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Abstract

In order to study how a protein chain folds rapidly, Sali, Shaknovich and Karplus

had used the grid model of folding and used the randomized Metropolis algorithm to

find a minimum energy conformation. They conjectured that when the energy gap

between the minimum energy and the second minimum energy conformations are

high, a polypeptide chain would fold quickly. Our thesis explores the conjecture for

the folding problem on 2D grids. Computational results of running the Metropolis

algorithm based on contact pairs as well as the one based on energy,are considered

here. Also, we find cases where the Metropolis algorithm will not be able to reach

the minimum energy conformation. New moves for the Metropolis algorithm are also

proposed to tackle the situation with the assumption that compact conformations

undergo transformations through other compact conformations.
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Chapter 1

Introduction

Proteins are biological complex macro molecules that play important role in the

body. They are made up of long chains of smaller units, called amino acids. There

are 20 different types of amino acids that make up proteins and each of amino acid

is coded by a stretch of DNA, called codon, which is of 3-base pairs(nucleotides) in

length. DNA is made of 4 nucleotides called ; A(Adenine), T(Thymine), G(Guanine),

C(Cystosine). Protein chains differ in their amino acid sequences which in fact are

derived from the nucleotide sequence of DNA. Each such protein chain folds to form

a unique 3D structure of non covalent bonds interactions such as hydrogen bond-

ing, weak Van der Waal’s force, etc. This 3D structure determines its functionality.

For understanding the functionality in detail, the 3D structure has to be studied.

A chain of amino acids can be in a number of shapes obeying certain structural

constraints,these various shapes are called conformations. The number of possible

conformations is exponential in the length of the chain. Each conformation has an

energy(more particularly, free energy) associated with it. As it is the case with

all natural systems, that conformation will be the stable conformation of the chain

which has the minimum free energy. A natural protein chain usually forms in an

arbitrary initial configuration and then goes to its minimum energy conformation

which is its stable form. Such a conformation determines the functionality of the

protein.

1
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Protein Folding problem is to determine, from the knowledge of the sequence

of amino acids of a protein, its stable lowest energy conformation. The notion of

this folding problem came in 1960s. Because of the large number of degrees of

freedom for the chain, there are astronomical number of conformations possible. It

was observed that even if proteins were folded by sequentially sampling all possible

conformations at a rapid rate, still it would take a very long time. Contrary to this,

despite having astronomically large number of conformations, natural proteins are

known to fold quickly. This paradox was pointed out by Cyrus Levinthal in 1968

and is known as the Levinthal’s paradox and he proposed that random search on

possible conformations does not occur but it folds through a series of intermediate

meta stable states. The problem is very important because solving the protein

folding problem will be very useful for manufacturing drugs for many diseases and

moreover its the structure that decides the behavior of protein chain. We need a

predictive manner in which the proteins fold. It is assumed that proteins fold to its

native conformations near their global minimum energy conformation. A simplified

version of the problem is folding of a chain on a grid. A grid is a 3D or 2D co-

ordinate space where each chain of the protein occupies a point in the coordinate

space. The conformation of proteins on the grid as per the model are self-avoiding

paths. Self-avoiding paths are paths on the grid/lattice that do not visit the same

coordinate more than once. Any system in the nature tries to be in its most stable

state which in fact is the minimum energy state.

In the grid model, the protein chain is thought of as a chain of beads, each bead

being an amino acid. Given a protein chain, there are attractions between the

amino acids(beads) in the protein molecule. Thereby, each conformation is associ-

ated with an energy. For the grid model, energy associated with each conformation

is :E = 1
2

∑
Bi,jC(i, j) [3] where Bi,j is the interaction energy between i th and j

th beads in the chain and C(i, j) is 1 if i and j are nearest neighbors and 0 oth-

erwise ,with |i − j| > 1 [5]. The nearest neighbors are those beads in the chain

that are less than or equal to unit distance apart and are those which do not have
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a direct link between them. The energy of the chain is assumed to be only depen-

dent on nearest neighbor contacts and to be independent of other aspects of the

conformation. All other interactions always yield to a constant energy contribution

and hence discarded. Finding out the minimum energy state among all the possible

conformations is essentially an optimization problem. It has been shown that this

problem is NP-hard. Sali, Shaknovich and Karplus used a randomized algorithm on

27 monomer protein chains on 3D lattices to find the global minimum energy con-

formation. The Metropolis algorithm was the randomized algorithm used. It was

observed that proteins fold quickly when they have pronounced global minimum

energy. Pronounced global minimum energy means the difference in energy between

the minimum energy and the second minimum energy is large. On the basis of this

observations it has been conjectured that an amino acid chain will fold more rapidly

when the difference in energy between the minimum energy state and the second

minimum energy state is high. Our work tries to verify the Sali, Shaknovich and

Karplus conjecture [1]on 2D lattice. Our work can easily be extended to the 3D case

as well. Sali, Shaknovich and Karplus define three transformations which transform

one configuration into another. We call such transformations as Monte Carlo moves

or simply moves, because these are used by the Metropolis algorithm to move from

one configuration to another neighboring configuration in the space of all configura-

tions. In the 2D case, two of these moves are applicable, which we use in our first set

of computational experiments. Later, we use a different set of moves which ensures

that a compact configuration will move only to another compact configuration. In

the 2D case, a compact configuration of n2 will be termed compact if it is contained

in an n ∗ n 2D lattice, and thereby occupying all the n2 co-ordinates.

