
SoS Endterm Report 2022

Abstract Algebra

Mentor- Shantanu Nene

Mentee- Ameya Deshmukh (210050011)



Contents

1 Abstract and Preliminaries 1
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Set Theory, Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Properties of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.4 Z/nZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Introduction to Group Theory 4
2.1 Basic Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Direct Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Basic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Dihedral Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Generators and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Symmetric Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Cycle Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 The Quaternion Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Homomorphisms and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Subgroups 13
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Centralizers and Normalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Stabilizers, Kernels of Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Cyclic groups and Cyclic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Subgroups generated by subsets of a group . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Quotient Groups and Homomorphisms 20
4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Chapter 1

Abstract and Preliminaries

1.1 Abstract

Abstract algebra is the branch of Mathematics that deals with certain algebraic structures, eg. Groups,
Rings, Fields, Vector Spaces etc.

Studying these abstract objects with well-defined properties leads to useful applications of specific
examples of these structures.

Example. Consider the Fermat’s Little theorem: if p is a prime, then for any a ∈ Z not divisible by p,
ap−1 − 1 is divisible by p.

This result in number theory emerges on considering a non-trivial, general property for only an example
of the algebraic structure, ‘Group’, which is (Z/pZ)×.

1.2 Preliminaries

As part of reading Abstract Algebra, it was necessary to revise the following basics:

1.2.1 Set Theory, Functions

� A×B = {(a, b) | a ∈ A, b ∈ B} is the Cartesian Product of 2 sets

� A function is equivalent to a well-defined, unambiguous map between 2 sets, A,B.

� range(f)/image(f) = f(A) = {b ∈ B | b = f(a) for some a ∈ A}

� for C ⊂ B, f−1(C) = {a ∈ A | f(a) ∈ C}

� If f : A → B and g : B → C, then their composition is another function g ◦ f : A → C, and
(g ◦ f)(a) = g(f(a))

� A function f : A→ B is called:

– Injective if f(a1) = f(a2) =⇒ a1 = a2

– Surjective if range(f) = B

– Bijective if f is both injective and surjective

� f : A→ B has a left-inverse, if ∃ a function, g : B → A such that g ◦ f is the identity map on A

Remark. f is injective ⇐⇒ f has a left-inverse
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� f : A→ B has a right-inverse, if ∃ a function, g : B → A such that f ◦ g is the identity map on
B

Remark. f is surjective ⇐⇒ f has a right-inverse

� A permutation of a set A is a bijective function, f : A→ A

1.2.2 Relations

� A relation R, on a set A is a subset of A×A

� if (a, b) ∈ R then a ∼ b

� A relation R is called:

– Reflexive if a ∼ a ∀a ∈ A
– Symmetric if a ∼ b =⇒ b ∼ a ∀a, b ∈ A
– Transitive if a ∼ b, b ∼ c =⇒ a ∼ c ∀a, b, c ∈ A
– An equivalence relation if R is reflexive, symmetric and transitive

� A partition of a set A is any collection of disjoint subsets of A, whose union is A.

partition(A) = {Ai|i ∈ I}, Ai ∩Aj = ∅, ∪i∈IAi = A

Equivalence relations on a set A are in bijective correspondence with partitions of A.

The subsets of the partition corresponding to an equivalence relation R are its equivalence classes,
which are the sets of all elements which are related to each other.

1.2.3 Properties of Integers

� For a, b ∈ Z− {0}, ∃ a unique d ∈ Z− {0} such that, d|a, d|b and e|a, e|b =⇒ e|d.

d is called the greatest common divisor of a, b and denoted by (a, b).

� For a, b ∈ Z− {0}, ∃ a unique l ∈ Z− {0} such that, a|l, b|l and a|m, b|m =⇒ l|m.

l is called the least common multiple of a, b.

� The Division Algorithm: for a, b ∈ Z− {0}, ∃ unique q, r ∈ Z such that

a = q · b+ r, 0 ≤ r < |b|

The Euclidean Algorithm applies the Division algorithm repeatedly to get the g.c.d. of any two
non-zero integers:

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2

...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn + 0

Here, there will always be a 0 remainder at some point ∵ the series |b| > |r0| > |r1| . . . is a strictly
decreasing sequence of positive integers.

Also, from the algorithm, it is clear that rn|rn−1 =⇒ rn|rn−2, rn|rn−1, rn−2 =⇒ rn|rn−2, rn−3

. . . rn|r2, r1 =⇒ rn|r1, r0 =⇒ rn|r0, b =⇒ rn|b, a.
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Moreover, starting from rn−1 in rn = rn−2 − qnrn−1, substituting each ri as a linear combination
of ri−1, ri−2, we get to the following important result:

rn = ax+ by, x, y ∈ Z

From here, it follows that e|a, e|b =⇒ e|d.

Hence, rn = (a, b).

� The Fundamental theorem of Arithmetic: The prime factorization of n ∈ Z, n > 1 is unique.

� The Euler ϕ function: ϕ(n) for n ∈ Z+ is the number of positive integers a ≤ n, such that
(a, n) = 1. If the prime factors of n are {p1, p2 . . . ps−1, ps} then:

ϕ(n) = n

i=s∏
i=1

(
1− 1

pi

)

1.2.4 Z/nZ
� Z/nZ denotes the set of the equivalence classes created due to the equivalence relation:

a ∼ b ⇐⇒ n|(a− b), this is also denoted by a ≡ b mod n

ā denotes the equivalence/congruence/residue class of a mod n.

� Modular Arithmetic: Under the above relation on the integers, we can construct some well
defined operations on the residue classes.

ā+ b̄ = a+ b āb̄ = ab

� (Z/nZ)×: this set consists of those equivalence classes that have a multiplicative inverse.

(Z/nZ)× = {ā ∈ Z/nZ| ∃ c̄ ∈ Z/nZ such that āc̄ = 1}

Proposition. ā ∈ (Z/nZ)× ⇐⇒ (a, n) = 1

Proof. Assume that (a, n) 6= 1, in that case b̄ = n
(a,n) 6= 0̄. Now, āb̄ = a

(a,n)n = 0̄. If ∃ c̄ ∈ Z/nZ,

such that c̄ā = 1̄ then, c̄āb̄ = b̄ and c̄āb̄ = c̄0̄ = 0̄ which is a contradiction. For the converse, we can
directly use that (a, n) = 1 =⇒ ∃ x, y ∈ Z such that ax+ ny = 1 =⇒ āx̄ = 1̄.
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Chapter 2

Introduction to Group Theory

2.1 Basic Axioms

In order to understand what a group is, we first need to understand what a binary operation is.

