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Abstract. We consider the problem of model checking message-passing systems with real-time
requirements. As behavioural specifications, we use message sequence charts (MSCs) annotated
with timing constraints. Our system model is a network of communicating finite state machines
with local clocks, whose global behaviour can be regarded as a timed automaton. Our goal is to
verify that all timed behaviours exhibited by the system conform to the timing constraints im-
posed by the specification. In general, this corresponds to checking inclusion for timed languages,
which is an undecidable problem even for timed regular languages. However, we show that we
can translate regular collections of time-constrained MSCs into a special class of event-clock
automata that can be determinized and complemented, thus permitting an algorithmic solution
to the model checking problem.

1 Introduction

In a distributed system, several agents interact to generate a global behaviour. This interaction
is usually specified in terms of scenarios, using message sequence charts (MSCs) [8]. Protocol
specifications typically include timing requirements for messages and descriptions of how to
recover from timeouts, so a natural and useful extension to MSCs is to add timing constraints
between pairs of events, yielding time-constrained MSCs (TCMSCs).

Infinite collections of MSCs are typically described using message sequence graphs (MSGs).
An MSG, a finite directed graph with nodes labelled by MSCs, is the most basic form of a
High-level Message Sequence Chart (HMSC) [9]. We generalise MSGs to time-constrained
MSGs (TCMSGs), where nodes are labelled by TCMSCs and edges may have additional time
constraints between nodes.

A natural system model in this setting is a timed message-passing automaton (timed
MPA), a set of communicating finite-state machines equipped with clocks that are used to
guard transitions, as in timed automata [4]. Just as the runs of timed automata are described
in terms of timed words, the interactions exhibited by timed MPAs can be described using
timed MSCs—MSCs in which each event is assigned an explicit timestamp. The global state
space of a timed MPA defines a timed automaton and in this paper we focus on this simplified
global view of timed message-passing systems, though our results go through smoothly for
the distributed system model as well.

Our aim is to check if all timed MSCs accepted by a timed MPA conform to the time
constraints given by a TCMSG specification. To make the problem tractable, we focus on
locally synchronized TCMSGs—those for which the underlying behaviour is guaranteed to be
regular [7]. In general, our model checking problem corresponds to checking inclusion for timed
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languages, which is known to be undecidable even for timed regular languages [1]. Fortunately,
it turns out that timing constraints in a TCMSG correspond to a very restricted use of
clocks. This allows us to associate with each TCMSG an (extended) event clock automaton
that accepts all timed MSCs that are consistent with the timing constraints of the TCMSG.
These event clock automata can be determinized and complemented, yielding an algorithmic
solution to our model checking problem.

The paper is organized as follows. We begin with some preliminaries where we introduce
(timed) MSCs and MSGs and state the model-checking problem. In Section 3 we introduce
MSC event clock automata and show that they can be determinized and complemented. The
next section has the main technical result: translating locally synchronized TCMSGs to finite
state MSC event clock automata, which yields a solution to the model-checking problem in
Section 5.

2 Preliminaries

Message sequence charts A message sequence chart (MSC) describes the messages exchanged
between a set Proc of processes in a distributed system. The first diagram in Figure 1 is
an MSC involving two users and a server. Each process evolves vertically along a lifeline.
Messages are shown by arrows between the lifelines of the sender and receiver.

Each message consists of two events, send and receive, and is labelled using a finite set
of message labels M. For instance, the events u1 and a1 are the send and receive events of
a message labelled req from process p (User1 ) to process q (Server). Each pair of processes
p and q is connected by a dedicated fifo channel (p, q)—for example, the messages sent at s1
and s2 are on channel (r, q) and the second message cannot be received before the first one.

Since processes are locally sequential, the set of events Ep along a process p is linearly
ordered by a relation denoted ≤pp. In addition, for each message sent along a channel (p, q),
the send and receive events of the message are related by an ordering relation ≤pq. Thus,
for example, a1 ≤qq a5 and a3 ≤qp u2. Together, the local linear orders ≤pp and the message
orders ≤pq generate a partial order ≤ over the set of events—for instance, u3 ≤ s3.

Finally, we label each event using a finite alphabet Act of communication actions. We
write p!q(m) to denote the action where p sends message m to q and p?q(m) to denote the
action where p receives message m from q. We abbreviate by p!q and p?q the set of all actions
of the form p!q(m) and p?q(m), respectively, over all possible choices of m.

Overall, an MSC can then be captured as a labelled partial order M = (E,≤, λ) where
λ : E → Act associates each event with its corresponding action. A cut is a subset of events
that is downward closed: c ⊆ E is a cut if ↓c = c, where ↓c = {e ∈ E | ∃e′ ∈ c. e ≤ e′}.

Like any partial order, an MSC can be reconstructed upto isomorphism from its linearisa-
tions, i.e., words over Act that extend ≤. In fact, the fifo condition on channels ensures that
a single linearisation suffices to reconstruct an MSC. In this way, an MSC M corresponds to
a set lin(M) of words over Act and a set of MSCs L defines the word language

⋃
M∈L lin(M).

We say that a set L of MSCs is regular if its associated word language is regular.

Time-constrained message sequence charts A time-constrained MSC (TCMSC) is an MSC
annotated with time intervals between pairs of events. We restrict timing constraints to pairs
of distinct events on the same process and to the matching send and receive events across
messages. Intervals have rational endpoints and may be open or closed at either end.
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Fig. 1. Different views of a system with two users and a server

For example, in the second diagram in Figure 1, the constraint [0, 3] between a3 and a4
bounds the time that the Server waits for a User to confirm a grant. On the other hand, the
constraint [0, 1] between a3 and u2 bounds the time taken to deliver this particular message.

A TCMSC over Act is a pair M = (M, τ), where M = (E,≤, λ) is an MSC over Act and
τ is a partial map from E × E to the set of intervals such that (e, e′) ∈ dom(τ) implies that
e 6= e′ and either e ≤pp e′ or e ≤pq e′ for some processes p and q.

Timed message sequence charts A timed MSC (TMSC) describes a concrete timed behaviour
in the MSC setting. In a TMSC, we assign events timestamps that are consistent with the
underlying partial order. Thus, a TMSC over Act is a pair T = (M, t) where M = (E,≤, λ)
is an MSC over Act and t : E → R≥0 is a function such that if e ≤ e′ then t(e) ≤ t(e′) for all
e, e′ ∈ E.

For instance, consider the TMSC in the third diagram of Figure 1. The message sent at
a3 is received instantaneously while the message sent at s2 is received 3 time units later.

A timed word over Act is a sequence (a1, t1)(a2, t2) · · · (an, tn) where a1a2 · · · an is a word
over Act and t1 ≤ t2 ≤ · · · ≤ tn is a nondecreasing sequence over R≥0. The set of timed words
over Act is denoted TWAct . A timed linearisation of a TMSC is thus a timed word in TWAct .
We let t-lin(T ) denote the set of timed linearisations of TMSC T . A single TMSC may admit
more than one timed linearisation if concurrent events on different processes have the same
timestamp. As for untimed MSCs, under the fifo assumption for channels, a timed MSC can
be reconstructed from any one of its timed linearisations.

With this definition, TCMSCs can be considered as abstractions of TMSCs and timed
words. For instance, we will say that the TMSC in Figure 1 realises the TCMSC in the same
figure since each interval constraint between events in the TCMSC is satisfied by the time-
stamps of the corresponding events in the TMSC. In this way, a TCMSC M defines a family
of TMSCs—the set of all TMSCs that realise M, which we denote Ltime(M). We also consider
the set Ltw (M) =

⋃
T∈Ltime(M) t-lin(T ) of timed words that realise M.

Message sequence graphs A message sequence graph (MSG) is a directed graph in which nodes
are labelled by MSCs. We begin with a graph G = (V,→, vin, VF ) with nodes V , initial node
vin ∈ V , final nodes VF ⊆ V and edge relation →. An MSG is a structure G = (G,LM , Φ)
where LM is a set of basic MSCs and Φ : V → LM associates a basic MSC with each node.
A path in G is a sequence of nodes v0v1 · · · vn where each adjacent pair of states is related by
→. An accepting path is one that starts in vin and ends in some node of VF

A path π = v0v1 · · · vn in G defines an MSC Φ(v0v1 · · · vn) = Φ(v0) ◦ Φ(v1) ◦ · · · ◦ Φ(vn),
where ◦ denotes MSC concatenation. When we concatenate two MSCs M1 = (E1,≤1, λ1)
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Fig. 2. A TCMSG, with a TCMSC and a TMSC that it generates

and M2 = (E2,≤2, λ2) we attach the lifelines in M2 below those of M1 to obtain an MSC
M1◦M2 = (E1∪E2,≤, λ) where λ combines λ1 and λ2 and≤ is generated by≤1∪≤2∪{(e1, e2) |
∃p. e1 ∈ E1

p , e2 ∈ E2
p}.

More formally, for a path π = v0v1 · · · vn we define the MSC Φ(π) as follows. For each
vertex v , let Φ(v) be the MSC Mv = (Ev,≤v, λv). We assume that the events are disjoint
across the MSCs Mv. We then define Φ(π) = Mπ = (Eπ,≤π, λπ), where,

– Eπ =
⋃
ρv�π Ev × {ρv}

– For each ρv � π, λπ(e, ρv) = λv(e).

– ≤π is defined as the reflexive transitive closure of
⋃
p,q∈Proc <

π
pq, where

• (e, ρv) <πpp (e′, ρ′v′) for some p ∈ Proc if e ∈ Evp , e′ ∈ Ev
′
p and either ρv � ρ′v′ or

(ρv = ρ′v′ and e <vpp e
′).

• (e, ρv) <πpq (e′, ρ′v′) for some processes p 6= q, if ρv = ρ′v′ and e <vpq e
′.

