Note

Bounds for the Graham-Pollak theorem for hypergraphs

Anand Babu*, Sundar Vishwanathan
Department of Computer Science \& Engineering, IIT Bombay, India

ARTICLE INFO

Article history:
Received 13 June 2018
Received in revised form 12 June 2019
Accepted 13 June 2019
Available online 3 July 2019

Keywords:

Hypergraph
Decomposition
Graham-Pollak

Abstract

Let $f_{r}(n)$ represent the minimum number of complete r-partite r-graphs required to partition the edge set of the complete r-uniform hypergraph on n vertices. The Graham-Pollak theorem states that $f_{2}(n)=n-1$. An upper bound of $(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}$ was known. Recently this was improved to $\frac{14}{15}(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}$ for even $r \geq 4$. A bound of $\left[\frac{r}{2}\left(\frac{14}{15}\right)^{\frac{r}{4}}+o(1)\right](1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}$ was also proved recently. Let c_{r} be the limit of $\frac{f_{r}(n)}{\left(\left\lfloor\frac{r}{2}\right\rfloor\right)}$ as $n \rightarrow \infty$. The smallest odd r for which $c_{r}<1$ that was known was for $r=295$. In this note we improve this to $c_{113}<1$ and also give better upper bounds for $f_{r}(n)$, for small values of even r.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An r-uniform hypergraph H (also referred to as an r-graph) is said to be r-partite if its vertex set $V(H)$ can be partitioned into sets $V_{1}, V_{2}, \ldots, V_{r}$, so that every edge in the edge set $E(H)$ of H consists of choosing precisely one vertex from each set V_{i}. That is, $E(H) \subseteq V_{1} \times V_{2} \times \cdots \times V_{r}$. Let $f_{r}(n)$ be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete r-uniform hypergraph on n vertices. The problem of determining $f_{r}(n)$ for $r>2$ was proposed by Aharoni and Linial [1]. For $r=2, f_{2}(n)$ is the minimum number of bipartite subgraphs required to partition the edge set of the complete graph. Graham and Pollak ([5,6] see also [4]) proved that at least $n-1$ bipartite graphs are required to cover the complete graph on n vertices. Other proofs were found by Tverberg [10], Peck [9] and Vishwanathan [11,12].

For a general r, constructions due to Alon [1] and later Cioabă, Kündgen and Verstraëte [2] give an upper bound for $f_{r}(n)$. Cioabă et al. showed that by ordering the vertices, the collection of r-graphs whose even positions are fixed partitions the edge set of the complete r-uniform hypergraph. The cardinality of the collection of r-graphs obtained is $\binom{n-(r+1) / 2}{(r-1) / 2}$ for odd r, and $\binom{n-r / 2}{r / 2}$ for even r. The upper bound described below is from the above construction and the lower bound is obtained using the ideas from linear algebra by Alon [1].

$$
\frac{2}{\binom{2\lfloor r / 2\rfloor}{\lfloor r / 2\rfloor}}(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor} \leq f_{r}(n) \leq(1-o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor} .
$$

Alon also proved that $f_{3}(n)=n-2$ [1]. Cioabă and Tait [3] showed that the construction is not tight in general but there was no asymptotic improvement to Alon's upper bound. In a breakthrough paper, Leader, Milićević and Tan [7] showed that $f_{4}(n) \leq\left(\frac{14}{15}\right)(1+o(1))\binom{n}{2}$. Using this they observed that $f_{r}(n) \leq\left(\frac{14}{15}\right)(1+o(1))\binom{n}{\frac{r}{2}}$ for even r. Let c_{r} be the smallest

[^0]c such that $f_{r}(n) \leq c(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}$. Later, Leader and Tan [8] showed that for a general $r \geq 4, c_{r} \leq \frac{r}{2}\left(\frac{14}{15}\right)^{\frac{r}{4}}+o(1)$ and as a direct consequence showed that $c_{295}<1$ [8]. The smallest odd r_{0} for which $c_{r_{0}}<1$ is important since this implies that $c_{r}<1$ for all $r>r_{0}$. In this note we improve the smallest known odd r, for which $c_{r}<1$ to $r=113$. We also give an improved upper bound for $f_{r}(n)$ for even r and $8 \leq r \leq 1096$ which is used in the above result. We show that for all even $r \geq 6$,
$$
f_{r}(n) \leq\left(\frac{14}{15}\right)^{\frac{r}{6}}(1+o(1))\binom{n}{\frac{r}{2}}
$$

2. The main result

Let S and T be two disjoint sets. Let $\binom{S}{a} \times\binom{ T}{b}$ denote all subsets X of $S \cup T$ such that $|X \cap S|=a$ and $|X \cap T|=b$.
A set Γ of complete r-partite r-graphs over $S \cup T$ is said to exactly cover a hypergraph F, if the hypergraphs in Γ are edge-disjoint and the union of the edges of the hypergraphs in Γ is F. A complete r-partite r-graph is also referred to as a block.