Definition 2.1 (Binary Operation). A Binary Operation ∗ is a function, ∗ : G×G→ G, where G is
a set. ∗(a, b) is often denoted as a ∗ b.

An operation is said to be:

� Associative, if ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

� a, b ∈ G commute under ∗ if a ∗ b = b ∗ a.

� If all pairs of elements in G commute, then ∗ is said to be commutative.

Some examples of operations are:

� The earlier defined addition and multiplication on residue classes mod n are commutative and
associative operations on the set Z/nZ.

� The usual cross product × on R3 is a non-commutative and non-associative operation. But an
arbitrary ~v and λ~v commute under ×.

� An operation ∗ defined on Z as a ∗ b = 5(a+ b) is commutative but not associative ∵
(a ∗ b) ∗ c = 5(5(a+ b) + c) = 25a+ 25b+ 5c and a ∗ (b ∗ c) = 5(a+ 5(b+ c)) = 5a+ 25b+ 25c.

� Matrix multiplication defined in the usual sense on the set of all n × n matrices is an associative
but non-commutative operation.

Now, we can define the algebraic structure which will be the focus of our study. It only needs to satisfy
the following few conditions, but they give rise to the many interesting properties of groups.

Definition 2.2 (Group). A Group is an ordered pair of a set and a binary operation on the set, (G, ∗),
where the following axioms hold:

� ∗ is associative.

� ∃ an element e ∈ G such that a ∗ e = e ∗ a = a ∀a ∈ G. e is called the identity.

� ∀ a ∈ G∃ an element denoted as a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e. a−1 is called the inverse
of a.
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Remark. If the operation of a group is commutative over the group’s set, we call it an abelian group.

Note that we take the associativity of the usual ‘+’ and ‘×’ operations on Z,Q,R,C as a given here.
Some examples of groups are

� (Z/nZ,+). In this group e = 0̄ and ā−1 = −a

� (Q− 0,×), (R− 0,×), (C− 0,×), for all e = 1 and a−1 = 1
a

� ((Z/nZ)×,×)). In this group e = 1̄ and the existence of the inverse is guaranteed by the definition
of the set.

2.1.1 Direct Product

Like the Cartesian product of 2 sets produced another set, the direct product allows us to create a new
group from 2 groups.

Given (A, ?) and (B, �), (A×B, ∗) is called their direct product where:

(a1, b1) ∗ (a2, b2) = (a1 ? a2, b1 � b2) ∀ (a1, b1), (a2, b2) ∈ A×B

The closure and associative properties of this new component-wise operation follow due to the same
properties of ? and �.

For the direct product, e = (e1, e2) where e1, e2 are the identities of (A, ?), (B, �) respectively.
Also, (a, b)−1 = (a−1, b−1).

2.1.2 Basic Results

Consider the following for a group (G, ∗)

Proposition. The identity of a group is unique.

Proof. If there are 2 identities in a group e1, e2 then by the identity axiom. e1 ∗ e2 = e2

∵ an identity satifies e ∗ a = a ∗ e = a ∀a ∈ G. But e1 ∗ e2 = e1 by the same axiom.
Hence e1 = e2.

Proposition. The inverse of a ∈ G is unique.

Proof. If 2 elements b1, b2 of G satisfy the inverse axiom for a, then

a ∗ b1 = e

b2 ∗ (a ∗ b1) = b2 ∗ e
(b2 ∗ a) ∗ b1 = b2

e ∗ b1 = b2

Hence b1 = b2.

Proposition. (a−1)−1 = a and (a ∗ b)−1 = b−1 ∗ a−1

Proof. Follows from the definition of an inverse.
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Proposition. The Generalized Associative Law : for a1, a2, . . . , an ∈ G, the value of a1 ∗ a2 ∗ . . . ∗ an is
independent of how it is bracketed.

Proof. For ease of notation consider the following recursive definition of some functions:

∗1 : G→ G, ∗1(a) = a ∀a ∈ G
∗n+1 : Gn+1 → G, ∗n+1(a1, a2, . . . , an, an+1) = ∗n(a1, a2, . . . , an) ∗ an+1 ∀n ≥ 1

Remark. The ∗n defined here is the same as (((. . . ((a1) ∗ a2) . . .) ∗ an−1) ∗ an)

We need to prove the following claim:

∀m,n ∈ N
∗m+n (a1, a2, . . . , am+n) = (∗m(a1, a2, . . . , am)) ∗ (∗n(am+1, . . . , am+n))

∵ any valid bracketing is the same as breaking the arguments of the function at some point recursively.
We proceed by induction on n. The base case for n = 1 is true trivially by the definition of ∗m.

Assume that the result is true for some n− 1 and all m ∈ N

∴ ∀m ∈ N
∗m+n(a1, a2, . . . , am+n) = (∗m+n−1(a1, a2, . . . , am+n−1)) ∗ am+n

=
(
(∗m(a1, a2, . . . , am)) ∗ (∗n−1(am+1, . . . , am+n−1))

)
∗ am+n

= ∗m(a1, a2, . . . , am) ∗ (∗n−1(am+1, . . . , am+n−1) ∗ am+n) ∵ ∗ is associative

= (∗m(a1, a2, . . . , am)) ∗ (∗n(am+1, . . . , am+n))

Notation:

� From here on, instead of using a symbol for the group operation, the function will be represented
only as the arguments written in order

a ∗ b −→ ab

Moreover, the identity will be written as ‘1’.

� For x ∈ G and n ∈ Z, xxx . . . x (n times) will be denoted by xn, with x0 = 1 = the identity of the
group.

Proposition. Let G be a group, then for a, u, v ∈ G:

au = av or ua = va =⇒ u = v

ua = 1 or au = 1 =⇒ u = a−1

ua = a or au = a =⇒ u = 1

Proof. The first statement follows from the uniqueness of the inverse while the other 2 are special cases
of the same.
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Definition 2.3. For a group G and x ∈ G, the order of x is the smallest positive integer n such that
xn = 1 = the identity of G. n is denoted by |x|. If no such n exists, then x is said to be of infinite order.