1.1 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 explains the Metropolis

algorithm,the Monte Carlo moves and introduces the canonical representation of

configuration of chains on 2D grids. Chapter 3 presents our experimental results
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and explains the new moves for the Metropolis algorithm. The conclusion is provided

in Chapter 4.



Chapter 2

Canonization of Monte Carlo

Moves

This chapter explains the randomized algorithm that was used by Sali, Shaknovich

and Karplus which led to their conjecture. We explain the Monte Carlo moves used

in it. We define a canonical representation of protein chains to tackle the drifting

away problem discussed later in this chapter. Some relevant propositions are also

stated and proved here.

2.1 Protein Model

In the grid model of Sali. Shakhnovich and Karplus, the energy of a protein chain

depends only on nearest neighbor contacts. It is independent of the other aspects

of the chain conformation. Two beads which are non-adjacent in the chain are said

to be in contact if these are unit distance apart in the placement of the chain in the

grid. Beads adjacent in the chain are not considered to be in contact. The energy

function [2]of the chain is :

E =
∑

i<j Bijδ(ri − rj)

where Bij is the interaction energy between bead i and bead j located at positions

ri and rj respectively. δ(ri − rj) is 1 if beads are in contact and 0 otherwise. For

the study of a model with preconceived biases , the interaction parameters Bij are

5
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obtained from Gaussian distribution with mean B0 and standard deviation σB [2]

i.e

P (Bij) = 1√
2πσB

e
− 1

2
(
Bij−B0
σB

)2

2.2 Metropolis Algorithm

The Metropolis algorithm [2] [4]is a randomized algorithm that runs a Markov chain.

For our problem the set of conformations is its state space. The algorithm starts

with an arbitrary initial conformation. For each conformation there is a set of

neighborhood conformations associated with it. These neighborhood conformations

are obtained by the moves. Each move happens with some probability. Suppose

E be the energy of the present conformation and E ′ be the energy of the next

conformation that the chain can move to.If the new energy is less than the free

energy of the previous conformation, the transition is favored with probability 1.

Else, if the energy is higher, then the transition happens with a probability of e−δE

where δE = E ′ − E . Energy for conformations have been drawn from a normal

distribution with mean µ = −2 and standard deviation σ = 1 as defined earlier.

The algorithm starts with an arbitrary conformation. Monte Carlo moves are

applied to the conformation and list of neighborhood conformations are obtained.

Among these neighborhood conformations, we replace all spatially equivalent con-

formations with a single conformation that appears first in the lexicographical or-

der among all their permutations. We continue replacing the conformations in the

neighborhood list until no pair of equivalent conformations is present in the list. A

random conformation is selected from among the list and depending upon the dif-

ference in free energy of the initial conformation and the one selected, the algorithm

moves to the new conformation with a certain probability or else stays at the same

conformation.
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2.3 Monte Carlo Moves

Monte Carlo moves [2] are the local moves/transformations that are applied to a

protein chain on a grid to get different conformations. There are 3 Monte Carlo

moves allowed for a 3D lattice. They are the following :-

2.3.1 Monte Carlo Move 1

This move is applied at the end of a chain. It can take one of the 5 possible positions

if those lattice points are not already occupied in the grid. The penultimate node’s

position in the lattice remains the same. So it is a one bead move.

Figure 2.1: Monte Carlo Move 1

2.3.2 Monte Carlo Move 2

This move can be applied if the beads at positions i-1,i,i+1 in the chain are right

angled at i in the lattice and if the lattice point diagonally opposite to i is not

occupied. Compared to the first move its not just an end chain move, but it is also

a one bead move.

Figure 2.2: Monte Carlo Move 2
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2.3.3 Monte Carlo Move 3

This move, known as the Crank Shaft move, can be applied when the beads i,i+1,i+2,i+3

in the chain forms a crank shaft. The crank can be rotated 90 degree in the clockwise

or in the anticlockwise direction. This move is a 2 bead move as two of the beads

change its co-ordinates in the lattice.

Figure 2.3: Monte Carlo Move 3

2.4 Drifting away Problem

Applying the above Monte Carlo moves to conformations, it can happen that a con-

formation drift away in the infinite grid in any direction yielding different spatial

arrangements/orientations for the same conformation. A simple example is given

below:- It can be clearly observed from the above transitions that the initial confor-

Figure 2.4: Sequence of transformations

mation has now changed its position in the lattice after the two transitions. It has
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shifted towards the positive Y-axis by a unit which in fact is the same conformation

as the initial one. In order to tackle this drifting away problem on the infinite grid,

a canonical representation has been introduced.