So $f_{r}(n)$ is the minimum number of complete r-partite r-graphs required to exactly cover the edge set of the complete r-uniform hypergraph on n vertices.

Theorem 1. For even $r \geq 6, f_{r}(n) \leq\left(\frac{14}{15}\right)^{\frac{r}{6}}(1+o(1))\binom{n}{\frac{r}{2}}$.
(Here the o(1) term is as $n \rightarrow \infty$ with r fixed.)
Proof. We show that for even $m \geq 8$, and $n \geq m$,

$$
f_{m}(n) \leq\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+n^{\frac{m}{2}-1} \log n
$$

The proof is by induction on m and n.
We use the following known bounds: $f_{2}(n) \leq n-1, f_{3}(n) \leq n-2$.
By dividing the set $[n]$ into two parts of size $\frac{n}{2}$ each, we get the following recurrence for $f_{m}(n)$.

$$
\begin{align*}
f_{m}(n) & \leq 2 \cdot f_{m}\left(\frac{n}{2}\right)+2 \cdot f_{m-1}\left(\frac{n}{2}\right)+2 \cdot f_{m-2}\left(\frac{n}{2}\right) f_{2}\left(\frac{n}{2}\right)+2 \cdot f_{m-3}\left(\frac{n}{2}\right) \cdot f_{3}\left(\frac{n}{2}\right) \\
& +\cdots+2 \cdot f_{\frac{m}{2}+1}\left(\frac{n}{2}\right) \cdot f_{\frac{m}{2}-1}\left(\frac{n}{2}\right)+\left[f_{\frac{m}{2}}\left(\frac{n}{2}\right)\right]^{2} \tag{1}
\end{align*}
$$

The bound $f_{4}(n) \leq\left(\frac{14}{15}\right) \frac{n^{2}}{2!}+n \log n$ follows from [7]. We prove that $f_{6}(n) \leq\left(\frac{14}{15}\right) \frac{n^{3}}{3!}+n^{2} \log n$ first. The base case for $f_{6}(n)$ holds since $f_{6}(6)=1$. Assume it is true for all values less than n.

$$
\begin{aligned}
f_{6}(n) & \leq 2 f_{6}\left(\frac{n}{2}\right)+2 f_{5}\left(\frac{n}{2}\right)+2 f_{2}\left(\frac{n}{2}\right) f_{4}\left(\frac{n}{2}\right)+f_{3}\left(\frac{n}{2}\right) f_{3}\left(\frac{n}{2}\right) \\
& \leq 2\left[\left(\frac{14}{15}\right) \frac{n^{3}}{8 \cdot 3!}+\frac{n^{2} \log \left(\frac{n}{2}\right)}{4}\right]+2 \frac{n^{2}}{4 \cdot 2!}+2 \frac{n}{2}\left[\left(\frac{14}{15}\right) \frac{n^{2}}{4 \cdot 2!}+\frac{n \log \left(\frac{n}{2}\right)}{2}\right]+\frac{n^{2}}{4} \\
& \leq\left(\frac{14}{15}\right) \frac{n^{3}}{3!}+n^{2} \log n
\end{aligned}
$$

Now we prove that $f_{m}(n) \leq\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+n^{\frac{m}{2}-1} \log n$. The base case for $f_{m}(n)$ holds since $f_{m}(m)=1$. Assume it is true for all values less than n. as stated earlier. Suppose m is a multiple of 4 . By rearranging the terms in (1) according to even and odd indices we have,

$$
\begin{aligned}
f_{m}(n) \leq & 2 \cdot f_{m}\left(\frac{n}{2}\right)+2 \cdot f_{m-2}\left(\frac{n}{2}\right) f_{2}\left(\frac{n}{2}\right)+\cdots+\left[f_{\frac{m}{2}}\left(\frac{n}{2}\right)\right]^{2} \\
& +2 \cdot f_{m-1}\left(\frac{n}{2}\right)+2 \cdot f_{m-3}\left(\frac{n}{2}\right) \cdot f_{3}\left(\frac{n}{2}\right)+\cdots+2 \cdot f_{\frac{m}{2}+1}\left(\frac{n}{2}\right) \cdot f_{\frac{m}{2}-1}\left(\frac{n}{2}\right)
\end{aligned}
$$