Some examples are:

� in Z/10Z under addition, the order of the element 4̄ is 5. Since, 4̄1 = 4̄, 4̄2 = 4̄ + 4̄ = 8̄, 4̄3 = 12 = 2̄,
4̄4 = 6̄, 4̄5 = 10 = 0̄ = e.

� In the group C− {0} under multiplication, the order of −1 is 2, ∵ (−1)2 = −1×−1 = 1 = e. The
order of 1 is 1, while the order of i is 4. For z in C if the magnitude of z 6= 1, then it will be of
infinite order.

Exercise 1. For a group G, a, b ∈ G, prove that |ab| = |ba|

Solution.
We first show that for x, g ∈ G, |x| = |g−1xg|.
(g−1xg)k = g−1xkg ≡ xk = g((g−1xg)k)g−1

Thus, xk = 1 ⇐⇒ (g−1xg)k = 1 =⇒ |x| = |g−1xg|
But, we have that ba = a−1(ab)a =⇒ |ab| = |ba|.

Exercise 2. For x ∈ a group G, show that if x has a finite order, then |x| ≤ |G|

Solution.
Let |x| = n, then consider the elements in the set S = {1, x, x2, . . . , xn−1}.
All these will be distinct elements of G, since if xi = xj with 0 ≤ i < j ≤ n− 1, then xj−i = 1, with

j − i < n = |x| which contradicts the definition of the order of an element.
Hence, |G| ≥ |S| = n = |x|.

2.2 Dihedral Groups

We now consider a family of groups that is very useful. Dihedral groups are used to represent the
symmetries of the simplest geometric objects, regular planar figures.

A symmetry of an object is a rigid motion of the object, after which we can still entirely cover the
original object.

For regular n-gons, an easy way to think about a specific symmetry is to label and track its vertices.
If we do this, then a symmetry s is bijectively connected to σ, a permutation of the labels of its vertices,
{1, 2, 3, . . . , n− 1, n}.

In order to make the set of symmetries a group we need an operation. We choose it to be function
composition.

So, for symmetries s, t which effect the permutations σ, τ , we define st to be the symmetry which is
the result of the rigid motion of t followed by that of s, or equivalently, the symmetry which effects the
permutation σ ◦ τ .

The identity of the group is chosen to be the symmetry which does nothing to the n-gon, and the
inverse of s ≡ σ is the ‘reverse’ rigid motion, that is s−1 ≡ σ−1.

We denote this group of symmetries of an n-gon by D2n. The naming becomes apparent if we consider
|D2n|.

Consider the n-gon after we perform a symmetry on it. The vertex labelled 1 can now be on any of
the n vertices. Moreover we have 2 choices to decide the location of its adjacent vertex 2. Once we fix
the location of those 2 adjacent points, we have completely described the action of the symmetry on all
vertices.

Hence, |D2n| = n · 2 = 2n.
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2.3 Generators and Relations

We motivate the important concept of generators and relations through the above defined Dihedral groups.
Consider the symmetries r, s ∈ D2n defined as follows:
r rotates the n-gon by 2π

n anti-clockwise.
s flips the n-gon about the line joining the center and the original position of vertex 1.
Some obvious properties of these symmetries are:

� |r| = n, |s| = 2, sri 6= srj ∀ 0 ≤ i, j ≤ n− 1

� rs = sr−1, ris = sr−i

� D2n = {1, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}

Thus, all the group’s elements can be written as finite products of r and s.

Definition 2.4. A subset S of elements of a group G with the property that every element of G can be
written as a finite product of elements of S and their inverses is called a set of generators of G.

We shall indicate this notationally by writing G = 〈S〉 and say G is generated by S or S generates G.

eg. D2n = 〈r, s〉, Z = 〈1〉
Relations are any equations in G that the elements of S satisfy.
A presentation of a group is its generators combined with a collection of relations such that any relation

can be deduced from the collection.

G = 〈S | R1, R2, . . . , Rm〉

eg. D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉
We must however be careful with presentations since the relations given may create some hidden

equalities.
eg. Consider the presentation G = 〈u, v | u4 = v3 = 1, uv = v2u2〉
uv2 = (uv)v = v2u2v = v2u(uv) = v2u(v2u2) = v2(uv2)u2.
Thus, letting uv2 ∈ G be w gives us w = v2wu2, hence v2wu2 = v4wu4 =⇒ w = v4wu4 = vw
This leads to the hidden equality, v = 1, which again leads to u = u2 =⇒ u = 1.
Using the definition of generators, we conclude that G = {1}.

2.4 Symmetric Groups

Definition 2.5. Let Ω be any nonempty set and let SΩ be the set of all bijections from Ω to itself (i.e.,
the set of all permutations of Ω). The set SΩ is a group under function composition: ◦.

The satisfiability of the group axioms follows due to the bijectivity of permutations. We can also note
that |SΩ| = |Ω|!.

The special case of the group when Ω = {1, 2, . . . , n} is denoted by Sn, the symmetric group of degree
n.

2.4.1 Cycle Decomposition Algorithm

Definition 2.6. A cycle is a string of integers which represents the element of Sn, which cyclically
permutes these integers (and fixes all other integers). i.e. (a1a2 . . . am) sends ai to ai+1 for all 1 ≤ i < m
and sends am to a1.

It is intuitively clear that any permutation is a product of cycles.
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To decompose a given permutation, σ, into disjoint cycles, there is an algorithm.

The Cycle Decomposition Algorithm

a. Choose the smallest number in (1, 2, . . . , n) that hasn’t appeared in a previous cycle. Call it a.
(a = 1 if no previous cycles defined)

Begin the new cycle: (a
b← σ(a)
b. do while b 6= a:

Add b to the cycle.
b← σ(b)

c. Here, b = a. Complete the cycle with a right parenthesis.
Return to a.