2.5 Canonical Representation

A specific conformation of protein has different spatial orientations due to the sym-

metry of the lattice. Each of these different spatial orientations can be specified by

a permutation. Each conformation is represented using the directions of the link be-

tween the beads in the chain starting from some end. The direction representations

used here are L-left,R-Right,U-up,D-down,I-inside,O-outside. A representation for

the following 9 bead chain starting from ’A’ goes like this : rrddiror

Figure 2.5: Canonical representation

By the symmetry of the 2D square lattice there are 8 different permutations

possible. Permutations are bijections from the set S of directions,L,R,U,D to itself.

The different permutations possible for a 2D protein chains is as follows :-

π0 =

 L R U D

R L D U


π1 =

 L R U D

R L U D
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π2 =

 L R U D

L R D U


π3 =

 L R U D

L R U D

 = e(the identity permutation)

π4 =

 L R U D

U D L R


π5 =

 L R U D

U D R L


π6 =

 L R U D

D U L R


π7 =

 L R U D

D U R L



These permutations form a group under composition. The composition table is as

follows:-

* π0 π1 π2 π3 π4 π5 π6 π7
π0 π3 π2 π1 π0 π7 π6 π5 π4
π1 π2 π3 π0 π1 π6 π7 π4 π5
π2 π1 π0 π3 π2 π5 π4 π7 π6
π3 π0 π1 π2 π3 π4 π5 π6 π7
π4 π7 π5 π6 π4 π3 π1 π2 π0
π5 π6 π4 π7 π5 π2 π0 π3 π1
π6 π5 π7 π4 π6 π1 π3 π0 π2
π7 π4 π6 π5 π7 π0 π2 π1 π0

Table 2.1: Composition table

Identity element is :-

a ∗ e = e ∗ a = a

e = π3

Inverses of the permutations are as follows:-

π−10 = π0
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π−11 = π1

π−12 = π2

π−13 = π3

π−14 = π4

π−15 = π6

π−16 = π5

π−17 = π7

Proposition 2.5.1. For a specific 2D protein chain there can be a maximum of 8

different spatial arrangements.

Proof. All the permutations possible are given above.

Proposition 2.5.2. In case of 3D protein chain there can be a maximum of 48

different spatial arrangements.

Proof. Similar kind of permutations discussed for 2D protein chains can be applied

with two more extra directions(I-inside the plane,O-outside the plane) in case of

3D proteins. Because of the 2 additional directions the permutations are obviously

higher than 2D which when iterated yields a maximum of 48 different

permutations.

Proposition 2.5.3. If a configuration C’ is reachable from any arbitrary config-

uration C through the Monte Carlo moves, then it is possible to reach from any

permutation of the configuration π(C) to the corresponding permutation π(C ′) with

the same number of Monte Carlo moves/transformations.

Proof. Suppose the initial configuration be C,Each Monte Carlo move yields new

configurations at each steps say C1, C2, C3, ....., Cn.Applying a given permutation to

the configurations,let the configurations obtained be π(C1), π(C1), π(C2), π(C3), ....., π(Cn).

Consider C1, C2, C3, ....., Cn as one single configuration D,with combined number of

nodes =(|C1| + |C2| + |C3| + ..... + |Cn|) and π(C1), π(C1), π(C2), π(C3), ....., π(Cn)
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as another single configuration D’. Applying permutation π(D) will yield D’ be-

cause it’s the same as applying permutation π to each of C1, C2, C3, ....., Cn to yield

π(C1), π(C1), π(C2), π(C3) , ....., π(Cn).

Now it requires to prove that the transformation from π(C1) to π(C2) is valid. If a

lattice point X is unoccupied for a configuraion C then the lattice point is unoccu-

pied for configuration π(C).Hence the monte carlo move from π(C1) to π(C2) is also

valid since the corresponding monte carlo move from C1 to C2 is valid. Therefore

it takes exact same number of monte carlo moves for any permutation of a specific

configuration C to some other configuration C’ and for any permutation π(C) to

π(C ′).

Hence all different permutations of a specific configuration which infact are the var-

ious spatial arrangements of the same configuration is considered to be equivalent

configurations.
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2.6 Recovering a compact folding from contact

points

We are concerned with amino acid chains numbered 1,2,...,n where n = k2 for some

k. We are given a set of pairs of 1,2,....,n which are supposed to be representing the

set of contact pairs of a compact folding of the chain on to the k*k grid. A compact

folding of a n-length chain is nothing but a Hamiltonian path on the square grid

graph of size
√
n ∗
√
n. A pair i,j is said to be in contact in a compact folding if

|i − j| > 1 and i and j are adjacent in the square grid graph. The goal is to either

determine the folding up to the symmetries of the plane or to conclude that there

is no folding which can give rise to the given set of contact points. We present

an algorithm for this problem. A consequence of this algorithm is that the set of

contact pairs determines a unique compact folding (up to symmetries of the plane)

if it exists.

We give an algorithm to recover the compact folding if one exists and prove that

none exists if our algorithm fails. Assume that the vertices of the grid are {(i, j) :

1 ≤ i, j ≤ k}. Let C be the set of contact pairs that is given. For 1 ≤ i ≤ n, let

Ci be the elements in the chain that are in contact with i. Note that there are the

following set of cases that can occur:

1. An element i is in the interior of the grid in which case it has 4 neighbors.

Unless i = 1 or n, two of the four neighbors are i − 1 and i + 1 and i is in

contact with two elements.

