC-words accepted by it.

Difference between LTCW (A) and LT (A):

q1 q2 q3
x ≤ 3

a, x := 0

y ≥ 4

b, y := 0

x ≤ 2

a, x := 0

ǫ, 0 a, 2.5 b, 4.2 a, 4.4a b a
≥ 0 ≥ 0 ≥ 0

≤ 3
≤ 2

≥ 4

LTCW (A) is over a finite alphabet, while LT (A) is not.
7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

Recall: for a timed system A, LTCW (A) denotes the set of
TC-words accepted by it.

Theorem: LT (A) = Realizations(LTCW (A))

7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

Recall: for a timed system A, LTCW (A) denotes the set of
TC-words accepted by it.

Theorem: LT (A) = Realizations(LTCW (A))

The Emptiness problem

For a given timed (pushdown) automaton A,
LT (A) 6= ∅ iff there exists a realizable TC-word in LTCW (A).

7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Realizability of TC-words

Realization of a TC-word is a timed word satisfying constraints

A TC-word is realizable if it has a timed word realization.

Recall: for a timed system A, LTCW (A) denotes the set of
TC-words accepted by it.

Theorem: LT (A) = Realizations(LTCW (A))

The Emptiness problem

For a given timed (pushdown) automaton A,
LT (A) 6= ∅ iff there exists a realizable TC-word in LTCW (A).

Thus, the question is: how to reason about these graphs?

7

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Checking realizability of a single TC-word

a b a b a

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

8

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Checking realizability of a single TC-word

a b a b a

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

a b a b a
0 0 0 0 0

3
2

−4

2

−4

8

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Checking realizability of a single TC-word

a b a b a

≤ 3
≤ 2

≥ 4

≤ 2

≥ 4

≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

a b a b a
0 0 0 0 0

3
2

−4

2

−4

A simple exercise

A TC-word is realizable iff its directed graph has no negative cycle.

8

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

How to reason about the set of graphs LTCW (A)?

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).
Same strategy as [Madhusudan & Parlato’11, Aiswarya et al
’12] for untimed pushdown systems.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).

We show

Step 1: graphs from T(PD)A have a bounded (split-)width.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

Graphs from timed systems are different!

We show

Step 1: graphs from T(PD)A have a bounded (split-)width.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

Graphs are well-formed
Graphs define an abstract path in the given timed system.
Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).

We show

Step 1: graphs from T(PD)A have a bounded (split-)width.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

X Graphs are well-formed
X Graphs define an abstract path in the given timed system.
? Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).

We show

Step 1: graphs from T(PD)A have a bounded (split-)width.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

The Emptiness problem

For a given timed (pushdown) automaton A,
Does there exist a TC-word in LTCW (A), whose directed graph
has no negative cycle?

If we can show that:
1 Graphs have a bounded-width.
2 Each property is expressible in MSO.

X Graphs are well-formed
X Graphs define an abstract path in the given timed system.
? Graphs are realizable, i.e., no negative weight cycle.

Then, by Courcelle’s theory, we obtain a finite tree automaton
(by interpreting the graphs into trees).

We show

Step 1: graphs from T(PD)A have a bounded (split-)width.

Step 2: directly build a finite bottom-up tree automaton.

9

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
1 For timed automaton A with clocks X , all simple TC-words

of A have (split-)width K ≤ |X |+ 4 .

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
1 For timed (pushdown) automaton A with clocks X , all simple

TC-words of A have (split-)width K ≤ |X |+ 4 (4|X |+ 6).

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
1 For timed (pushdown) automaton A with clocks X , all simple

TC-words of A have (split-)width K ≤ |X |+ 4 (4|X |+ 6).

2 We can build a tree automaton of size exponential in K 2 to
check realizability (details in paper).

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
1 For timed (pushdown) automaton A with clocks X , all simple

TC-words of A have (split-)width K ≤ |X |+ 4 (4|X |+ 6).

2 We can build a tree automaton of size exponential in K 2 to
check realizability (details in paper).

3 Corollary: PSPACE (Exptime) emptiness for timed
(pushdown) automata.

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Complexity bounds

Step 1: Bound on (split-)width for timed (pushdown) systems

Step 2: Directly building the tree automaton allows us to get
tight complexity bounds.

Main results
1 For timed (pushdown) automaton A with clocks X , all simple

TC-words of A have (split-)width K ≤ |X |+ 4 (4|X |+ 6).

2 We can build a tree automaton of size exponential in K 2 to
check realizability (details in paper).

3 Corollary: PSPACE (Exptime) emptiness for timed
(pushdown) automata.

Lift to timed multi-pushdown systems with bounded rounds

Easy generalization, new decidability result & complexity too!

10

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 0: Simplifying the TC-words

We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

For example,

is converted to:

To maintain atomicity, we use a single extra clock & add a
constraint to each event:

ε ε ε ai ε ε ε

[0,0]

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 0: Simplifying the TC-words

We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

For example,

is converted to:

To maintain atomicity, we use a single extra clock & add a
constraint to each event:

ε ε ε ai ε ε ε

[0,0]

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 0: Simplifying the TC-words

We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

For example,

is converted to:

To maintain atomicity, we use a single extra clock & add a
constraint to each event:

ε ε ε ai ε ε ε

[0,0]

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 0: Simplifying the TC-words

We first break TC-words into “simpler” graphs, so that each
node has only one upper/lower time constraint attached to it.

For example,

is converted to:

To maintain atomicity, we use a single extra clock & add a
constraint to each event:

ε ε ε ai ε ε ε

[0,0]

11

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.’12, ’15])...

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.’12, ’15])...

Eve tries to disconnect the graph by cutting process edges.

Positions are simple TC-words with holes.

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.’12, ’15])...

Eve tries to disconnect the graph by cutting process edges.

Positions are simple TC-words with holes.

Adam chooses which connected component to continue.

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.’12, ’15])...

Game ends at atomic nodes (no process edges left).

12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.’12, ’15])...

Width of such a split simple TC-word = no. of blocks in it.

Cost of play = max width of split TC-word seen along play.

Split-width = min cost that Eve can achieve.
12

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

13

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

13

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Step 1: Split-width for timed systems

To bound: split-width of any well-formed simple TC-word,
i.e., graph from a timed (pushdown) automaton.

Let’s play the game...

13

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

For any TC-word of a timed automaton

In any move of the game, we have:

Each hole is attached to last reset of a clock, holes only widen!

14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed automata

For any TC-word of a timed automaton

In any move of the game, we have:

Each hole is attached to last reset of a clock, holes only widen!

Thus, no. of blocks ≤ No. of clocks + 4.
14

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Split-width for timed pushdown automata

For any TC-word of a timed pushdown automaton

In any move of the game, we have:

Number of blocks ≤ 4· No. of clocks + 6.
15

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,

1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B

s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Conclusion and Future work

A new recipe for analyzing timed systems. Given A,
1 Write behaviors as graphs with timing constraints LTCW (A).

2 Show a bound on width of graphs in LTCW (A).

3 Interpret graphs into trees and reduce to a tree automaton B
s.t., Realizations(LTCW (A)) = ∅ iff L(B) = ∅.

A common framework for timed, pushdown, multi-pushdown
automata with bounded rounds.

Robust framework: diagonal guards, etc.

Future work

Concurrent recursive timed programs

MSO definability of realizability

Going beyond emptiness. What about model-checking?

16

	Introduction
	Graph behaviors
	Realizability
	Emptiness
	Split-width
	Conclusion