Conventionally, cycles of length 1 aren’t written.
eg. We represent σ ∈ S5 defined as: σ(1) = 2, σ(2) = 5, σ(3) = 4, σ(4) = 3, σ(5) = 1 as σ = (1 2 5)(3 4)
Using the cycle representation, we can obtain the same for a permutation’s inverse, by simply reversing

the order of the elements in each cycle.
It can be seen that:

� Sn is a non-abelian group (n ≥ 3). Consider σ ∈ S3 = (1 2) and τ ∈ S3 = (1 3)

σ ◦ τ = (1 2) ◦ (1 3) = (1 3 2) but τ ◦ σ = (1 3) ◦ (1 2) = (1 2 3).

� Disjoint cycles commute.

� Cyclically permuting the elements of a cycle doesn’t change the cycle.

� If σ = (a1a2 . . . am) =⇒ |σ| = m.

� If σ’s cycle decomposition is (a1,1a1,2 . . . a1,m1)(a2,1a2,2 . . . a2,m2) . . . (ak,1ak,2 . . . ak,mk
) then |σ| =

lcm(m1,m2, . . . ,mk).

2.5 The Quaternion Group

This is an important group which is isomorphic to some subsequent examples:

Q8 = {1,−1, i,−i, j,−j, k,−k}

And the group operation . is defined with the following relations:

1.a = a.1 = a (−1).a = a.(−1) = −a for all a ∈ Q8

(−1).(−1) = 1

i.i = j.j = k.k = −1

i.j = −k j.i = k

j.k = −i k.j = i

k.i = −j i.k = j

Q8 is clearly non-abelian.
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2.6 Homomorphisms and Isomorphisms

Definition 2.7. A homomorphism is a map between the sets of 2 groups, (G, ?) and (H, �), φ : G→ H
such that ∀x, y ∈ G:

φ(x ? y) = φ(x) � φ(y)

If the map φ is a bijection, then we call it an isomorphism.

eg. φ : R→ R+ defined as φ(x) = ex is an isomorphism from (R,+) to (R+,×), since φ(x+ y) = ex+y =
ex × ey = φ(x)× φ(y)

Some important points are:

� If φ is an isomorphism from G to H, then φ−1, which exists since φ is bijective, is an isomorphism
from H to G. This is denoted by G ∼= H.

�
∼= is an equivalence relation.

� G ∼= H =⇒

– |G| = |H|
– G is abelian ⇐⇒ H is abelian

– ∀x ∈ G |x| = |φ(x)|

� If A and B are sets then |A| = |B| ⇐⇒ SA ∼= SB .

Since ∼= is an equivalence relation, we can define isomorphism classes. One of the central problems in
mathematics is to determine what properties of a structure specifies its isomorphism class.

Theorems which specify such properties are known as classification theorems. eg:

any non-abelian group of order 6 ∼= S3

Aut(G) is defined to be the set of all isomorphisms from the group G to itself, called automorphisms.

Exercise 3. Prove that Aut(G) is a group under function composition.

Solution.
If φ and τ are 2 bijections G→ G, then so is φ ◦ τ .
∀x, y ∈ G

(φ ◦ τ)(xy) = φ(τ(x)τ(y)) = (φ ◦ τ)(x)(φ ◦ τ)(y)

where the first equality follows since τ is an automorphism.
Hence, φ, τ ∈ Aut(G) =⇒ φ ◦ τ ∈ Aut(G).
The identity of the group is clearly 1 : 1(g) = g ∀g ∈ G
And the inverses exist because of the bijectivity of the maps.
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Exercise 4. Let G be a finite group with an automorphism σ such that σ(g) = g ⇐⇒ g = 1. If σ2 is
the identity map, prove that G is abelian.

Solution.
First we consider the map φ : G→ G defined as

φ(x) = x−1σ(x)

Also, σ(x)σ(x−1) = 1 =⇒ (σ(x))−1 = σ(x−1).
To show that φ is a bijection:

x−1σ(x) = y−1σ(y)

=⇒ yx−1 = σ(y)(σ(x))−1

=⇒ yx−1 = σ(yx−1)

=⇒ yx−1 = 1

∴ y = x

Hence, φ(x) = φ(y) ⇐⇒ x = y. Thus, each element g ∈ G can be written as x−1σ(x) for some x ∈ G.
Now, consider σ(g) = σ(x−1σ(x)) = σ(x−1)σ2(x) = (σ(x))−1x = g−1

σ(g) = g−1 ∀g ∈ G
Therefore ∀a, b ∈ G :

σ2(ab) = σ(σ(ab))

=⇒ ab = σ(b−1a−1)

=⇒ ab = σ(b−1)σ(a−1)

=⇒ ab = ba

11



2.7 Group Actions

Definition 2.8. A group action of a group on a set A is a map: G × A → A denoted by g.a ∀g ∈
G, a ∈ A, such that:

� g1.(g2.a) = (g1g2).a ∀g1, g2 ∈ G, a ∈ A

� 1.a = a ∀a ∈ A

If we were to take a group action and then focus on some single g in G, then the map becomes A → A.
We denote it by σg, and σg(a) = g.a.

Proposition. σg is a permutation of the set acted upon, A, for all g ∈ G.

Proof. Consider σg−1 . For all a ∈ A

(σg−1 ◦ σg)(a) = σg−1(g.a)

= g−1.(g.a)

= (g−1g).a = 1.a = a Using the properties of a group action

Similarly, (σg ◦ σg−1)(a) = a for all a ∈ A.
Since, the map has a two-sided inverse, it is a bijection/permutation of A.

Proposition. The map, φ, from G to the symmetric group SA, g → σg is a homomorphism.

Proof. We need to show that φ(g1g2) is the same permutation as φ(g1) ◦ φ(g2).
For all a ∈ A:

φ(g1g2)(a) = (g1g2).a

= g1.(g2.a)

= σg1(σg2(a))

= (φ(g1) ◦ φ(g2))(a)

Thus, a group action can be represented by assigning a permutation of the set to each element of the
group, such that the permutations obey the group structure.

Some terms related to group actions are:

� The group action which sends each g ∈ G to the identity map of A is called the trivial action.

� If each element of the group induces a distinct permutation, then the action is said to be faithful.

� The kernel of an action is the set of elements of the group mapped to the identity permutation.

eg. The group action of D2n on the set {1, 2, . . . , n} defined by (α, i) → σα(i). This approach also leads
to the conclusion that D6

∼= S3, since the group action gives a homomorphism from D6 to S3, which will
also be injective since they have an equal number of elements.