We associate with an MSG G a language of MSCs L(G) = {Φ(π) | π is an accepting path
in G}. In general, it is undecidable to determine whether L(G) is regular [7]. This is because
processes move asynchronously along the MSC traced out by accepting paths and there is no
bound, in general on this asynchrony. However, there is a sufficient structural condition to
guarantee regularity [3, 10].

Given an MSC M , we construct its communication graph CG(M) as follows: the vertices
are the processes and we have a directed edge (p, q) if M contains a message from p to q. An
MSC M is said to be connected if the non-isolated vertices in CG(M) form a single strongly
connected component. An MSG G is said to be locally synchronized if for every loop π in G, the
MSC Φ(π) is connected. Intuitively, this means that every message sent in a loop is implicitly
acknowledged, because if p sends a message, there is a path in the communication graph back
to p. This ensures that all channels are universally bounded—there is a uniform bound B such
that across all linearisations, no channel ever has more than B pending messages. Thus, if G
is locally synchronized, L(G) is a regular set of MSCs.

Time-constrained message sequence graphs We generalise MSGs to the timed setting in a
natural way. In a time-constrained MSG (TCMSG), states are labelled by TCMSCs rather
than basic MSCs. In addition, we also permit process-wise timing constraints along the edges
of the graph. A constraint for process p along an edge v −→ v′ specifies a constraint between
the final p-event of Φ(v) and the initial p-event of Φ(v′), provided p actively participates in
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both these nodes. If p does not participate in either of these nodes, the constraint is ignored.
Formally, a TCMSG is a tuple G = (G,LTC , Φ,EdgeC ) where G = (V,→, vin, VF ) is a graph
as before, Φ : V → LTC labels each node with a TCMSC from a set LTC and EdgeC associates
a tuple of constraints with each edge—for convenience, we assume that any edge constraint
not explicitly specified corresponds to the trivial constraint (−∞,∞).

Each accepting path in a TCMSG defines a TCMSC. Given a path v0v1 · · · vn, we con-
catenate the TCMSCs Φ(v0), Φ(v1), . . . , Φ(vn) and insert the additional constraints specified
by EdgeC . We define LTC (G) to be the set of all TCMSCs over Act generated by accepting
paths in G. We also let Ltime(G) =

⋃
M∈LTC (G) Ltime(M) and Ltw (G) =

⋃
M∈LTC (G) Ltw (M).

Figure 2 shows a TCMSG, a TCMSC that it generates and a realising TMSC.

Timed automata We can formulate many types of machine models for timed MSCs. One
natural choice is a message-passing automaton (MPA) equipped with (local) clocks. In a
timed MPA, we have one component for each process p, which is a finite state automaton
over actions of the form p!q(m) and p?q(m). Each component also has local clocks that can
be used to guard transitions. The global state space defines a timed automaton over Act .

A timed automaton over an alphabet Σ is a tuple A = (Q,∆, qin, F, Z) where Q is a finite
set of states, qin ∈ Q is the initial state, F ⊆ Q are the final states and Z is a set of clocks

that take values over R≥0. Each transition in ∆ is of the form q
ϕ,a,X−−−→ q′ where q, q′ ∈ Q,

a ∈ Σ, X ⊆ Z and ϕ is a boolean combination of clock constraints of the form x op c where
x ∈ Z, c ∈ Q≥0 and op ∈ {≤, <,>,≥}. This transition is enabled if the current values of
all clocks satisfy the guard ϕ. On taking this transition, the clocks in X are reset to 0. As
is standard, time elapses between transitions, transitions occur instantaneously and such an
automaton accepts timed words from TWΣ . More details can be found in [1, 4].

For our purposes, we only need the following two results about timed automata.

– Given timed automata A1 and A2, we can construct a timed automaton A12 such that
L(A12) = L(A1) ∩ L(A2).

– Checking whether the language of a timed automaton is empty is decidable.

The model checking problem We are interested in timed automata over Act whose languages
can be interpreted as timed MSCs. A timed word in TWAct corresponds to a linearisation of a
timed MSC provided the timed word is well-formed and complete. A word w over Act is well-
formed if for each channel (p, q), in every prefix v of w, the sequence of messages received by q
from p in v is a prefix of the messages sent from p to q in v. A well-formed word w is complete
if #p!q(w) = #q?p(w) for each matching pair of send-receive actions, where #X(u) counts the
number of occurrences in u of X ⊆ Act . Finally, a well-formed word w is B-bounded if, in
every prefix v of w, #p!q(v)−#q?p(v) ≤ B for each channel (p, q). Correspondingly, a timed
word is said to be well-formed (complete, B-bounded) if its projection onto Act is well-formed
(complete, B-bounded). Well-formedness captures the intuition that any receive action has
an earlier matching sending action. Completeness guarantees that all pending messages have
been received. B-boundedness promises that no channel ever has more than B messages.

Given a timed automaton A over Act and a TCMSG specification G, the model checking
problem is to check that every timed word accepted by A realises some TCMSC in LTC (G).
Since A may accept timed words that are not well-formed or not complete, this implicitly
includes checking that A accepts only well-formed and complete timed words in TWAct .
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From this, it is clear that the model checking problem corresponds to checking whether
L(A) ⊆ Ltw (G). To make the problem tractable, we restrict our attention to locally synchro-
nized TCMSGs, so that Ltw (G) is a timed regular language. Unfortunately, checking inclusion
is undecidable even for timed regular languages [1]. To get around this, we introduce a more
restricted machine model for timed MSCs called MSC event clock automata, which are closed
under complementation. It turns out that Ltw (G) can be recognized by MSC event clock
automata, yielding a solution to our model checking problem.

3 An extended event clock automaton – the MSC-ECA

We now define MSC event clock automata or MSC-ECA. These will be used to capture exactly
the guards that occur in the TCMSGs that we have defined. We denote an MSC-ECA over
Act by C = (Q,Act , δ, q0, F ), with states Q, initial state q0 ∈ Q and final states F ⊆ Q. A

transition in δ is of the form (q, ϕ, a, q′), which we also write as q
ϕ,a−−→ q′, where q, q′ ∈ Q,

a ∈ Act and ϕ is a conjunction of event clock guards, which are of two types: either Yk
p ∈ I or

Msg−1 ∈ I, where I is an interval, as used in TCMSC timing constraints. We interpret these
guards over timed words. Let σ = (a1, t1) · · · (an, tn) ∈ TWAct . Then at a position 1 ≤ j ≤ n,
we define

(D1) σ, j |= Yk
p ∈ I if the time elapsed between the kth-previous p-action ai in σ and this

action aj is in the interval I. Formally, aj ∈ Actp and there exists 1 ≤ i < j such that
ai ∈ Actp, |{` | i ≤ ` < j ∧ a` ∈ Actp}| = k and tj − ti ∈ I.

(D2) σ, j |= Msg−1 ∈ I if aj is a receive action and the time elapsed since the occurence of
its matching send action ai is in the interval I. Formally, if there exists p, q ∈ Proc,
m ∈ M, 1 ≤ i < j such that ai = p!q(m), aj = q?p(m), |{ak | 1 ≤ k ≤ i, ak ∈ p!q}| =
|{ak | 1 ≤ k ≤ j, ak ∈ q?p}| and tj − ti ∈ I (recall that we write ak ∈ p!q and ak ∈ q?p
to mean ak = p!q(m) and ak = q?p(m) for some m ∈M, respectively).

In both these definitions, note that action ai is uniquely defined, i.e., there is at most one
position i that matches a given position j with respect to a given event clock guard.

Now, we define runs of the MSC-ECA C over timed words. For a timed word σ =
(a1, t1) · · · (an, tn), we say there is a run of C from q to q′ on σ, denoted q

σ−→ q′ in C, if

there exists a sequence of transitions q = q0
ϕ1,a1−−−→ · · · ϕn,an−−−−→ qn such that for all j, 1 ≤ j ≤ n,

σ, j |= ϕj . The timed word σ is said to be accepted if it has a run from the initial state to
some final state in F . We denote by Ltw (C) the set of timed words accepted by the MSC-ECA
C. An MSC-ECA is said to be finite if it has finitely many states.

3.1 Determinization and complementation of MSC-ECA

We now prove that MSC-ECA can be determinized and complemented, which is crucial for
solving the model checking problem. We obtain this by constructing a deterministic and
complete version of any given MSC-ECA. Intuitively, this works as for classical ECA’s and
the main reason is that there are no explicit clocks. Since the reset of an event clock only
depends on the timed word being read and not on the path followed in the automaton, we
can use the subset construction.

More precisely, let C = (Q,Act , δ, q0, F ) be a finite MSC-ECA. The set of states of the
universal automaton Cuniv is 2Q. For a setX ⊆ Q and an action a, we let T (X, a) denote the set
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of transitions in δ having action a and a source state in X. Then, for some T ′ ⊆ T (X, a) = T ,
we denote by target(T ′) the set of target states of transitions in T ′ and we define

ϕ(T ′, T ) =
∧

t=(q,ϕt,a,q′)∈T ′
ϕt ∧

∧

t=(q,ϕt,a,q′)∈T\T ′
¬ϕt .

We denote the set of transitions of Cuniv by ∆, where we say that X
ϕ,a−−→ X ′ ∈ ∆ if there

exists T ′ ⊆ T = T (X, a) such that ϕ = ϕ(T ′, T ) and X ′ = target(T ′).
Note that, once we have fixed X, a and the set T ′, the transition is uniquely defined.

Also for X = ∅, we have T (X, a) = ∅ and the only possible transition is ∅ true,a−−−→ ∅. As
before, a run on a timed word σ = (a1, t1) · · · (an, tn) is defined as a sequence of transitions

X0
ϕ1,a1−−−→ X1 · · · ϕn,an−−−−→ Xn such that σ, j |= ϕj for all j. The crucial property of Cuniv is that

it is deterministic and complete (and finite, if C is).