2. i = 1 or n and is in the interior in which case it has exactly 3 contact pairs.

3. i is not one of 1 or n and is on the boundary but not one of the four corners

in which case i is involved in exactly one contact pair.

4. i = 1 or n and is on the boundary but not one of the four corners in which

case i is involved in exactly two contact pairs.
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5. i is not one of 1 or n and is one of the four corners in which case i is involved

in no contact pairs.

6. i is one of 1 or n and is one of the four corners in which case i is involved in

exactly one contact pair.

The algorithm starts by guessing the element σ1,1 at (1,1). It can then look at

Cσ1,1 to figure out the two elements to be put at (1, 2) and (2, 1). Up to symmetry,

it can place either element at either of the two places. Thus, assuming that the

guess σ1,1 was correct, we have figured out the elements at (1, 1), (1, 2) and (2, 1).

The next step is to figure out the element at (2, 2). To do this, first check if there

is a j ∈ Cσ1,2 ∩ Cσ2,1 . If there is such a j, then we let σ2,2 = j. Else, we know that

exactly one of σ1,2 or σ2,1 has an adjacent element at (2, 2) which should be among

the contact pairs with the other. If such an element exist, we assign it σ2,2 , else

we output that there is no feasible compact folding which achieves the given set of

contact pairs. Next we determine the elements at the positions (1, 3) and (3, 1).

But this is easy as well; for instance, to figure out what to place at (1, 3) we use

the fact that we know σ1,1 , σ1,2 and σ2,2 . Thus, by looking at the Cσ1,2 , and using

the cases discussed above, we can uniquely figure out σ1, 3 or declare that there is

no compact formulation consistent with the given set of contact pairs. A similar

argument allows us to figure out σ3,1. We can inductively continue this argument

by assuming that we know σi,j for all i, j such that i+ j ≤ s and figure out σi,j for

i+ j = s+ 1.



Chapter 3

Experimental Results

This chapter explains the results obtained by the Metropolis simulations on a 2D

protein chain with suitable graphs. It also provides statistics regarding number

of conformations on different length chains and their energy densities. The cases

where the Metropolis algorithm with the Sali et.al.’s local moves fail and the newly

proposed global moves are also explained here in this chapter.

Proposition 3.0.1. Number of contact points is maximum in a square lattice.

Proof. Suppose the lattice is a m*n grid.

Let N be the numer of contact pairs.

N = (m− 1) ∗ n+ (n− 1) ∗m− (m ∗ n− 1) (3.1)

= (m ∗ n)− n+ (m ∗ n)−m− (m ∗ n) + 1 (3.2)

= (m ∗ n)− (m+ n) + 1 (3.3)

Let m*n=k

Equation(3.3) becomes:

15
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N = k − (m+
k

m
) + 1 (3.4)

Differentiating w.r.t. m

−1 +
k

m2
= 0 (3.4)

k = m2 (3.5)

m =
√
k (3.6)

n =
√
k (3.7)

Therefore the lattice must be of
√
k ∗
√
k square grid so that the number of contact

pairs are maximum.

Proposition 3.0.2. All self-avoiding paths cannot be reached through the Monte

carlo moves.

Proof: For proving this we describe a counter example.

Self avoiding path(2D): ddluuurrrdddluu

Figure 3.1: Unreachable conformation 2D

Neither of the two Monte Carlo moves allowed for a 2D lattice can be applied on

the conformation depicted above. Consider the above configuration to be C and sup-

pose C is reachable from another configuration C ′ using a Monte Carlo move which

is not possible because if such a configuration exists then inverse of the Monte Carlo

step can be applied to C to obtain C ′.
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3.1 Metropolis Algorithm based on number of con-

tact pairs

In this experiment the Metropolis algorithm is run on chains with different number

of nodes until the conformation with maximum number of contact pairs is reached.

Maximum number of contact pairs for a chain with k2 nodes is (k− 1)2 from propo-

sition[3.0.1]. Maximum number of contact pairs for other nodes are computed by

checking all conformations possible for a fixed length chain. A graph is plotted with

the Metropolis iterations against the length of chain(number of nodes). For each of

the Metropolis iteration, values shown in the graph are average over 50 Metropolis

runs.

1. Starts from an initial configuration (a straight chain).

2. Monte Carlo moves are applied onto the initial conformation and neighborhood

conformations are obtained.

3. Among the neighborhood conformations list replace all spatially equivalent

conformations with a single conformation which appears first in the lexico-

graphical order among all of their permutations.

4. Continue doing Step 3 until no more equivalent conformations for any of the

conformations are left behind in the neighborhood list of the initial conforma-

tion.

5. Select a random conformation from the neighborhood list.

6. Calculate the number of contact pairs of the initial configuration N , and the

randomly selected configuration N ′.
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7. If N ′ > N then the random conformation is taken as the next conformation

and repeat the whole procedure from Step 1 until the maximum number of

contact pairs are reached.