12



Chapter 3

Subgroups

3.1 Basics

Looking at smaller parts of a mathematical object that also satisfy the same axioms is an important
technique. This is the motivation for the following definition:

Definition 3.1. A subgroup H of a group G is a non-empty subset of G which is closed under the group
operation and inverses, that is:

x, y ∈ H =⇒ xy, x−1 ∈ H

this is denoted by H ≤ G.

From the definition, it is clear that any subgroup contains the identity of the group and follows
associativity over the group operation.

eg. Z ≤ Q ≤ R, {1} ≤ G for all group and is called the trivial subgroup, {1, r, r2, . . . , rn−1} ≤ D2n.
A non-example: Z+ is not a valid subgroup of (Z,+), since it is not closed under taking inverses.

Proposition. The Subgroup Criterion: A subset H is a valid subgroup of G ⇐⇒ ∀x, y ∈ H, xy−1 ∈ H,
and H is non-empty.

Proof. The forward implication is obvious. For the converse:
Since H is non-empty, we can take x ∈ H =⇒ xx−1 = 1 ∈ H
1 ∈ H can be used to claim that x ∈ H =⇒ 1x−1 = x−1 ∈ H ∴ H is closed under inverse.
x, y ∈ H =⇒ x, y−1 ∈ H =⇒ x(y−1)−1 = xy ∈ H ∴ H is also closed under the group operation.
Hence, H is a subgroup of G.

Also, a finite subgroup can only contain elements of finite order due to being closed under multiplication
i.e. {x, x2, x3, . . .} has xa = xb for some a, b, b > a =⇒ xb−a = 1.

Exercise 5. The torsion subgroup. Let G be an abelian group. Prove that {g ∈ G | |g| < ∞} is a
subgroup of G.

Solution. 1 clearly belongs to the given set (name it H).
Let x, y ∈ H and |x| = n, |y| = m. Then, (xy)nm = xnmynm = 1 since G is abelian.
Hence, |xy| ≤ nm <∞ =⇒ xy ∈ H.
Also, x ∈ H, |x| = n =⇒ x−1 ∈ H ∵ |x−1| = |x| = n.
Therefore, H is non-empty and closed under multiplication and inverse =⇒ H is a subgroup of G.
The abelian nature of G was important here. Consider the non-example:

13



GL2(R) = {A|A is a 2× 2 matrix with entries from R and det(A) 6= 0}.

Consider the elements of G, A =

(
1 0
0 −1

)
, B =

(
1 1
0 −1

)
. A2 = B2 = I =⇒ |A| = |B| = 2 and

A,B ∈ H

Now consider C = AB =

(
1 1
0 1

)
= I +X where X =

(
0 1
0 0

)
, and X2 = 0

∴ Cn = (I +X)n = I + nX =

(
1 n
0 1

)
6= I for any n > 0 =⇒ |C| =∞ ∴ C /∈ H

Hence, H is not closed under multiplication and not a subgroup.

Exercise 6. Let H be a group acting on a set A. Prove that the relation ∼ on A defined as

a ∼ b ⇐⇒ a = h.b for some h ∈ H

is an equivalence relation.

Solution.
By the property of a group action 1.a = a =⇒ a ∼ a.
Also, if for some h ∈ H,h.a = b then

h−1.(h.a) = h−1.b

=⇒ (h−1h).a = 1.a = a = h−1.b

∴ b ∼ a =⇒ a ∼ b

If there are h1, h2 ∈ H such that a = h1.b and b = h2.c, then

a = h1.b = h1.(h2.c) = (h1h2).c

∴ a ∼ b, b ∼ c =⇒ a ∼ c

Hence, we can conclude that ∼ is an equivalence relation.
For each x ∈ A, the equivalence class of x under ∼ is called the orbit of x under the action.

Exercise 7. Let H be a subgroup of the finite group G. Let H act on G by left multiplication, i.e.
h.g : H × G → G is defined as h.g = hg for all h ∈ H, g ∈ G. Let x ∈ G and let Ox be the orbit of x
under this action. Prove that the map, φx

H → Ox defined as h 7→ hx

is a bijection.

Solution.
If φx(h1) = φx(h2) then h1x = h2x =⇒ h1 = h2. φx is injective.
Also, for each a ∈ Ox, by definition of an orbit, there is some h ∈ H such that a = h.x = hx. φx is

surjective.
Hence, we can conclude that φx is a bijection.
This gives us that |H| = |Ox|.
We also know that the orbits of the set acted upon partition it, since they are equivalence classes.
This leads to:

Theorem 1 (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G then |H| divides |G|.
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3.2 Centralizers and Normalizers

Let A be a non-empty subset of the group G.

Definition 3.2. Let CG(A) = {g ∈ G | gag−1 = a for all a ∈ A}. This subset of G is called the
centralizer of A in G.

∵ gag−1 = a =⇒ ga = ag, the centralizer can also be defined as the set of elements of G that
commute with all the elements of A.

Proposition. CG(A) is a subgroup of G.

Proof. The identity commutes with all the elements by definition, so 1 ∈ CG(A).
Let x, y ∈ CG(A), then for all a ∈ A

xya = xay = axy since x, y commute with a

=⇒ xy ∈ CG(A)

x−1a = (xa−1)−1 = ax−1

=⇒ x−1 ∈ CG(A)

Hence, CG(A) is a subgroup.

The center of G denoted by Z(G) is defined as CG(G).

Definition 3.3. Define gAg−1 as {gag−1 | a ∈ A}. Then the normalizer of A is defined as the set
NG(A) = {g ∈ G | gAg−1 = A}.

This is a generalization of the centralizer since it doesn’t require g to commute with all the elements
of the set. CG(A) ≤ NG(A).

If G is abelian, then for any A ⊂ G, NG(A) = CG(A) = G.
eg. Consider A = {1, r, r2, r3} ⊂ D8.

To compute CD8
(A), we first consider the fact that all powers of r commute with each other, hence

1, r, r2, r3 ∈ CD8
(A).

Next consider s. sr = r−1s 6= rs, hence s /∈ CD8(A). Since, CD8(A) is a subgroup of D8, if any
element of the form sri ∈ CD8(A), then srir−i = s also would be in CD8(A), which isn’t possible.