Lemma 1. Given any timed word σ = (a1, t1) · · · (an, tn) ∈ TWAct , there exists a unique run

X0
ϕ1,a1−−−→ X1

ϕ2,a2−−−→ · · ·Xn−1
ϕn,an−−−−→ Xn of Cuniv on σ starting from X0 = {q0}. Moreover,

Xn = {q ∈ Q | q0 σ−→ q in C}.

Proof. Given σ = (a1, t1) · · · (an, tn) and X0 = {q0}, for j ∈ {1, . . . , n}, we define inductively
Tj = T (Xj−1, aj), T ′j = {(q, ϕ, aj , q′) ∈ Tj | σ, j |= ϕ} and Xj = target(T ′j). Observe that

Xj−1
ϕ(T ′j ,Tj),aj−−−−−−−→ Xj is a transition of Cuniv. Also by definition of T ′j , for all T ′ ⊆ Tj , we have

σ, j |= ϕ(T ′, Tj) if and only if T ′ = T ′j (1)

Using the “if” part above, we obtain that X0
ϕ(T ′1,T1),a1−−−−−−−→ X1 · · ·

ϕ(T ′n,Tn),an−−−−−−−→ Xn is a run of
Cuniv on σ. Conversely, we show by induction that this is the unique run of Cuniv on σ starting
from X0 = {q0}. Let X0

ϕ1,a1−−−→ X ′1
ϕ2,a2−−−→ · · ·X ′n be any such run. Suppose X ′j−1 = Xj−1. Then

we show that ϕj = ϕ(T ′j , Tj) and X ′j = Xj . By definition of a run, we have Xj−1
ϕj ,aj−−−→ X ′j and

σ, j |= ϕj . But by the definition of a transition, there exists T ′ ⊆ T (Xj−1, aj) = Tj such that
ϕj = ϕ(T ′, Tj) and X ′j = target(T ′). Thus, σ, j |= ϕ(T ′, Tj) which by Equation (1) implies
that T ′ = T ′j . Thus, we conclude ϕj = ϕ(T ′j , Tj) and X ′j = target(T ′) = target(T ′j) = Xj .

For the second statement, we prove both inclusions. First, if q0
σ−→ q in C, let q0

ϕ1,a1−−−→
· · · ϕn,an−−−−→ qn = q with σ, j |= ϕj for 1 ≤ j ≤ n. Using the notations above we show that
for all j ∈ {0, . . . , n}, qj ∈ Xj . Clearly q0 ∈ X0. Assume qj−1 ∈ Xj−1. Then we have
(qj−1, ϕj , aj , qj) ∈ T ′j . Hence we conclude that qj ∈ Xj = target(T ′j).

Conversely, for all j and for all qj ∈ Xj we show that q0
(a1,t1)···(aj ,tj)−−−−−−−−−→ qj is a run of C.

The proof is by induction on j. j = 0 is obvious. Assume j > 0 and let qj ∈ Xj . Then there
exists (qj−1, ϕj , aj , qj) ∈ T ′j , i.e., qj−1 ∈ Xj−1 and σ, j |= ϕj . By the induction hypothesis we

have q0
(a1,t1)···(aj−1,tj−1)−−−−−−−−−−−−→ qj−1. This implies that q0

(a1,t1)···(aj−1,tj−1)−−−−−−−−−−−−→ qj−1
aj ,tj−−−→ qj is a run of

C. ut

By suitably choosing the final states, Cuniv will accept either the same language as C
or its complement. Let F1 = {X ∈ 2Q | F ∩ X 6= ∅} and F2 = 2Q \ F1. Define Cunivi =
(2Q,Act , ∆, {q0}, Fi) for i = {1, 2}. From Lemma 1 we obtain:

Corollary 1. We have Ltw (Cuniv1 ) = Ltw (C) and Ltw (Cuniv2 ) = TWAct \ Ltw (C).
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3.2 From MSC-ECA to TA

Not every MSC-ECA can be translated into an equivalent (classical) timed automaton. The
problem comes from the event guards Msg−1 ∈ I, which may require infinitely many clocks
if channels are unbounded. Fortunately, thanks to the locally synchronized assumption on
TCMSGs, we are only interested in bounded channels. Let B > 0. We show below how to
construct a timed automaton BBC from an MSC-ECA C = (Q,Act , δ, q0, F ) such that BBC and
C are equivalent when restricted to B-bounded channels.

Let K = max{k | Yk
p ∈ I occurs in some guard in δ}. A state of BBC is either a dead

state denoted ⊥ or a tuple s = (s, b, n, α, β) where s ∈ Q, b = (bp)p∈Proc ∈ {0, 1}Proc (bp = 1
if we have already seen at least K p-events), n = (np)p∈Proc ∈ {0, . . . ,K − 1}Proc (np is

the number of p-events already seen modulo K), α = (αp,q)p,q∈Proc ∈ {0, . . . , B}Proc2
(αp,q

is the number of q?p events modulo B + 1), β = (βp,q)p,q∈Proc ∈ {0, . . . B}Proc2
(βp,q is the

number of p!q events modulo B + 1). The set of all states is denoted Q′ and the initial state
is s0 = (s0, (0), (0), (0), (0)). The set of clocks is Y ∪ Z where Y = {yip | p ∈ Proc, 0 ≤ i < K}
and Z = {zip,q | p, q ∈ Proc, 0 ≤ i ≤ B}. We will reset clock yip when executing the ith p-event

mod K. Also, zip,q will be reset when executing the ith p!q event mod B + 1.
We say that channel (p, q) is empty if αp,q = βp,q and full if βp,q = αp,q +B mod (B + 1).

The set of transitions δBBC is defined as follows: Assume s
ϕ,a−−→ s′ in C with a ∈ Actp. Then,

we have three types of transitions in BBC .

(Tr1) (s, b, n, α, β)
true,a,∅−−−−→ ⊥ is in BBC if either a ∈ p!q and channel (p, q) is full (the bound

was exceeded), or a ∈ p?q and channel (p, q) is empty.

(Tr2) (s, b, n, α, β)
ϕ′,a,R−−−−→ (s′, b

′
, n′, α′, β

′
) is in BBC if we are not in the above case and the

following conditions hold:

1. b′p = 1 if np = K − 1 and b′p = bp otherwise. Also, b′r = br for r 6= p.
2. n′p = (np + 1) mod K and n′r = nr for r 6= p.
3. if a ∈ p!q, then β′p,q = (βp,q + 1) mod (B + 1) and β′p′,q′ = βp′,q′ for (p′, q′) 6= (p, q).

Also α′ = α, R = {yn
′
p
p , z

β′p,q
p,q } and ϕ′ is ϕ where Yk

p ∈ I is replaced with

{
false if bp = 0 and k > np

y
(K+n′p−k) mod K
p ∈ I otherwise

4. if a ∈ p?q, then α′q,p = αq,p + 1 mod (B + 1) and α′q′,p′ = αq′,p′ for (q′, p′) 6= (q, p).

Also β
′

= β, R = {yn
′
p
p } and ϕ′ is ϕ where Yk

p ∈ I is replaced as above and

Msg−1 ∈ I is replaced with z
α′q,p
q,p ∈ I.

(Tr3) ⊥ true,a,∅−−−−→ ⊥ is in BBC for all a ∈ Act .

In the following, we call a timed word w weakly well-formed (wwf) if for each channel
(p, q), in every prefix v of w, we have #q?p(w) ≤ #p!q(w). This weak form does not require
the sequence of received messages to be a prefix of the sequence of the sent messages—it only
demands that at any point, the number of messages received does not exceed the number of
messages sent. Let TWB,wf

Act denote the set of timed words σ ∈ TWAct which are both wwf
and B-bounded.
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We can immediately observe some invariant properties that are maintained by the above

transitions. Let s0
ϕ1,a1,R1−−−−−→ · · · ϕm,am,Rm−−−−−−−→ sm for m ≥ 0 be a path in BBC from the initial state

s0 to some state sm 6= ⊥. Then, for sm = (sm, b, n, α, β),

1. bp = 1 if |{` | 1 ≤ ` ≤ m ∧ a` ∈ Actp}| ≥ K and bp = 0 otherwise.
2. np = |{` | 1 ≤ ` ≤ m ∧ a` ∈ Actp}| mod K
3. αp,q = |{` | 1 ≤ ` ≤ m ∧ a` ∈ q?p}| mod (B + 1)
4. βp,q = |{` | 1 ≤ ` ≤ m ∧ a` ∈ p!q}| mod (B + 1)

On the other hand, suppose s0
ϕ1,a1,R1−−−−−→ · · · ϕm,am,Rm−−−−−−−→ sm for m ≥ 0 is a path in BBC from

the initial state s0 to sm = ⊥. Then, either σ is not wwf or it exceeds the bound B for some
channel.

We can define different notions of acceptance (i.e., final states) on BBC constructed from C
to derive the results below.

Proposition 1. Let C = (Q,Act , δ, q0, F ) and BBC = (Q′,Act , (Y ∪ Z), δBBC ) be as above.

1. With final states F ′ = {(s, b, n, α, β) | s ∈ F} the timed automaton BBC accepts the language

Ltw (C) ∩ TWB,wf
Act .

2. If C is complete (i.e., it has a run on every timed word over Act) then with final states

F ′′ = {⊥} the timed automaton BBC accepts the complement of TWB,wf
Act .

Further if C is finite so is BBC .

Proof. 1. Let σ = (a1, t1) · · · (am, tm) be a wwf and B-bounded timed word. Consider a path

π = s0
ϕ1,a1−−−→ s1

ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm of C. We can build inductively a path π′ = s0
ϕ′1,a1,R1−−−−−→

s1
ϕ′2,a2,R2−−−−−→ · · · ϕ′m,am,Rm−−−−−−−→ sm of BBC starting from its initial state s0 and using (Tr2) only.