8. Else if N ′ ≤ N then the procedure moves to the new randomly chosen confor-

mation with a probability e−δN .

9. Else none of the Monte Carlo steps are selected and the whole procedure re-

peats from Step 1.

Figure 3.2: Metropolis results

Observations:When the number of nodes N , has fewer numbers of the form

m ∗n that make up N , then it seems to have lesser Metropolis iterations. This may

be because the number of different lattices in which the conformations fit to are less.
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3.2 Statistics of conformations for different length

chains

Here we have experimentally calculated the number of conformations for fixed length

chains and categorized them based on the number of contact pairs they have. Shown

below is a table for conformations with number of nodes ranging from 9 to 16. Row

indicates the number of contact pairs and column indicate the number of nodes of

the chain.

0 1 2 3 4 5 6 7 8 9
9 2244 2032 1072 528 40
10 5324 5376 3400 1384 784
11 12668 14224 9832 4608 2384 384
12 29940 36976 27600 15552 6424 3552 248
13 71012 95504 77000 45744 22640 10096 2936
14 167468 243536 211736 133888 76304 29776 15912 2880
15 396172 619168 572560 387616 226376 109200 45240 16976 1136
16 932628 1559168 1534512 1107568 676856 364512 149864 69296 21640 552

Table 3.1: Number of contact pairs vs Number of nodes in the chain

All the conformations with different contact pairs for a fixed length chain adds

upto the total conformations possible. Shown below is the total number of 2D

conformations possible for a fixed length chain with the number of nodes of the

chain ranging from 9 to 16.

Total Conformations
9 5916
10 16268
11 44100
12 120292
13 324932
14 881500
15 2374444
16 6416596

Table 3.2: Total Conformations

This table show that the Metropolis algorithm of section 3.1 is far superior to a

sequential search. For example, for a 16 node chain the search space has 6,416,596
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elements with 552 conformations. It can be seen that the algorithm samples only

about 14000 points to reach an optimum configuration.

3.3 Non-isomorphic compact conformations

Non-isomorphic conformations are conformations that are not spatially equivalent

to other conformations. Among 552 compact conformations of a 16 node chain on

a 4 ∗ 4 grid only 69 of them are non-equivalent to each other. All these 69 non-

isomorphic compact conformations of a 16 node chain on a 4∗4 grid with all of their

9 nearest neighboring pairs are shown below. This serve as an example for Section

2.5 Recovering a compact folding from contact points whose immediate consequence

is a one-one mapping between the compact folding and the set of contact pairs.

dddluuuldddluuu 0,7 1,6 2,5 4,11 5,10 6,9 8,15 9,14 10,13

dddluuulldrddlu 0,7 1,6 2,5 4,13 5,12 6,11 8,11 10,15 12,15

dddluuulldrdldr 0,7 1,6 2,5 4,15 5,12 6,11 8,11 10,13 12,15

dddluuulldddruu 0,7 1,6 2,5 4,13 5,14 6,15 8,15 10,15 11,14

dddluulddluuurr 0,15 1,6 2,5 4,9 5,8 6,15 7,12 7,14 8,11

dddlulurulldddr 0,9 1,8 2,5 4,15 5,8 6,13 6,15 7,10 7,12

dddluldluurrull 0,13 1,12 2,5 4,7 5,12 6,9 6,11 10,15 11,14

dddluldluuurrdl 0,13 1,14 2,5 4,7 5,14 6,9 6,15 10,15 12,15

dddluldluuurdru 0,15 1,14 2,5 4,7 5,14 6,9 6,13 10,13 12,15

dddlllurruuldlu 0,11 1,10 2,9 4,9 5,8 7,14 8,13 10,13 12,15

dddlllurruulldr 0,11 1,10 2,9 4,9 5,8 7,14 8,15 10,15 12,15

dddlllurrullurr 0,15 1,10 2,9 4,9 5,8 7,12 8,11 10,15 11,14

dddlllurulurrdd 0,13 1,14 2,15 4,15 5,8 7,10 8,15 9,12 9,14

dddllluurdruull 0,13 1,12 2,11 4,11 5,10 7,10 8,15 9,12 9,14

dddllluuurrddlu 0,11 1,12 2,13 4,13 5,14 7,14 8,15 10,15 12,15
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dddllluuurrdldr 0,11 1,12 2,15 4,15 5,14 7,14 8,13 10,13 12,15