Hence, CD8
(A) = {1, r, r2, r3} = A

To compute ND8(A), we know that A ∈ ND8(A), so we proceed to check s.
sAs−1 = {s1s−1, srs−1, sr2s−1, sr3s−1} = {1, r−1, r−2, r−3} = {1, r3, r2, r} = A
Hence, s ∈ ND8

(A). Since ND8
(A) is a subgroup, and closed under multiplication, all elements of the

form srj also ∈ ND8
(A). ND8

(A) = D8.
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3.3 Stabilizers, Kernels of Group Actions

These concepts deal with inferring the structure of a group based on the sets it acts on.

Definition 3.4. If G is a group which acts on a set S, then the stabilizer of s ∈ S is the set

Gs = {g ∈ G | g.s = s}

From the property of a group action, 1 ∈ Gs.
Also, if y ∈ Gs, then y−1.s = y−1.(y.s) = (y−1y)s = s =⇒ y−1 ∈ Gs
if x, y ∈ Gs, then (xy).s = x.(y.s) = x.s = s =⇒ xy ∈ Gs
Hence, Gs is a subgroup of G.

We can also show that the kernel of a group action is a subgroup:
1.s = s for all s ∈ S, so 1 ∈ the kernel.
x.s = s for all s ∈ S =⇒ x−1.s = x−1.(x.s) = s for all s ∈ S, hence, x−1 ∈ the kernel.
x.s = y.s = s for all s ∈ S =⇒ (xy).s = x.(y.s) = x.s = s for all s ∈ S, hence, xy ∈ the kernel.

The following example provides some geometric intuition for these concepts for the case of D8.
Consider the set A = {{1, 3}, {2, 4}} of the unordered pairs of the opposite vertices of a square.
D8 acts on A:
Let a = {1, 3}, b = {2, 4}
As can be geometrically seen, (1, r2, s, sr2) send a, b to themselves, while (r, r3, sr, sr3) send a to b,

and b to a.
From here, we can confirm that:
g1.(g2.x) = (g1g2).x for all g1, g2 ∈ D8, x ∈ A.
And, the stabilizer for both a and b is (the subgroup) {1, r2, s, sr2}, which is also the kernel for the

group action.

Now, we show that CG(A), NG(A) being subgroups of G is a special case of the stabilizer and kernel
being subgroups.

Consider the power set of the group, S = P(G), and let G act on S by conjugation, i.e. for g ∈ G,B ∈ S

g.B = gBg−1 = {gbg−1 | b ∈ B} ∈ S

Now, for any A ∈ S, NG(A) is the stabilizer of A under this action, which is a subgroup of G.
Now, let NG(A) act on the set A by conjugation, i.e. for g ∈ NG(A), a ∈ A:

g.a = gag−1

Here, CG(A) is precisely the kernel of the above action, hence CG(A) ≤ NG(A) ≤ G.
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3.4 Cyclic groups and Cyclic subgroups

Definition 3.5. A group H is cyclic if it can be generated by a single element ∈ H. i.e. H = {xn|n ∈ Z}.
This is denoted by H = 〈x〉.

It can be noted that a cyclic group is necessarily abelian.

Proposition. If H = 〈x〉, then |H| = |x|. Specifically,

1. if |H| = n <∞, then xn = 1 and 1, x, x2, . . . , xn−1 are all distinct elements of H.

2. if |H| =∞, then xn 6= 1 for any n 6= 0.

Proof. Let |x| = n < ∞, then 1, x, x2, . . . , xn−1 are necessarily distinct elements, since xa = xb for some
0 ≤ a < b < n =⇒ xb−a = 1 with b− a < n which contradicts the definition of the order of an element.

Now, consider xt, t ∈ Z. By the Division Algorithm: t = nq + r where n, q, r ∈ Z and 0 ≤ r < n
Hence, xt = (xn)qxr = xr ∈ {1, x, x2, . . . , xn−1}.
=⇒ H = {1, x, x2, . . . , xn−1} and |H| = n.
If |x| =∞, then distinct powers of x will be distinct elements of H, hence |H| =∞.

Theorem 2. Any 2 cyclic groups of the same order are isomorphic.

1. For n ∈ Z+ and with 〈x〉, 〈y〉 two cyclic subgroups of order n, the map:

φ : 〈x〉 → 〈y〉 ≡ φ(xk) = yk

is an isomorphism.

2. For 〈x〉, an infinte cyclic group, consider the cyclic group Z = 〈1〉. Then the map:

φ : Z→ 〈x〉 ≡ φ(k) = xk

is an isomorphism.

Proposition. Let G be a group, and let x ∈ G, a ∈ Z− {0}:

1. If |x| =∞, then |xa| =∞.

2. If |x| = n <∞, then |xa| = n
(n,a) .

Proof. For 1: If the |xa| = m <∞, then xam = 1 =⇒ |x|||am| which cannot be true.
For 2: Let (n, a) = d, then n = db, a = dc, where (b, c) = 1.
Then, (xa)b = xdbc = (xn)c = 1 =⇒ |xa| divides b.
But, (xa)k = 1 =⇒ xak = 1 =⇒ n divides ak, hence, db divides dc · |xa|.
Since, (b, c) = 1, we have b divides |xa|. Given the 2 equations, we have |xa| = b =

n

(n, a)
.
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Proposition. Let H = 〈x〉.

1. If |x| =∞, then H = 〈xa〉 ⇐⇒ a = ±1.

2. If |x| = n <∞, then H = 〈xa〉 ⇐⇒ (a, n) = 1 =⇒ the number of generators of H = ϕ(n).

Proof. If |x| = ∞ and 〈xa〉 = 〈x〉, then xa 6= xb for all a 6= b =⇒ ∃m ∈ Z for all n ∈ Z such that
(xa)m = xn =⇒ am = n =⇒ a|n. The only integers which divide all integers are 1,−1.

The reverse implication is obvious from the definition of a cyclic group.
For the second case: If 〈xa〉 = H then |xa| = |x| = n =⇒ n

(n,a) = n. Hence, (n, a) = 1.

For the converse, we already have that |〈xa〉| = |〈x〉| = n, and we also have that 〈xa〉 ≤ 〈x〉, hence the
2 groups must be the same.