Then, Ltw (C) ∩ TWB,wf
Act ⊆ Ltw (BBC ) follows immediately from the following claim.

Claim. If σ has a run through π in C (i.e., σ, i |= ϕi for all i ∈ {1, . . . ,m}) then σ has a run
through π′ in BBC

We define inductively the valuation sequence for the run through π′: ν0 is the valuation
mapping all clocks to 0, and νi = (νi−1 + ti − ti−1)[Ri → 0] for 1 ≤ i ≤ m. To establish
Claim 3.2 we show for all i ∈ {1, . . . ,m} that (νi−1 + ti − ti−1) |= ϕ′i.

There are three cases:

1. ϕ′i contains zkp,q ∈ I where k = α′p,q = |{a` | 1 ≤ ` ≤ i ∧ a` ∈ q?p}| mod (B + 1). From the

definition of the transition, ϕi must contain Msg−1 ∈ I. Since, σ, i |= ϕi we have ti−tj ∈ I,
where j is the index of the matching send: aj = p!q(m), ai = q?p(m), 1 ≤ j ≤ i and
|{a` | 1 ≤ ` ≤ j∧a` ∈ p!q}| = |{a` | 1 ≤ ` ≤ i∧a` ∈ q?p}|. Thus, k = |{a` | 1 ≤ ` ≤ j∧a` ∈
p!q}| mod (B + 1). Using the invariant at state sj , we get zkp,q ∈ Rj . Using the invariant

at si, we can replace Msg−1 ∈ I by zkp,q ∈ I in ϕ′i. Moreover, zkp,q 6∈ R` for j < ` ≤ i—
otherwise, the number of events labelled p!q between j and ` would be B more than the
number of events labelled q?p between j and i (and therefore `). This implies that the
channel was full and so, at `, transition (Tr1) is enabled which means that transition (Tr2)
cannot be fired, which contradicts the transition at i. Now, zkp,q ∈ Rj implies νj(z

k
p,q) = 0,

and zkp,q 6∈ R` for j < ` ≤ i implies that (νi−1 + ti− ti−1)(zkp,q) = νj(z
k
p,q) + ti− tj = ti− tj .

So, we have (νi−1 + ti − ti−1) |= (zkp,q ∈ I).
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2. We will show that ϕ′ cannot contain false. If ϕ′ contains false, then bp = 0 and there exists
Yk
p ∈ I in ϕ such that k > np. But bp = 0 implies that K events have not been seen and

so we are trying to relate two events that are k apart when we have not seen k events on
p. This contradicts the fact that σ, i |= Yk

p ∈ I, so this cannot happen.

3. ϕ′i contains y`p ∈ I, Then ` = (K + n′p − k) mod K and Yk
p ∈ I is in ϕi. Consider the

event j such that the number of p-events between j and i is k. Such an event exists
since either n′p > k or bp = 1 (which means that K > k many p-events have been
seen). But if k < n′p, then ` = n′p − k and so the value of np-component at j is `. If

k > n′p, then at j, we have ` = K + n′p − k < K. Thus in both cases, y`p was reset at
j and not reset again between j and i. Again, σ, i |= ϕi implies that ti − tj ∈ I and so
(νi−1 + ti − ti−1)(y`p) = νj(y

`
p) + ti − tj = ti − tj ∈ I. Thus, (νi−1 + ti − ti−1) |= y`p ∈ I.

For the converse inclusion, we start with a path of BBC starting from its initial state

s0 and which does not reach ⊥: π′ = s0
ϕ′1,a1,R1−−−−−→ s1

ϕ′2,a2,R2−−−−−→ · · · ϕ′m,am,Rm−−−−−−−→ sm. Since we
did not reach ⊥, the timed word σ = (a1, t1) · · · (am, tm) must be wwf and B-bounded.
Moreover, transitions in π′ comes from (Tr2) only and we can recover a corresponding path

π = s0
ϕ1,a1−−−→ s1

ϕ2,a2−−−→ · · · ϕm,am−−−−→ sm in C. Again, we can prove that if σ has a run through π′

in BBC then σ has a run through π in C. This follows by considering each case for the guards
and observing that if νi−1 + ti − ti−1 |= ϕ′i then σ, i |= ϕi in each case.

2. We have already noted that if a timed word σ has a run through a path of BBC reaching
the dead state ⊥ then σ is either not wwf or not B-bounded. Conversely, assume that σ is
either not wwf or not B-bounded and let σ′ be the greatest prefix of σ which is both wwf
and B-bounded. Since C is complete, the timed word σ′ has a run through a path π of C. As
above we deduce that σ′ has a run through a corresponding path π′ of BBC . The next letter
of σ will violate either the B-bound or the wwf condition. Hence the run reaches ⊥ with this
next letter and loops on ⊥ until the end of σ. ut

4 From a locally synchronized TCMSG to a finite MSC-ECA

The main result of this section is that locally synchronized TCMSGs define timed regular
languages.

Theorem 1. If G = (G,LTC , Φ,EdgeC ) is a locally synchronized TCMSG, then there exists
a finite MSC-ECA C, such that Ltw (C) = Ltw (G).

In the untimed case, the corresponding result has been stated and proved in different
ways [3, 5, 6, 10]. We describe a different proof that is more suitable for the timed version. It
is split in three main steps that are described in the following sections.

4.1 TCMSG to an infinite MSC-ECA

In this section, from a TCMSG, we construct an MSC-ECA (with infinitely many states)
which accepts exactly the same set of timed linearisations. We start with a definition and a
remark. For an MSC M = (E,≤, λ) over Act , recall that a cut c of M over Act to be a subset
of the events E which is closed under the partial order ≤. That is, e ∈ c, e′ ≤ e implies that
e′ ∈ c. This can of course be lifted to MSCs generated by a path π, namely Mπ. We also recall
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that any event of Eπ is of the form (e, ρu) where ρu � π and e ∈ Eu. Indeed, keeping the
prefix of the path along with the event uniquely identifies the event’s occurence in the path.

For a fixed TCMSG G = (G,LTC , Φ,EdgeC ), where G = (V,→, vin, VF ), we define the
infinite MSC-ECA denoted CG. A global state of CG is a pair s = (π,C) where

– π is a path in G.
– C ⊆ Eπ is a cut of Mπ

Now, an event (e, ρ) is said to have been executed in s if (e, ρ) ∈ C. The event is said to
be enabled in s if it has not been executed, i.e., (e, ρ) 6∈ C, and all the events below it (in
the partial order) have been executed, i.e., for all (e′, ρ′) ∈ Eπ with (e′, ρ′) <π (e, ρ), we have
(e′, ρ′) ∈ C.

A state s = (π,C) is initial if π is any path in G from an initial state to a final state and
C is empty. It is final if C = Eπ. We denote the set of all states of this global system by QG.

Now, the transitions can be defined by saying that at any state we execute an enabled
event. We have s = (π,C)

ϕ,a−−→ s ′ = (π,C ′) if there exists an event (e, ρu) enabled in s such
that λu(e) = a and

– C ′ = C ] {(e, ρu)}
– the guard ϕ checks all local and edge constraints that are matched here,

ϕ =

( ∧

e′∈Eu,I∈I|τu(e′,e)=I
ϕ(u, e′, e, I)

)
∧ ϕedge where, (2)

ϕ(u, e′, e, I) =

{
Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <uqp e

Yk
p ∈ I if e, e′ ∈ Eup , |{e′′ ∈ Eup | e′ ≤upp e′′ <upp e}| = k

(3)

and ϕedge =





Y1
p ∈ I if ρ = ρ′u′, and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eup )

true otherwise

(4)

Note that, in the transition above, the event (e, ρu) which is enabled in s becomes an

executed event of s ′. Thus we can say that the transition s
ϕ,a−−→ s ′ executes the event (e, ρu).

As before, a global run of CG on a timed word σ = (a1, t1) · · · (an, tn) is a sequence of

transitions s0
ϕ1,a1−−−→ · · · ϕn,an−−−−→ sn such that for each j ∈ {1, . . . , n}, σ, j |= ϕj . Again a run is

accepting if it starts at an initial state and ends in a global final state. We say a timed word
σ belongs to Ltw (CG), if there is a global accepting run on σ.

Lemma 2. We have the following relation between the timed languages of CG and G:
Ltw (CG) = Ltw (G) = {σ | σ is a timed linearisation of some TMSC T over Act , such that T
realises some M ∈ LTC (G)}.

Proof. (⊆) Let σ = (a1, t1) · · · (an, tn) ∈ Ltw (CG). Then there exists an accepting run

s0
ϕ1,a1−−−→ · · · ϕn,an−−−−→ sn

where for each i ∈ {1, . . . , n}, σ, i |= ϕi and s i−1 = (πi−1, Ci−1)
ϕi,ai−−−→ (πi, Ci) = s i executes

some enabled event (ei, ρi).
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First, π0 = · · · = πn = π (say). Then, as s0 = (π,C0) is an initial state of the global system,
π is a path from the initial vertex vin to some final one in G. Therefore Mπ = (Mπ, τπ) ∈
LTC (G). Now, for each i ∈ {1, . . . , n}, Ci = Ci−1 ] {(ei, ρi)} is a cut of Mπ. Moreover,
Cn = Eπ since sn is final. From this we get that (e1, ρ1) · · · (en, ρn) is a linearisation of Mπ

and λπ(ei, ρi) = ai for all i ∈ {1, . . . , n}. Now consider the TMSC T = (Mπ, t) where we
define t by t((ei, ρi)) = ti. Thus, (a1, t1) · · · (an, tn) is a timed linearisation of T since i < j
implies t(ei, ρi) = ti ≤ tj = t(ej , ρj).