dddllluuurddruu 0,15 1,14 2,13 4,13 5,12 7,12 8,11 10,15 11,14

ddluulldrdldrrr 0,5 1,4 2,15 3,10 3,14 4,9 6,9 8,11 10,13

ddllurulldddrrr 0,7 1,6 2,15 3,6 3,14 4,11 4,13 5,8 5,10

dlulddrrdllluuu 0,3 1,8 2,5 2,7 4,15 5,14 6,11 6,13 7,10

dlulldrdrrdlllu 0,3 1,10 2,7 2,9 4,7 6,15 8,13 8,15 9,12

dlulldrdldrrrul 0,3 1,14 2,7 2,15 4,7 6,9 8,11 8,15 12,15

dlulldrdldrrurd 0,3 1,14 2,7 2,13 4,7 6,9 8,11 8,13 12,15

dlulldddrrrullu 0,3 1,12 2,13 2,15 4,15 6,15 7,14 9,14 10,13

dldrdlllurulurr 0,15 1,4 2,11 2,15 3,6 3,10 7,10 9,12 11,14

dlldrrdllluuurr 0,15 1,6 2,5 2,15 3,12 3,14 4,9 4,11 5,8

dluurulldddluuu 0,3 0,5 2,11 3,10 4,7 4,9 8,15 9,14 10,13

dluurullldrddlu 0,3 0,5 2,13 3,12 4,7 4,11 8,11 10,15 12,15

dluurullldrdldr 0,3 0,5 2,15 3,12 4,7 4,11 8,11 10,13 12,15

dluurullldddruu 0,3 0,5 2,13 3,14 4,7 4,15 8,15 10,15 11,14

dluulddluuurrrd 0,3 0,15 2,7 3,6 4,13 4,15 5,10 5,12 6,9

dluldluurrrulll 0,3 0,11 2,5 3,10 4,7 4,9 8,15 9,14 10,13

dluldluuurrrdll 0,3 0,13 2,5 3,14 4,7 4,15 8,15 10,15 11,14

dluldluuurdrrul 0,3 0,13 2,5 3,12 4,7 4,11 8,11 10,15 12,15

dluldluuurdrurd 0,3 0,15 2,5 3,12 4,7 4,11 8,11 10,13 12,15

dlulurrullldddr 0,3 0,7 2,15 3,6 4,13 4,15 5,10 5,12 6,9

dlllurrurulldlu 0,7 0,9 2,7 3,6 5,14 6,13 8,11 8,13 12,15

dlllurrurullldr 0,7 0,9 2,7 3,6 5,14 6,15 8,11 8,15 12,15

dlllurrullurrrd 0,7 0,15 2,7 3,6 5,10 6,9 8,13 8,15 9,12

dlllurulurrrdld 0,13 0,15 2,15 3,6 5,8 6,15 7,10 7,14 11,14

dllluurdrurulll 0,9 0,11 2,9 3,8 5,8 6,15 7,10 7,14 10,13

dllluuurrrdldlu 0,11 0,13 2,13 3,14 5,14 6,15 8,15 9,12 12,15

dllluuurrrdlldr 0,11 0,15 2,15 3,14 5,14 6,13 8,13 9,12 12,15

dllluuurddrurul 0,11 0,13 2,11 3,10 5,10 6,9 8,15 9,12 12,15
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dllluuurddruurd 0,11 0,15 2,11 3,10 5,10 6,9 8,13 9,12 12,15

ddluulddluuurrr 0,5 0,15 1,4 3,8 4,7 5,14 6,11 6,13 7,10

ddluldluuurdrur 0,13 0,15 1,4 3,6 4,13 5,8 5,12 9,12 11,14

ddlllurrullurrr 0,9 0,15 1,8 3,8 4,7 6,11 7,10 9,14 10,13

ddllluuurddruur 0,13 0,15 1,12 3,12 4,11 6,11 7,10 9,14 10,13

dluldddrurdruuu 0,3 0,15 1,10 1,14 2,5 2,9 6,9 8,11 10,13

ddluuldddrrruuu 0,5 0,15 1,4 1,14 2,11 2,13 3,8 3,10 4,7

dluurrddruuulll 0,3 0,5 0,7 1,8 4,15 5,14 6,11 6,13 7,10

dluuurdrddruuul 0,3 0,7 0,9 1,10 4,7 6,15 8,13 8,15 9,12

dluuurdrurdddlu 0,3 0,7 0,15 1,14 4,7 6,9 8,11 8,15 12,15

dluuurdrurddldr 0,3 0,7 0,13 1,14 4,7 6,9 8,11 8,13 12,15

dluuurrrdddluul 0,3 0,13 0,15 1,12 4,15 6,15 7,14 9,14 10,13

dluurrrdldrdlll 0,3 0,5 0,9 1,10 1,14 2,15 6,9 8,11 10,13

dldrrrulurullld 0,9 0,13 0,15 1,4 1,8 2,15 5,8 7,10 9,12

ddluuurrdddruuu 0,5 0,7 0,9 1,4 1,10 2,11 8,15 9,14 10,13

ddluuurrrdlddru 0,5 0,7 0,11 1,4 1,12 2,13 8,11 10,15 12,15

ddluuurrrdldrdl 0,5 0,7 0,11 1,4 1,12 2,15 8,11 10,13 12,15

ddluuurrrdddluu 0,5 0,7 0,15 1,4 1,14 2,13 8,15 10,15 11,14

ddllurulurrrddd 0,7 0,11 0,13 1,6 1,14 2,15 3,6 5,8 7,10

dluurrdddllluuu 0,3 0,5 0,7 1,8 1,10 2,11 2,13 3,14 4,15

dluuldddrrruuul 0,3 0,13 0,15 1,10 1,12 2,7 2,9 3,6 4,15

dlulurrrdddlllu 0,3 0,7 0,9 1,10 1,12 2,13 2,15 3,6 4,15

dlulddrrruuulll 0,3 0,11 0,13 1,8 1,10 2,5 2,7 3,14 4,15

dlldrrruuulldlu 0,9 0,11 0,13 1,6 1,8 2,5 2,13 3,14 12,15

dlldrrruuullldr 0,9 0,11 0,15 1,6 1,8 2,5 2,15 3,14 12,15

3.4 Stationary Probability Distribution

Stationary probability of a conformation is given by Pi = e−Ei∑
∀j e
−Ej [6]. Here we calcu-