Theorem 3. Let H = 〈x〉

1. K ≤ H =⇒ K = {1} or K = 〈xk〉 where k is the minimum positive integer such that xk ∈ K.

2. If |H| = n <∞, then for each positive integer a which divides n there is a unique subgroup of H of

order a. This subgroup is 〈xd〉, d =
n

a
.

And for every integer m, 〈xm〉 = 〈x(n,m)〉, so that the subgroups of H are in bijection with the
positive divisors of n.

3. If |H| = ∞, then for distinct non-negative integers a, b: 〈xa〉 6= 〈xb〉, and for any integer m,
〈xm〉 = 〈x|m|〉. So, the subgroups of H are in bijection with {0, 1, 2, 3, . . .}.

Proof. (1) Consider the non-trivial case when K 6= {1}. If this is the case, then xa, x−a ∈ K for some
a ∈ Z− {0}.

Now consider the non-empty set S = {p | xp ∈ K, p ∈ Z+}. By the Well-Ordering Principle of positive
integers, there is a k = min(S).

K being a subgroup =⇒ 〈xk〉 ≤ K.
K ≤ 〈x〉 tells us that z ∈ K =⇒ z = xa for some a ∈ Z.
By the division principle, a = nk + r with 0 ≤ r < k, hence:

z(= xa) ∈ K =⇒ z(xk)−n = xnk+rx−nk = xr ∈ K

If r ∈ S then k = min(S) is contradicted =⇒ r = 0, and z ∈ K =⇒ z = xnk.
This gives us K ≤ 〈xk〉. And we can conclude that K = 〈xk〉

Proof. (2) 〈xd〉 is a valid subgroup since, |〈xd〉| = n

(n, a)
=
n

a
= d, (n, a) = a since a|n.

For a = 1, the unique subgroup is clearly {1} = 〈1〉 = 〈xn〉.
For a > 1, let there be a subgroup K ≤ H such that |K| = a. From (1), we have that K = 〈xk〉 where

k is the smallest positive integer such that xk ∈ K.

We have that |K| =
n

(n, k)
=
n

d
=⇒ (n, k) = d, d|k. This gives us that xk ∈ 〈xd〉 =⇒ K ≤ 〈xd〉.

But, |K| = |〈xd〉| = a =⇒ K = 〈xd〉, hence it is the unique subgroup of order a.
For any integer m, since (n,m)|m, we have that xm ∈ 〈x(n,m)〉 =⇒ 〈xm〉 ≤ 〈x(n,m)〉.
n

(n,m)
=

n

(n, (n,m))
, hence |〈xm〉| = |〈x(n,m)〉|. And so, 〈xm〉 = 〈x(n,m)〉.
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Exercise 8. Let p be an odd prime, and n > 1 be a positive integer. First show that (1 + p)p
n−1 ≡ 1

(mod pn) and (1 + p)p
n−2 6≡ 1 (mod pn). Hence |1 + p| = pn−1 in (Z/pnZ)×.

Solution.
Call sp(x) as the highest power of the prime p dividing x.
First observe that if z ≡ 1 (mod p) and sp(z − 1) = β, then

zp − 1 =

p−1∑
1

(
p

r

)
(z − 1)r + (z − 1)p

=

p−1∑
1

prβ+1γr + ppβγp

= pβ+1

(
p−1∑

1

γrp
(r−1)β + γpp

(p−1)β−1

)
= pβ+1(γ1 + kp)

where sp(γi) = 0. This follows because sp(
(
p
r

)
) = sp(p!)−sp((p−r)!)−sp(r!) = 1−0−0 = 1 for 0 < r < p.

Hence for p > 2, sp(z
p − 1) = β + 1 = sp(z − 1) + 1.

Now, consider 1 + p. We thus have, sp((1 + p)p − 1) = 2 =⇒ (1 + p)p ≡ 1 (mod p2) ≡ 1 (mod p).
Repeating this,

sp((1 + p)p
2

− 1) = sp((1 + p)p − 1) + 1 = 3 =⇒ (1 + p)p
2

≡ 1 (mod p3) ≡ 1 (mod p)

And so on, hence

sp((1 + p)p
n−2

− 1) = n− 1 =⇒ (1 + p)p
n−2

≡ 1 (mod pn−1) 6≡ 1 (mod pn)

sp((1 + p)p
n−1

− 1) = n =⇒ (1 + p)p
n−1

≡ 1 (mod pn)

Using this in the group (Z/pnZ)×, we have: |1 + p| divides pn−1, but doesn’t divide pn−2.
Hence, |1 + p| = pn−1.

3.5 Subgroups generated by subsets of a group

As we defined the cyclic subgroups generated by an element, we can do the same for multiple elements of
a general group. The idea is to define a minimal subgroup, such that any other subgroup containing the
given subset also contain the minimal subgroup.

Definition 3.6. If A ⊆ G, then:

〈A〉 =
⋂
A⊆H
H≤G

H

is called the subgroup generated by A.

It is a subgroup since the intersection of any collection of subgroup is one.
Moreover, if we call A as the set of all the subgroups containing A, then their intersection will be the

unique minimal subgroup containing A, i.e. H ∈ A =⇒ 〈A〉 ≤ H
A clear but unweildy method to construct 〈A〉 for a finite A is to take the set of all finite products of

the elements and their inverses (called words).
For A = {a1, a2, . . . , an}:

〈A〉 = {bε11 b
ε2
2 . . . bεll |l ∈ Z, l ≥ 0, bi ∈ A, εi = ±1 ∀i}
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Chapter 4

Quotient Groups and
Homomorphisms

4.1 Basics

The basic idea of this concept is to again try and create smaller groups from a given one, to study its
structure.

As it turns out, if we have a homomorphism between G and H and we consider the set of the sets of
elements in G that the homomorphism maps to the same element in H (the fibers of the map), then the
set has the properites of a group.

Say, elements in Xa get mapped to a ∈ H and the same happens for Xb, b, then the intuitive group
operation for the set of fibers we can guess is: Xa.Xb = Xab, which satisfies the group axioms.

It is this set of fibers of a homomorphism that we term a quotient group.

Definition 4.1. If ϕ : G→ H is a homomorphism, then the kernel of ϕ is the set:

kerϕ = {g ∈ G | ϕ(g) = 1H}

Proposition. For the groups G,H and the homomorphism ϕ : G→ H:

1. ϕ(1G) = 1H .

2. ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

3. ϕ(gn) = ϕ(g)n

4. kerϕ is a subgroup of G

5. im(ϕ) is a subgroup of H

Proof. (1) ϕ(1G) = ϕ(1G1G) = ϕ(1G)ϕ(1G) =⇒ ϕ(1G)−1ϕ(1G) = 1H = ϕ(1G).

(2) ϕ(g)ϕ(g−1) = ϕ(1G) = 1H =⇒ ϕ(g−1) = ϕ(g)−1.

(3) Base case: ϕ(g1) = ϕ(g)1

Assume: ϕ(gn−1) = ϕ(g)n−1 for some n > 1
ϕ(gn) = ϕ(g.gn−1) = ϕ(g)ϕ(gn−1) = ϕ(g)n. Hence proved.

(4) From (1), 1G ∈ kerϕ hence it is non-empty.
If x, y ∈ kerϕ, then ϕ(xy) = ϕ(x)ϕ(y) = 1H1H = 1H =⇒ xy ∈ kerϕ
Also, ϕ(x−1) = ϕ(x)−1 = 1−1

H = 1H =⇒ x−1 ∈ kerϕ, hence kerϕ is closed under multiplication and
inverse, hence it is a subgroup of G.

20



(5) 1H ∈ im(ϕ), hence it is non-empty. If x, y ∈ im(ϕ) then there exist a, b ∈ G such that ϕ(a) =
x, ϕ(b) = y.

Consider ϕ(ab−1) = ϕ(a)ϕ(b−1) = xy−1. Hence, xy−1 ∈ im(ϕ) and by the subgroup criterion, im(ϕ)
is a subgroup of H.

Definition 4.2. For the usual G,H,ϕ with kerϕ = K, the quotient group or the factor group, G/K,
read as G modulo K, is the group whose elements are the fibers of ϕ, with the group operation defined
as Xa.Xb = Xab, where Xi ⊆ G is the fiber mapped by ϕ to i ∈ H

eg. consider ϕ : Z→ Zn = 〈x〉 (the cyclic group of order n), ϕ(a) = xa

Here the fiber over xa is ϕ−1(a) = {m | m ∈ Z, xm = xa =⇒ xm−a = 1}
= {m | m ∈ Z, n|(m− a)} = ā

Hence, the elements are exactly the residue classes modulo n. The group operation between them is
ā.b̄ = ā ◦ b̄ = a+ b where we replaced ◦ with the group operation of Z. And the kernel of this map is 0̄.

Hence, Z/0̄ = (Z/nZ,+), where 0̄ is the residue class of 0 modulo n.

Now, we show that the fibers of a homomorphism are a special type of subsets of the group.

Proposition. For the usual G,H,ϕ with the kernel, K, let X ∈ G/K be the fiber above a ∈ H, then:

1. For any u ∈ X, X = {uk | k ∈ K}

2. For any u ∈ X, X = {ku | k ∈ K}

Proof. Let uK = {uk | k ∈ K}.
Consider any x ∈ X =⇒ ϕ(x) = a. If we let k = u−1x, then ϕ(k) = ϕ(u−1)ϕ(x) = a−1a = 1H .
Hence, k ∈ K, and x = uk =⇒ X ⊆ uK.
Now, take any uk ∈ uK. ϕ(uk) = ϕ(u)ϕ(k) = a1H = a =⇒ uk ∈ X. Hence, uK ⊆ X.
Combining the 2, uK = X.
Using the same notation, and similar arguments, we can show Ku = X.

4.2 Cosets

The idea of forming sets using a subgroup and an element from the group (kerϕ and u above), using left
and right multiplication can be made more general through the following:

Definition 4.3. For any N ≤ G and g ∈ G define:

gN = {gn | n ∈ N}
Ng = {ng | n ∈ N}

These are called the left and right coset of N in G, and any element of these is called a representative.

The reason the element g need not be specifically specified follows because:

Proposition. For N ≤ G: the set of left cosets of N in G form a partition of G.
And ∀ u, v ∈ G, uN = vN ⇐⇒ v−1u ∈ N ⇐⇒ u, v are the representatives of the same coset

(uN = vN)
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Proof. Since N is a subgroup, it contains 1, hence for all g ∈ G, g ∈ gN .
Let uN and vN be 2 intersecting cosets. This implies ∃ n,m ∈ N such that:

un = vm

=⇒ u = vmn−1 = vz

where due to N being a subgroup z = mn−1 ∈ N

Hence, for any ux ∈ uN (x ∈ N), ux = vzx = vy ∈ vN since y = zx ∈ N . This gives uN ⊆ vN .
Similarly, v = unm−1 = uz′, z′ ∈ N . And for any vx′ ∈ vN (x′ ∈ N), vx′ = uz′x′ = uy′ ∈ uN ∵

y′ = z′x′ ∈ N . This gives vN ⊆ uN .
Which leads to uN = vN . Hence, there are no intersecting left cosets of N in G i.e. they form a

partition of G.
For the next part, uN = vN =⇒ un = vm where n,m ∈ N =⇒ v−1u = mn−1 ∈ N

For the reverse implication, if v−1u ∈ N , then u ∈ vN . But u = u1 ∈ uN ,
hence uN and vN intersect =⇒ uN = vN .

u ∈ vN is the same as saying that u, v are the representatives of the same left coset = vN = uN

What this means is that, given a coset, we can use any of its elements to generate the entire coset by
left/right multiplication with the subgroup. This gives us:

Theorem 4. Let G be a group and let K be the kernel of some homomorphism from G to another group.
Then the set whose elements are the left cosets of K (which has been proven to be a subgroup) in G, with
the operation defined by:

uK ◦ vK = (uv)K

forms a group, G/K.

For the operation to be well defined we need to show that taking any 2 elements from the 2 cosets
gives a member of the resulting coset:

Fix u, v ∈ G, ∀ u′ = uk1 ∈ uK, v′ = vk2 ∈ vK:
ϕ(u′v′) = ϕ(uk1vk2) = ϕ(u)1ϕ(v)1 = ϕ(uv).
Thus, u′v′ belongs to the same fiber as uv, which by a previous proposition is nothing but uvK.
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