We are done if we show that T realises Mπ. That is, for all ((ei, ρi), (ej , ρj)) ∈ dom(τπ),
we want to show that |t(ej , ρj)− t(ei, ρi)| = tj − ti ∈ τπ((ei, ρi), (ej , ρj)). We have two cases
to handle:

– If ρi = ρj = ρv (say) then τπ((ei, ρv), (ej , ρv)) = τv(ei, ej) = I. Then, first ϕ(v, ei, ej , I) is
in ϕj . Indeed, if τv(ei, ej) = I then one of the two following cases hold:

• Either ei, ej ∈ Evp for some p ∈ Proc. Then, |{e` ∈ Evp | ei ≤vpp e` <vpp ej}| = k for some

k ∈ N>0. Thus ϕ(v, ei, ej , I) = Yk
p ∈ I. At state j, σ, j |= ϕj implies σ, j |= ϕ(v, ei, ej , I)

which implies that σ, j |= Yk
p ∈ I. Now, e` ∈ Evp such that ei ≤vpp e` <vpp ej if and only

if i ≤ ` < j such that a` ∈ Actp. Thus, by Definition (D1), we conclude that tj−ti ∈ I.
• Or ei <

v
qp ej for some p, q ∈ Proc, p 6= q. Then, ϕ(v, ei, ej , I) = Msg−1 ∈ I. Again,

we have σ, j |= Msg−1 ∈ I. Now, ei <
v
qp ej implies that λπ(ej , ρj) = aj = p?q(m) for

some m ∈ M and λπ(ei, ρi) = ai = q!p(m) is its matching send. Thus, |{a` | 1 ≤ ` ≤
i, a` ∈ q!p}| = |{a` | 1 ≤ ` ≤ j, a` ∈ p?q}|. Now, by Definition (D2) we conclude that
tj − ti ∈ I.

– Otherwise, ρj = ρiv, ρi = ρv′ for some ρ, ei = max(Ev
′
p ) and ej = min(Evp ) for some

p ∈ Proc, then τπ((ei, ρi), (ej , ρj)) = EdgeC ((v′, v), p) = I. Then at stage j, we have

ϕedge
j = (Y1

p ∈ I). Indeed, ai = λv
′
(ei) is the last p-action before aj = λv(ej) in σ. Thus,

by Definition (D1), tj − ti ∈ I and so we are done.

(⊇) Suppose M ∈ LTC (G), then there exists a path π = v1 · · · vm in G such that v1
is an initial vertex and vm is a final vertex and M = Mπ = (Mπ, τπ). Now, suppose σ =
(a1, t1) · · · (an, tn) is a timed linearisation of T = (Mπ, t) and T realises M. Then first we
observe that a1 · · · an ∈ lin(Mπ) and so there is (e1, ρ1) · · · (en, ρn) a linearisation of the
events of Mπ where for each i ρi � π, λπ(ei, ρi) = ai.

Then we can construct the run of the global system on this timed word. First, we define
Ci = {(e1, ρ1) · · · (ei, ρi)} and s i = (π,Ci) for all i ∈ {0, . . . , n}, where C0 = ∅. Then observe

that (ei, ρi) is enabled in s i−1. Thus there exists a transition s i−1
ϕi,ai−−−→ s i that executes event

(ei, ρi). We show that σ, i |= ϕi where ϕi is defined by the transition. Again there are two
cases:

– Either ϕi contains an edge constraint, i,e., ϕedge = (Y1
p ∈ I) for some p ∈ Proc. In this

case, by Condition 4, ρi = ρ′v′v, ei is the first p-event in Mv and for some j < i, we
have ρj = ρ′v′, ej is the last p-event on Mv′ and EdgeC ((v′, v), p) = I. First, this implies
that ai is the next p-action with respect to aj in σ. Also, τπ((ej , ρj), (ei, ρi)) = I and
since T realises M, we have t(ei, ρi) − t(ej , ρj) ∈ I which implies that ti − tj ∈ I. By
Definition (D1), we conclude that σ, i |= ϕedge .

– Or there is a local constraint of a node of the form ϕ(u, ej , ei, I), where ρi = ρu = ρj for
some j < i and τu(ej , ei) = I. Again since T realises M, t(ei, ρu)− t(ej , ρu) = ti − tj ∈ I.
By Condition 3, if the constraint is of the form Msg−1 ∈ I, then ej <

u
qp ei and otherwise
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the constraint is of the form Yk
p ∈ I where the number of p-events between ej and ei is

k. Using Definition (D2) in the former case and Definition (D1) in the latter case, we
conclude that σ, i |= ϕ(u, ej , ei, I).

Thus, we have shown that σ, i |= ϕi for all i ∈ {1, . . . , n} and therefore s0
ϕ1,a1−−−→ · · · ϕn,an−−−−→

sn is a run of the global system on σ. Finally, the run ends in a global final state, since σ is
a full linearisation of Mπ. Thus, our proof is complete. ut

4.2 Removing unexecuted nodes

We want to simulate the global run of a TCMSG in a finite way. So, instead of maintaining
the whole path along the run, we want to maintain only the relevant portions, i.e., the nodes
on which there is at least an event that has occurred.

For segments of nodes in the path that have not seen any event yet, we replace them
by a special gap symbol #. Thus, having a # symbol between two nodes denotes that some
(nonempty) sequence of nodes must be inserted here later.

In fact, the insertion must satisfy two conditions: (1) when we insert a node it must not
conflict with the events that have already occurred in later nodes and (2) finally, after all
insertions, we do obtain a path in the graph. The latter is done by checking that when we fill
a gap the corresponding bordering nodes have an edge in the graph.

This construction is formalized next. However, note that this construction is still infinite
since we might still have unboundedly many completed nodes, i.e., nodes in which all events
have been seen. In the next section, we describe how to perform a sequence of reductions to
throw away such completed nodes from the current path. However, we have to be careful that
the two conditions, in the infinite case above, are still maintained.

We start by observing that the cut C that we keep in a state in the simulation in the
previous section is global. Thus, if we want to remove some nodes we would need to maintain
the cut C locally within each node. To do this we break up each state (u1 · · ·un, C) into
(u1, c1) · · · (un, cn). Formally, we define the map Φ which we call stratification as follows:

Φ((u1 · · ·un, C)) = (u1, c1) · · · (un, cn)

where each ci ⊆ Eui is defined by ci = {e ∈ Eui | (e, u1 · · ·ui) ∈ C}. Notice that each
ci is a cut of Eui . Φ is in fact a bijection since we also have the inverse map given by
C = {(e, u1 · · ·ui) ∈ Eu1···un | e ∈ ci}.

We define an extended node to be a pair (u, c) where u ∈ V and c ⊆ Eu is a cut of Eu.
As before, c contains the events that have been executed in node u. For simplicity, we extend
the set of vertices V with two dummy vertices ., / and add edges from . to the initial vertex
vin and from every final vertex v ∈ VF to /. We also set E. = ∅ = E/ so that for u ∈ {., /},
the only extended node is (u, ∅). The set of all extended nodes is denoted ExtNodes and we
let Γ = ExtNodes ] {#}.

Now, we construct our new automaton C#G . A state α of C#G is an element of Γ ∗. The
initial state is α0 = (., ∅)#(/, ∅). Now, we lift the notion of events to extended events of a
state in this new automaton. An extended event of α ∈ Γ ∗ is a pair (e, α1(u, c)) where e ∈ Eu
and α1(u, c) � α. We say that the extended event (e, α1(u, c)) is

– executed in α if e ∈ c and
– enabled in α if the following hold:
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(E1) it has not been executed, i.e., e 6∈ c,
(E2) all events within the node which are below it (in the partial order) have been executed,

i.e., for all e′ ∈ Eu with e′ <u e, we have e′ ∈ c
(E3) and if e belongs to process p, then all p-events on any node occurring before this node

in α have been executed, i.e., if e ∈ Eup then for all α′1(u
′, c′) � α1, we have Eu

′
p ⊆ c′.

An extended node (u, c) is said to be completed if c = Eu. Note that (., ∅) and (/, ∅) are
completed by default. A state α is final if it is a sequence of completed nodes.

We will need some notations to describe the set of processes that participate in node,
path or a state. First, for a node u ∈ V , OProc(u) = {p ∈ Proc | Eup 6= ∅} denotes the
set of processes that participate (occur) in u. This is extended to V ∗ as a morphism. Also,
with OProc(u, c) = OProc(u) and OProc(#) = ∅ it extends to Γ ∗. In addition, for β ∈ Γ ∗,
EProc(β) denoting the set of executed events in β, is given by the morphism defined by
EProc((u, c)) = {p ∈ Proc | Eup ∩ c 6= ∅}, EProc(#) = ∅.

Now, the transitions can be defined by saying that at any state we can choose to execute
an enabled event or add a new (extended) node to the state and then we must execute an
enabled event on the new node. In fact, we always add a node by inserting it in a #.

Let us now define the node insertion operation which tells us how a node is inserted in a
gap. Formally, this is defined as a macro α1#α2

u−→ α′1(u, ∅)α′2 which is said to hold if

(I 1) for every process that participates in u, there is no executed event in the segment α2 on
that process, i.e., OProc(u) ∩ EProc(α2) = ∅.

(I 2) α′1 ∈ {α1, α1#} and if α′1 = α1 then α1 = α′′1(v, c) and v → u in G.
(I 3) α′2 ∈ {α2,#α2} and if α′2 = α2 then α2 = (v, c)α′′2 and u→ v in G.