late the stationary probability of the minimum energy conformation with 16 nodes .
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This has been done for 1000 different samples. Different samples means the energy

between the nodes in each sample is different but drawn from a normal distribution

of mean µ = −1 and standard deviation σ = 1. A plot has been drawn with station-

ary probability of the minimum energy conformation against energy gap(difference

in energy of the lowest energy and the second lowest energy).

Figure 3.3: Stationary probability distribution



24

The probability with which minimum energy conformation falls in the range of

energy with an interval of 0.5 is given below. The results shown here is from the

same 1000 sample described above with normal distribution of mean µ = −1 and

standard deviation σ = 1. Larger the stationary probability of the minimum energy

configuration, easier will be for the Metropolis algorithm to find the minimum energy

conformation, assuming that number of iterations to come close to the stationary

distribution does not vary too much with different samples. Figure 3.3 shows that

the stationary probability of the minimum energy conformation tends to increase

with the energy gap. Thus, this observation is an evidence in support of Sali, Sha-

knovich, Karplus conjecture.

Energy

(From)

Energy

(To)
Probability

-5.5 -5 0.001
-5 -4.5 0
-4.5 -4 0
-4 -3.5 0.004
-3.5 -3 0.003
-3 -2.5 0.025
-2.5 -2 0.03
-2 -1.5 0.069
-1.5 -1 0.149
-1 -0.5 0.265
-0.5 0 0.454

Table 3.3: Probability Table
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3.5 Metropolis Algorithm based on energy be-

tween monomers

In here the Metropolis algorithm is run until the minimum energy conformation is

reached. The energy between each pair of nodes is derived from a normal distribu-

tion. The minimum energy conformation is calculated by iterating over all possible

conformations. The Metropolis simulations done here is on a chain with 16 nodes. A

graph has been plotted with the Metropolis iterations against energy gap(difference

in energy between the minimum energy and the second minimum energy). Each

Metropolis iteration shown in the graph are the expected values calculated from the

average values taken over 50 iterations.

1. Starts from an initial conformation (a straight chain).

2. Monte Carlo moves are applied onto the conformation and neighborhood con-

formations are obtained.

3. Among the neighborhood conformations list replace all spatially equivalent

conformations with a single conformation which appears first in the lexico-

graphical order among all their permutations.

4. Continue doing Step 3 until no more equivalent conformations for any of the

conformations are left behind in the neighborhood list.

5. Select a random conformation from the neighborhood list.

6. Calculate the energy of the initial conformation E ,and the randomly selected

configuration E ′.

7. If E ′ < E then the random conformation is taken as the initial conformation

and repeats the whole procedure from Step 1 until maximum energy confor-

mation is reached.

8. Else if E ′ ≥ E then the procedure moves to the new random configuration

with a probability of e−δE.
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9. Else none of the Monte Carlo steps are selected and the whole procedure re-

peats from Step 1.

Figure 3.4: Metropolis Expected values

Observations: From the graph it can be inferred that when the difference be-

tween lowest energy and second lowest conformation is appreciably large then the

Metropolis iterations taken to converge to the minimum energy conformation is less.

This clearly verifies what Sali , Shaknovich and Karplus have stated.

3.6 New moves of transformation

’Folding starts with a rapid collapse from a random conformation to a semi-compact

globule. Then it proceeds through a slow rate determining search through the semi-

compact globules to find the transition state from which it quickly folds to the

native state’ [1]. With the assumption that once a compact conformation is reached

it undergoes transition only through other compact conformations, new global moves

on the chain on a grid have been proposed here. New moves are considered because
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some of the compact conformations cannot be reached by the Metropolis algorithm

with the local moves as explained in proposition[3.0.2].

3.6.1 Move 1:

An edge is added between two nodes in contact, each with degree two. Now we need

to remove an edge to get a valid compact conformations. Only the new edge added

can be removed to get valid compact conformations in this case. So this move will

not yield new conformations.

Figure 3.5: New move 1

3.6.2 Move 2:

An edge is added between two nodes in contact, one with degree 1 and the other

one with degree 2. Now an edge has to be removed from degree 2 vertex(now the

node has degree 3 after adding edge) to yield new conformations in here.

Figure 3.6: New move 2
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3.6.3 Move 3:

An edge is added between 2 nodes having degree 1. After adding this edge all nodes

have degree 2. Now removing any edge yields a new conformations.

Figure 3.7: New move 3

3.7 Metropolis Algorithm with the new moves

Here the earlier explained Monte Carlo moves in section [2.2] are replaced by the

new global moves.

1. Starts from any compact configuration.

2. Add an edge between any two nodes that are unit distance apart on the lattice.

There arises 3 cases.

(1)An edge between a degree 2 vertex and another degree 2 vertex.

(2)An edge between a degree 2 vertex and a degree 1 vertex.

(3)An edge between a degree 1 vertex and another degree 1 vertex.

3. If case (1) then

It is only possible to remove that same previously added edge to get a valid

compact configuration. So neighborhood list is not updated.

4. If case (2) then

It is only possible to remove an edge from a degree 3 node to obtain a valid

configurations.All such valid configurations are updated to neighborhood list.
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5. If case (3) then

It is possible to remove any edge already present to give new valid compact

configurations.All such valid configurations are updated to neighborhood list.

6. Select a random conformation from the neighborhood list.

7. Calculate the energy of the initial compact conformation E , and the randomly

selected conformation E ′.

8. If E ′ < E then the random compact conformation is taken as the initial con-

formation and repeats the whole procedure from Step 1 until the minimum

energy compact conformation is reached.

9. Else if E ′ ≥ E then the procedure moves to the new random conformation

with a probability of e−δE.

10. Else none of the global moves are selected and the whole procedure repeats

from Step 1.

Using Monte Carlo moves all compact conformations were not reachable. Since

with the new moves all compact conformations can be reached which has not been

proved but experimentally verified for 4∗4 grid. A non- trivial example of transition

from rrrdllldrrrdlll to ullurrrdddlllur is as shown below. The dotted lines indicate

adding of the new edge which basically is the next move. There can be different

sequences of steps in reaching the target conformation from the initial conformation.

Here the moves are not local any more. The non-trivial example given below takes

8 transformations to reach the target one.
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Figure 3.8: Example for new moves

The above non-trivial example gives an intuition that this transitions are pretty

faster. Here a graph is plotted between Metropolis iterations against energy gap(difference
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in minimum energy and the second minimum energy). The results with the new

moves on the Metropolis algorithm are shown below. Energy is derived from normal

distribution with mean µ = −1 and standard deviation σ = 1 for a 16 node chain

on a 4 ∗ 4 grid. Each of the Metropolis values depicted in the graph below has been

taken over an average of 50 Metropolis runs.

Figure 3.9: Results of Metropolis with new move

Observations: It can be clearly viewed that reaching the minimum energy con-

formation from an arbitrarily chosen compact conformation through the new global

moves is taking very less number of iterations. This can be helpful in finding the

minimum energy conformation for large monomer chains in a very short time.
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3.8 Energy Density graph

To know how the energy of the conformations of a protein chain of 16 nodes is

distributed a graph is plotted with energy against cumulative fraction. Cumulative

fraction at an energy Eis the total fraction of conformation whose energy is greater

than E. 6 different samples are obtained each with different energy distributions

but all with same mean µ = −2 and standard deviation σ = 1[1].

Figure 3.10: Sample 1 Figure 3.11: Sample 2

Figure 3.12: Sample 3 Figure 3.13: Sample 4
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Figure 3.14: Sample 5 Figure 3.15: Sample 6

Observations: All the 6 graphs plotted below have a general trend that towards

lower energy cumulative fraction does not change much. This small change in cu-

mulative fraction towards lower energy indicates that only few conformations are

there with low energies. Whereas towards the higher energy the cumulative fraction

varies quite appreciably. Most of the conformations are having higher energy in all

the graphs plotted.

The Metropolis algorithm based on energy between monomers , covers the con-

formations with higher energy in less number of iterations. Whereas it takes large

number of iterations to cover the lower energy conformations and at last reach the

minimum energy conformation. Despite having fewer number of conformations at

lower energy the Metropolis takes more iterations and even though there are large

number of conformations at higher energy it takes lesser iterations.

Therefore if there is some efficient way of covering lower energy conformations

faster , compared to the Metropolis algorithm with the local moves ; then the

number of iterations taken to reach the minimum energy conformation reaches a

new low. This has been achieved by the Metropolis algorithm with the new global

moves proposed in the previous section. It is achieved by using the Metropolis

algorithm with the local moves to reach a compact conformation with maximum

number of contact pairs and then as the next stage continue with the Metropolis

algorithm with the newly proposed global moves.



Chapter 4

Conclusion and Future Work

We have investigated in this thesis how the energy gap between the minimum and

second minimum energy conformations effect the convergence time of the protein

chain to reach the lowest energy conformation. Our results support the Sali,Shaknovich

and Karplus conjecture that it converges faster if the energy gap between the mini-

mum energy state conformation and the second minimum energy state conformation

is pronounced has been given here. The results provided here are for 2D monomer

chains and can easily be extended to monomer chains in 3D which in fact will provide

us with a deeper insight regarding protein folding. We also shows that Metropolis

algorithm with the Monte Carlo moves cannot find the minimum energy conforma-

tion and thereby would run for a very long time in some cases. It seems that the

Metropolis algorithm with our new moves can be used on long 3D protein chains to

get the minimum energy conformation in a short time.
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