Now, using this macro we can define the transition relation as follows. Formally, α
ϕ,a−−→ α′

is a transition in C#G if there exists β = β1(u, c)β2 and an extended event (e, β1(u, c)) enabled
in β such that

– one of the two following conditions hold:

(i) either β = β1(u, c)β2 = α, i.e., the enabled event is already present in the current
state,

(ii) or α = α1#α2
u−→ β1(u, ∅)β2 = β. Hence, c = ∅, β1 ∈ {α1, α1#} and β2 ∈ {α2,#α2}

– and all the below conditions hold:

(T1) a = λu(e)
(T2) the guard ϕ must check all local and edge constraints, i.e.,

ϕ =

( ∧

e′∈Eu,I∈I|τu(e′,e)=I
ϕ(u, e′, e, I)

)
∧ ϕedge where, (5)

ϕ(u, e′, e, I) =

{
Msg−1 ∈ I if ∃p, q, p 6= q s.t. e′ <uqp e

Yk
p ∈ I if e, e′ ∈ Eup , |{e′′ ∈ Eup | e′ ≤upp e′′ <upp e}| = k

(6)

and ϕedge =





Y1
p ∈ I if β1 = β′1(u

′, c′′) and for some p ∈ Proc, we have

EdgeC ((u′, u), p) = I and e = min(Eup )

true otherwise

(7)

14



(T3) α′ = β1(u, c
′)β2, where c′ = c ] {e}.

Observe as in the case of the automaton CG, once the state and the enabled event which
is to be executed are fixed, the transition that is taken and indeed the state reached after the
transition are uniquely determined.

We can also observe that reachable states of this system satisfy some nice properties. To
capture this we define the notion of a valid state of C#G .

A state α of C#G is said to be valid if

(V1) Every # symbol in α is surrounded by nodes from ExtNodes. Also α starts with (., ∅)
and ends with (/, ∅).

(V2) For any two consecutive extended nodes in α, there exists an edge between the nodes
in G, i.e., for all α1(u, c)(u

′, c′) � α, we have u→ u′ in G.
(V3) Executed events in α are downward closed. By this we mean that the following two

conditions are satisfied:

(a) For all α1(u, c) � α, if e ∈ c and e′ ≤u e then e′ ∈ c.
(b) For all α1(u, c)α2(u

′, c′) � α, if e ∈ Eup , e′ ∈ Eu
′
p for some p ∈ Proc, then e′ ∈ c′ =⇒

e ∈ c.

Proposition 2. Every state of C#G reachable from the initial state is valid.

Proof. First note that the initial state is valid. Now, suppose α is valid and α
ϕ,a−−→ α′ we

want to show that α′ is valid as well. The first two properties follows from the node-insertion
definition. The third follows from the definition of an enabled event. ut

We may note however that the converse is not true in general, i.e., a valid state need not
always be reachable.

Lemma 3. Ltw (C#G ) = Ltw (CG)

Proof. We consider a morphism Ψ : ExtNodes∗ → Γ ∗ defined by (u, ∅) 7→ # and (u, c) 7→ (u, c)
if c 6= ∅. We also define a reduction operation which acts on Γ ∗ and reduces consecutive
multiple occurences of # into a single #. Formally, it is a rewrite operation where the rule

is α1##α2
redn#−−−−→ α1#α2. Then, for a state α ∈ Γ ∗, we denote by Red#(α) the state that

we reach by a maximal sequence of repeated applications of this rule. We denote by Υ ,
the function that, given a global state s of QG, assigns the state of C#G obtained as β =
(., ∅)Red#(Ψ(Φ(s)))(/, ∅) where Φ is the stratification function defined earlier.

Now using the above definitions, we can relate accepting paths of the global semantics
and accepting paths of the automaton C#G . The equality of the languages Ltw (C#G ) = Ltw (CG)
follows immediately.
(⇐=) Consider any global path of G, i.e.,

s0
ϕ1,a1−−−→ s1 · · · sn−1 ϕn,an−−−−→ sn

where each s i = (π,Ci). For all i ∈ {0, . . . , n}, let βi = Υ (s i). We will show that

β0
ϕ1,a1−−−→ β1 · · ·βn−1 ϕn,an−−−−→ βn

is a path of C#G .
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Since s0 = (π,C0) is initial, we have C0 = ∅ which implies that β0 = (., ∅)#(/, ∅) which

is the initial state of C#G . Fix 1 ≤ i ≤ n and let Φ(s i−1) = (u1, c1) . . . (um, cm) where π =

u1 · · ·um. Now, the transition s i−1
ϕi,ai−−−→ s i executes some event (e, u1 · · ·uj) which is enabled

in s i−1. Then, s i = (π,Ci) with Ci = Ci−1 ] {(e, u1 · · ·uj)}. There are two cases to consider:

– Either cj 6= ∅. In this case, we observe that βi−1 = Υ (s i−1) = α1(uj , cj)α2 where we can
write

α1 = (., ∅)Red#(Ψ((u1, c1) · · · (uj−1, cj−1)))
α2 = Red#(Ψ((uj+1, cj+1) · · · (um, cm)))(/, ∅) .

Then, we observe that (e, u1 · · ·uj) is enabled in s i−1 implies that (e, α1(uj , cj)) is en-

abled in βi−1. Thus, there exists a transition of C#G which executes this event, namely

βi−1
ϕ′i,ai−−−→ α1(uj , c

′
j)α2 where c′j = cj ] {e}. From Conditions (2–4) and (5–7), we de-

duce that ϕ′ = ϕ. Then, Φ(s i) = (u1, c1) · · · (uj , c′j) · · · (um, cm) by definition of Ci and so
Υ (s i) = α1(uj , c

′
j)α2 = βi.

– Or cj = ∅. That is, the event being executed is on a node that is not present in βi−1.
Then, there was a gap in βi−1 instead and we can write βi−1 = α1#α2 where α1# =
(., ∅)Red#(Ψ((u1, c1) · · · (uj , cj))). Now if cj−1 = ∅, then we let β′ = α1# and else β′ = α1.
Similarly if cj+1 = ∅, then we let β′′ = #α2 and β′′ = α2 otherwise. Then we can observe

that (e, β′(uj , ∅)) is enabled in β′(uj , ∅)β′′. Also, we have α1#α2
uj−→ β′(uj , ∅)β′′ since

Conditions (I1), (I 2) and (I3) hold. Indeed the latter two conditions follow from above,
and if β′ = α1 or β′′ = α2, the presence of the edge in (I2), (I 3) follows from the fact
that the corresponding nodes are consecutive in π which is a path through G. Also if
Condition (I1) is violated this would contradict the downward-closed property of the cut
Ci.

Thus there exists a transition in C#G , βi−1
ϕ′i,ai−−−→ βi = β′(uj , c′j)β

′′ where c′j = {e}. As
above, we can conclude that ϕ′ = ϕ. Now, Φ(s i) = (u1, c1) · · · (uj , c′j)
· · · (um, cm) where c′j 6= ∅ and so Υ (s i) = β′(uj , c′j)β

′′ = βi.

Finally, since sn is a final state of CG, βn = Υ (sn) is a final state as well as it is a sequence
of completed nodes. This completes the proof in one direction.

(=⇒) For the converse consider an accepting path in C#G ,

α0
ϕ1,a1−−−→ α1 · · ·αn−1 ϕn,an−−−−→ αn

where each αi ∈ Γ ∗.
Then, αn is final if it is a sequence of completed nodes, which we write as

(., ∅)(u1, c1) · · · (um, cm)(/, ∅). Then we claim that π = u1 · · ·um is a path in G from an
initial state to a final state. This follows since this state is reachable and therefore valid and
so Property (V2) holds (and from the definition of ., /). Then, we will construct the global
run inductively maintaining the invariant Υ (s i) = αi for all i ∈ {0, . . . , n}.

At i = 0, s0 = (π,C0) = (π, ∅) and Υ (s0) = (., ∅)#(/, ∅) = α0. Suppose we have defined
till s i−1 = (π,Ci−1) such that Υ (s i−1) = αi−1, with Φ(s i−1) = (u1, c1) . . . (um, cm). Consider

αi−1
ϕi,ai−−−→ αi. Then again we have two cases:
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– either the transition executes the event (e, β′1(uj , cj)) which is enabled in αi−1 =
β′1(uj , cj)β

′
2 = β′ where we let β′1 = (., ∅)Red#(Ψ((u1, c1) · · · (uj−1, cj−1))) and β′2 =

Red#(Ψ((uj+1, cj+1) · · · (um, cm)))(/, ∅).
– Or the transition inserts a node and then executes an enabled event, i.e., αi−1 = β1#β2

and β1#β2
u−→ β′1(u, ∅)β′2 = β′ and (e, β′1(u, ∅)) is enabled in β′. Then β′1 ∈ {β1, β1#} and

β′2 ∈ {β2,#β2}. In π consider the first occurence of u, say uj , which has no executed event
in s i−1, i.e., Ci−1 ∩ (Eu1···uj \ Eu1···uj−1) = ∅. Thus, in this case, cj = ∅.

Now, in both of the above cases, we claim that (e, u1 · · ·uj) is enabled in s i−1. Sup-
pose not, choose a maximal event (e′, u1 · · ·uj′) which was not executed in s i−1, such that
(e′, u1 · · ·uj′) <π (e, u1 · · ·uj). This implies j′ ≤ j and in fact, we have j′ < j since otherwise
e′ <uj e which contradicts enabledness of (e, β′1(uj , cj)) in β′. Thus, e′ belongs to the same
process as e. But then, there can’t be any executed event in node uj′ , since if there was,
the node would occur in αi−1 and so would contradict the fact that (e, β′1(uj , cj)) is enabled
in β′ by violating Condition (E3). Now, if there was no executed event it would have been

replaced by # in αi−1. But then since we are simulating an accepting run of C#G , at some later
transition, node uj′ will be inserted in this #. At that stage, we would violate Condition (I1)
for node insertion since the process has seen an event, namely e to the right. Thus, we have
a contradiction.

Once again, the existence of the enabled event immediately implies that there exists a
transition that executes it in CG, namely s i−1

ϕi,ai−−−→ s i such that Ci = Ci−1 ] {(e, u1 · · ·uj)}.
Then we can also observe that Φ(s i) = (u1, c1) · · · (uj , c′j)
· · · (um, cm) and c′j = cj ] {e}. Thus, we conclude that Υ (s i) = αi. ut

In fact, we can strengthen the above lemma slightly without much change in the proof.
If we restrict the above automaton to states that are both reachable and co-reachable even
then the result holds. It turns out that this property of co-reachability is easy to capture in
the automaton. Formally, we call a state α completable if whenever α = α1(u, c)#(v, c′)α2,
there is β ∈ V + such that uβv is a path in G and OProc(β) ∩ EProc((v, c′)α2) = ∅.

Corollary 2. Consider the timed automaton obtained from C#G by restricting to valid and

completable states. Then, the timed language of this automaton is Ltw (C#G ).

4.3 Removing completed nodes

As we mentioned earlier, from a state α we would like to obtain a finite abstraction of α, such
that

1. the set of events left to be done are the same,

2. if α = α1#α2 where α2 ∈ Γ ∗, then we want to preserve the information about the processes
in EProc(α2) so that if some nodes in α2 are deleted we still know which processes must
not be inserted in this gap.

We accomplish this by enlarging the alphabet of nodes and # symbol with subsets of
processes P ⊆ Proc. The idea is that this set P keeps track of the processes that are not
allowed to participate in a node inserted on the left.

3. we preserve (do not throw away) the nodes around a # occurence in α and also nodes
that start an edge constraint which needs to be verified later.
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Formally, the set of states of our new automaton Cfin
G will be a finite subset of Π∗ where

Π = Γ∪2Proc . Then, in our definition of the morphisms earlier we need to add OProc(P ) = P ,

EProc(P ) = P . Now, we define the reduction as a rewrite operation α
redn−−−→ α′. There are two

rewrite rules:

(R1) The first says that if two process sets are together they can be merged, i.e., α1PP
′α2

redn−−−→
α1(P ∪ P ′)α2.

(R2) Now, we define the rule that removes a completed extended-node (v, c) and replaces it

by the set of processes participating in v, i.e., we have α1(v, c)α2
redn−−−→ α1OProc(v)α2 if

the following hold:

(C2.1) v ∈ V , ε 6= α1 6∈ Π∗#, ε 6= α2 6∈ #Π∗ i.e., the node v is not next to a gap or at the
beginning or the end.

(C2.2) c = Ev, i.e., all events in the node have been completed,
(C2.3) and one of the two following cases hold:

(i) either α2 ∈ (v′, c′)Π∗ and then for each p ∈ Proc we must have either Evp = ∅ or

Ev
′
p = ∅ or (c′ ∩Ev′p ) 6= ∅. In other words, if the first symbol of α2 is an extended

node (v′, c′) and there is an event in both Evp and Ev
′
p , then some event in Ev

′
p

has occured and so, the edge constraint has indeed been checked,
(ii) or α2 ∈ 2ProcΠ∗ in which case there is no unchecked edge constraint.

Remark 1. We can observe that, in some sense, the negation of Rule (R2) is an invariant of
the reduction operation. More precisely, let α = α1(u, c)α2 be such that we cannot apply

Rule (R2) to remove node (u, c) (given by its occurence α1(u, c) � α) and suppose α
redn−−−→ α′.

This, of course, implies that (u, c) (or rather, this occurence of (u, c)) is present in α′ as well.
Then, we can easily check that we cannot apply Rule (R2) to remove this node in α′ either.

Lemma 4. The rewrite system defined by the operation
redn−−−→ is confluent.

Proof. Indeed it is easy to see that if the reduction rules apply on non-adjacent segments
in a path, then they can be executed in any order. For instance, for β 6= ε, if we have

α(u, c)βPP ′γ redn−−−→ αP ′′βPP ′γ where P ′′ = OProc(u) and α(u, c)βPP ′γ redn−−−→ α(u, c)β(P ∪
P ′)γ, then of course αP ′′βPP ′ redn−−−→ αP ′′β(P∪P ′)γ and α(u, c)β(P∪P ′) redn−−−→ αP ′′β(P∪P ′)γ.
The interesting case is when two reduction rules apply on adjacent segments. Again, we may
consider several subcases. If one of the reductions is by applying Rule (R1), then it is easy to
handle since, in some sense, this rule does not depend on the context (i.e., the surrounding
nodes/symbols). We now explicitly illustrate the subcase when we have two applications of
Rule (R2) on adjacent nodes, i.e., let

– α(u, c)(u′, c′)β redn−−−→ α(u, c)P ′β where P ′ = OProc(u′) and

– α(u, c)(u′, c′)β redn−−−→ αP (u′, c′)β where P = OProc(u).

Then, from the first reduction we get c′ = Eu
′
, ε 6= β 6∈ #Π∗ and Condition (C2.3)

holds with α2 = β. Using these and observing that αP 6∈ Π∗#, we can conclude that the

first reduction is applicable after the second, i.e., αP (u′, c′)β redn−−−→ αPP ′β. From the second
reduction we have c = Eu and ε 6= α 6∈ Π∗#. Now from these and the fact that Condi-
tion (C2.3)(ii) holds, we can conclude that the second reduction is applicable after the first,

i.e., α(u, c)P ′β redn−−−→ αPP ′β. ut
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Using the above lemma we can conclude that, from any state α after any maximal sequence

of reductions, we reach the same state which we denote by Red(α). Note that if α
redn−−−→ α′, then

EProc(α) = EProc(α′) and therefore, EProc(α) = EProc(Red(α)). In fact, from confluence,
we derive some useful properties of the reduction operation,

(P1) Red(α1#α2) = Red(α1)#Red(α2).
(P2) Red(α1α2) = Red(Red(α1)α2) = Red(α1Red(α2)) = Red(Red(α1)Red(α2))
(P3) Let α = α1(u, c)α2 be such that this (u, c) (given by its occurence α1(u, c)) cannot

be reduced in α, i.e., Rule (R2) cannot be applied. Then Red(α) = γ1(u, c)γ2 where
γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2).

Proof. The first two properties are self-evident. For the third, using Remark 1 we deduce that
(u, c) is not deleted during the reductions. Now, let γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 =
Red((u, c)α2). Then applying Property (P2) twice on α, we obtain Red(α1(u, c)α2) =
Red(Red(α1(u, c))α2) = Red(γ1(u, c)α2) = Red(γ1Red((u, c)α2)) = Red(γ1(u, c)γ2). Now
since γ1(u, c) and (u, c)γ2 are already in reduced form and (u, c) cannot be deleted in Red(α),
we obtain Red(γ1(u, c)γ2) = γ1(u, c)γ2. ut

The set of final states of Cfin
G are states of the form (., ∅)P (/, ∅) where P ⊆ Proc.

In the definition of a transition of Cfin
G we replace the final condition (T3) with the following

condition:

(T3’) α′ = Red(β1(u, c
′)β2) where c′ = c ] {e}.

Now, if we maintain the rest of the definition of a transition of Cfin
G to be the same as a

transition of C#G , we can prove that Cfin
G is a finite MSC-ECA which accepts the same timed

language as C#G . We can also observe that in all reachable states of Cfin
G , Properties (V1), (V2)

and (V3) continue to hold.

Lemma 5. If G is locally synchronized, then Cfin
G as defined above is a finite MSC-ECA.

Proof. We show that if G is locally synchronized, then the number of states of Cfin
G is finite.

For this, it is enough to show that the length of each reachable, completable state of Cfin
G is

bounded. Note that by definition in every state in every extended node there is at least one
executed event. We begin with some properties about a loop in a state which follow from the
locally synchronized assumption.

Claim. Let α(u, c)β(u, c′)γ be a valid completable state of Cfin
G . If (u, c)β is not completely

executed or if # occurs in β, then we have EProc((u, c′)γ) ( EProc((u, c)β(u, c′)γ).

Proof. Let e ∈ c such that e ∈ Eup for some p ∈ Proc. Since α(u, c)β(u, c′)γ is completable,
for each occurence of # in β, there exists u1 · · ·un ∈ V ∗ in G such that if we replace the #
by (u1, ∅) · · · (un, ∅), then we obtain a path β′ such that α(u, c)β′(u, c′)γ is a valid state.

Now, we can write (u, c)β′ = β1(v, c
′′)β2 with c′′ ( Ev. This follows, since either there is

a # in β, and so for any node (v, c′′) on the path inserted we have c′′ = ∅, or else β′ = β and
by assumption (u, c)β is not completely executed. Now, let e′ ∈ (Ev \ c′′) such that e ∈ Evp′
for some p′.

Consider the path β̂′ in G, obtained by restricting β′ to its first component. Now, as G

is locally synchronized, in the communication graph of Muβ̂′ there exists a path from p′ to
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p. Then let this path be p′ = p0 → p1 → · · · → pn = p for some n ≥ 1. We call a process q
good if there is an executed event and an unexecuted event on q in (u, c)β′. If q is good, then
q ∈ (EProc((u, c)β′) \ EProc((u, c′)γ)). We will now show that there is some good process
q ∈ {p0, . . . , pn}.

Suppose, pn = p has an unexecuted event in (u, c)β′ then it is good and we are done.
Otherwise, p must have completed its events in (u, c)β′ and so it must have received a message
from pn−1. Therefore, pn−1 has also taken part in (u, c)β′ since it must have sent the message
that was received by pn. Now if pn−1 has another event in (u, c)β′ which is unexecuted, then it
is good and again we are done. Otherwise, we repeat this argument till we reach an executed
event in p0 = p′. But this implies that p′ is good and so we are done. ut

Claim. If α(u, c)β(u, c′)γ is a valid state such that (u, c)β(u, c′) is completely executed and β
has no #, then α = α′#.

Proof. Since (u, c)β(u, c′) is completely executed, the first occurence of node u, i.e., (u, c)
would have been deleted unless α = α′# or β = #β′. But since β does not contain # the
latter case is not possible and so we are done. ut

From the above claim we can conclude that after every two occurences of node u in a
path, there must exist a # or the segment is not completely executed. Then, along with the
previous claim this implies that we can bound the number of occurences of a node u in a path
by 2|Proc|. From which we can conclude that we have a bound of (2|Proc|)|V | on the number
of extended nodes in a path. But we know that each # or P ⊆ Proc must have a node u ∈ V
next to it on the left, so we can conclude that the length of the path is O(|Proc||V |). Thus

Cfin
G is finite. ut

Now, we will show that the timed language accepted by Cfin
G is the same as the timed

language accepted by C#G . We will accomplish this by defining a bisimulation between the

states of the abstract automata C#G and Cfin
G . From this, we can conclude that their timed

languages coincide. We define the relation ; between states of C#G and Cfin
G :

α; β if β = Red(α) (8)

Now, we have the lemma,

Lemma 6. ; is a bisimulation on abstract automata C#G and Cfin
G

Proof. Let α be a state of C#G and β a state of Cfin
G such that α; β, i.e., β = Red(α).

(=⇒) In one direction we start from a move α
ϕ,a−−→ α′ in C#G and show that there is a move

β
ϕ,a−−→ β′ in Cfin

G , where β′ = Red(α′). There are two broad cases to consider depending on

whether the transition in C#G extends the path or not.

– Suppose the path is extended. Then, we have α = α1#α2
u−→ α′1(u, ∅)α′2 = α′′ where

α′1 ∈ {α1, α1#} and α′2 ∈ {α2,#α2}. Also, there exists an extended event (e, α′1(u, ∅))
enabled in α′′ such that α′ = α′1(u, c

′)α′2 where c′ = {e}. Then, we observe that

1. we can write β = β1#β2 where β1 = Red(α1) and β2 = Red(α2). This follows by
Property (P1).

20



2. we have β1#β2
u−→ β′1(u, ∅)β′2 = β′′ where β′1 ∈ {β1, β1#} and β′2 ∈ {β2,#β2}. Further

β′1 = β1 if and only if α′1 = α1 and β′2 = β2 if and only if α′2 = α2. The existence of

this node insertion move follows from the node insertion in C#G above since we have
OProc(u) ∩EProc(α2) = ∅, which implies that OProc(u) ∩EProc(β2) = ∅ (since β2 =
Red(α2)). Notice that we also have for i ∈ {1, 2}, β′i = Red(α′i) since βi = Red(αi).

3. (e, β′1(u, ∅)) is enabled in β′′. Indeed, Conditions (E1), (E2) hold since they hold for
(e, α′1(u, ∅)). And if there exists (ê, β̂(û, ĉ)) such that e, ê are on the same process,
β̂(û, ĉ) � β′1 = Red(α′1) and ê 6∈ ĉ, then β̂′(û, ĉ) � α′1 for some β̂′. This contradicts the
fact that (e, α′1(u, ∅)) is enabled in α′′. Therefore Condition (E3) holds as well.

Then by definition of a transition, we have β
ϕ′,a−−→ β′ = Red(β′1(u, {e})β′2) which executes

this enabled event in Cfin
G .

Now, we show that the same guard is used, i.e., ϕ′ = ϕ. For this, observe that ϕ = ϕedge

and ϕ′ = ϕ′edge since there are no local-constraints. Now ϕedge = (Y1
p ∈ I) for some

p ∈ Proc if and only if e = min(Eup ), α′1 = α1 = α′′1(u′, c′′), EdgeC ((u′, u), p) = I. But
now, the node u′ cannot be removed during the reduction of α since it is next to a #, so
we have β′1 = β1 = β′′1 (u′, c′′) which implies that we have the constraint ϕ′edge = (Y1

p ∈ I).
Finally, we will be done with this case if we show that Red(α′) = β′. We have β′ =
Red(β′1(u, c

′)β′2) = Red(Red(α′1)(u, c
′)Red(α′2)). But by Property (P2) this is equal to

Red(α′1(u, c
′)α′2) = Red(α′) and so we are done.

– Else, it was not extended then there exists an enabled event (e, α1(u, c)) in α which

is executed in the transition α
ϕ,a−−→ α′, where α = α1(u, c)α2, α

′ = α1(u, c
′)α2 with

c′ = c ] {e} and ϕ is defined by Equation (T2). Then (u, c) is not completely executed
and so it cannot be reduced in α. Thus by Property (P3), β = Red(α) = γ1(u, c)γ2, where
γ1(u, c) = Red(α1(u, c)) and (u, c)γ2 = Red((u, c)α2). Now, (e, γ1(u, c)) is enabled in β,
since (e, α1(u, c)) was enabled in α, and Conditions (E1),(E2) and Condition (E3) follow
as in the previous case. That is, if there exists (ê, β̂(û, ĉ)) such that β̂(û, ĉ) � γ1, then
β̂′(û, ĉ) � α1 for some β̂′.

Thus, there exists a transition β
ϕ′,a−−→ β′ that executes (e, γ1(u, c)) in Cfin

G . Again we check
that ϕ′ = ϕ. This follows as in the previous case except that we also need to check local
constraints in ϕ′. But as the guards are local to the node (u, c) which is not deleted in β,
this follows directly from the definition.
It remains to show that Red(α′) = β′. Since α′ = α1(u, c

′)α2 is such that c ( c′ ⊆ Eu,
we have Red(α′) = Red(α1(u, c

′)α2) = Red(γ1(u, c
′)γ2) = β′. This follows because, every

reduction that can be performed on α can be performed on α′ and so performing a maximal
sequence of reductions on α′ is equivalent to performing all the reductions on α and then
again perhaps performing a few more if the resulting state is not fully reduced (due to
events in (c′ \ c)).

(⇐=) For the other direction, the result follows by observing that the enabled event that

gets executed in the infinite system C#G is obtained from the corresponding event in the finite

system Cfin
G . More formally, we assume that β

ϕ,a−−→ β′ is a transition in Cfin
G and show that

there is a transition α
ϕ,a−−→ α′ in C#G .

Let the transition in Cfin
G execute the event (e, β1(u, c)) enabled in β = β1(u, c)β2. Indeed

there is another case where the executed event is not in β and so we need to perform a node
insertion before we obtain the enabled event. But as this case follows by the same arguments
(and is in fact simpler due to presence of #), we only consider the first case.
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Let α1(u, c
′′) be the least prefix of α such that e 6∈ c′′. Then (u, c′′) is not removed by the

reduction operation. Since β = Red(α) and (e, β1(u, c)) is enabled in β, we deduce from (E3)
that c′′ = c and Red(α1(u, c)) = β1(u, c). Now we claim that (e, α1(u, c)) is enabled in α.
Conditions (E1),(E2) hold since they hold for (e, β1(u, c)). Suppose Condition (E3) did not
hold, then for p ∈ Proc such that e ∈ Eup , there exists an event (e′, α̂1(v, c

′)) with e′ ∈ (Evp \c′)
and α̂1(v, c

′) � α1. Again, Red(α̂1(v, c
′)) = β̂1(v, c

′) ≺ β1 (since (v, c′) cannot be removed by
reductions). But then e′ ∈ (Evp \ c′) is a contradiction of Condition (E3) on (e, β1(u, c)). Thus
all the conditions hold and (e, α1(u, c)) is enabled in α.

Thus, we can conclude that there is a transition that executes (e, α1(u, c)) in C#G , i.e.,

α
ϕ′,a−−→ α′. The fact that ϕ′ = ϕ and β′ = Red(α′) follows exactly as in the previous direction

so we are done. ut

Corollary 3. Ltw (Cfin
G ) = Ltw (C#G )

Proof. From the above bisimulation at the symbolic level of paths, we deduce easily that the
timed language of C#G is equal to the timed language of Cfin

G . ut

Proof. (of Theorem 1) Given a locally synchronized TCMSG G, consider the finite MSC-

ECA Cfin
G . Then, by using the above corollary, Lemma 3 and Lemma 2, we conclude that

Ltw (Cfin
G ) = Ltw (G). ut

5 Solving the model checking problem

Now, we are in a position to solve the model checking problem.

Theorem 2. For a locally synchronized TCMSG G and a timed automaton A, the model
checking problem Ltw (A) ⊆ Ltw (G) is decidable, i.e., it is decidable to check if for all timed
words σ generated by A there exists some M specified by G such that σ is a linearisation of
a TMSC T which realises M.

Proof. We have to prove that Ltw (A)∩(TWAct \Ltw (G)) = ∅. By Theorem 1 we can construct
an MSC-ECA C such that Ltw (C) = Ltw (G). Using the complementation construction of
Section 3.1 we can build a deterministic and complete MSC-ECA C′ = Cuniv2 such that by
Corollary 1 we have Ltw (C′) = TWAct \ Ltw (C) = TWAct \ Ltw (G).

Since G is locally synchronized, there is a bound B > 0 such that each timed word
σ ∈ Ltw (G) is wwf and B-bounded: Ltw (G) ⊆ TWB,wf

Act . Consider the timed automaton BBC′
associated with C′ and the bound B by the construction of Section 3.2. For final states of
BBC′ we choose F ′ ∪ F ′′ as defined in Proposition 1. We get Ltw (BBC′) = (TWAct \ TWB,wf

Act ) ∪
(Ltw (C′) ∩TWB,wf

Act ) = (TWAct \TWB,wf
Act ) ∪ (TWB,wf

Act \ Ltw (G)). Using Ltw (G) ⊆ TWB,wf
Act we

deduce Ltw (BBC′) = TWAct \ Ltw (G).
Hence, the model checking problem is reduced to checking emptiness of the intersection

of two timed automata, A and BBC′ , which is indeed decidable. ut
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