Substituting for $f_{2}\left(\frac{n}{2}\right), f_{4}\left(\frac{n}{2}\right)$ and $f_{6}\left(\frac{n}{2}\right)$ and using the inductive hypothesis for all even $i \geq 8$ and $f_{i}\left(\frac{n}{2}\right)=\binom{\frac{n}{2}}{\left\lfloor\frac{i}{2}\right\rfloor}$ for all odd $i \geq 3$, we get

$$
\begin{aligned}
f_{m}(n) \leq & 2\left[\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}\right)!}+\frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}\right]+2\left(\frac{n}{2}\right)\left[\left(\frac{14}{15}\right)^{\frac{m-2}{6}} \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1}\left(\frac{m}{2}-1\right)!}+\frac{n^{\frac{m}{2}-2} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-2}}\right] \\
& +2\left[\left(\frac{14}{15}\right) \frac{n^{2}}{2^{2} \cdot 2!}+\frac{n \log \left(\frac{n}{2}\right)}{2}\right]\left[\left(\frac{14}{15}\right)^{\frac{m-4}{6}} \frac{n^{\frac{m}{2}-2}}{2^{\frac{m}{2}-2}\left(\frac{m}{2}-2\right)!}+\frac{n^{\frac{m}{2}-3} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-3}}\right] \\
& +2\left[\left(\frac{14}{15}\right) \frac{n^{3}}{2^{3} \cdot 3!}+\frac{n^{2} \log \left(\frac{n}{2}\right)}{2^{2}}\right]\left[\left(\frac{14}{15}\right)^{\frac{m}{6}-1} \frac{n^{\frac{m}{2}-3}}{2^{\frac{m}{2}-3}\left(\frac{m}{2}-3\right)!}+\frac{n^{\frac{m}{2}-4} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-4}}\right]+\cdots \\
& +\left[\left(\frac{14}{15}\right)^{\frac{m}{12}} \frac{n^{\frac{m}{4}}}{2^{\frac{m}{4}}\left(\frac{m}{4}\right)!}+\frac{n^{\frac{m}{4}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{4}-1}}\right]\left[\left(\frac{14}{15}\right)^{\frac{m}{12}} \frac{n^{\frac{m}{4}}}{2^{\frac{m}{4}}\left(\frac{m}{4}\right)!}+\frac{n^{\frac{m}{4}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{4}-1}}\right] \\
& +\left[2\binom{\frac{n}{2}}{\frac{m}{2}-1}+2\binom{\frac{n}{2}}{\frac{m}{2}}\binom{\frac{n}{2}}{1}+\cdots+2\binom{\frac{n}{2}}{\frac{m}{4}}\right]
\end{aligned}
$$

Grouping terms according to their asymptotic behavior of n and since there are at most $\frac{m}{4}$ terms, each contributing $\frac{2 n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{2^{\frac{m}{2}-2}}$, we have

$$
\begin{aligned}
f_{m}(n) \leq & {\left[2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}\right)!}+2\left(\frac{14}{15}\right)^{\frac{m-2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}-1\right)!}+2\left(\frac{14}{15}\right)^{\frac{m+2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot 2!\cdot\left(\frac{m}{2}-2\right)!}+\cdots\right.} \\
& \left.+2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot\left(\frac{i}{2}\right)!\left(\frac{m}{2}-\frac{i}{2}\right)!}+\cdots+\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{4}\right)!\left(\frac{m}{4}\right)!}\right] \\
& +\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}+\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}+2\left[\left(\frac{14}{15}\right) \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot 2!}+\left(\frac{14}{15}\right)^{\frac{m-4}{6}} \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-2\right)!}\right] \\
& +2\left[\left(\frac{14}{15}\right) \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot 3!}+\left(\frac{14}{15}\right)^{\frac{m-6}{6}} \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-3\right)!}\right]+\cdots \\
& +\left[\left(\frac{14}{15}\right)^{\frac{m}{12}} \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!}+\left(\frac{14}{15}\right)^{\frac{m}{12}} \frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!}\right] \\
& +\frac{2 n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{m} \frac{2^{\frac{m}{2}-2}}{4} \\
& +\left[2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-1\right)!}+2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-2\right)!}+\cdots+2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!\left(\frac{m}{4}-1\right)!}\right]
\end{aligned}
$$

Since $\left(\frac{14}{15}\right)^{k}<1$, for positive k, for the terms of asymptotic order $n^{\frac{m}{2}-1} \log n$, we have

$$
\begin{aligned}
f_{m}(n) \leq & 2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}\right)!}+2\left(\frac{14}{15}\right)^{\frac{m-2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}-1\right)!}+2\left(\frac{14}{15}\right)^{\frac{m+2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot 2!\cdot\left(\frac{m}{2}-2\right)!}+\cdots \\
& \left.+2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot\left(\frac{i}{2}\right)!\left(\frac{m}{2}-\frac{i}{2}\right)!}+\cdots+\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{4}\right)!\left(\frac{m}{4}\right)!}\right] \\
& +\left[\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}+\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}+\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot 2!}+\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-2\right)!}\right. \\
& +\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot 3!}+\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-3\right)!}+\cdots \\
& \left.+\frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!}+\frac{n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!}\right] \\
& +\frac{2 n^{\frac{m}{2}-2} \log g^{2}\left(\frac{n}{2}\right)}{m} \frac{2^{\frac{m}{2}-2}}{4} \\
& +\left[2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-1\right)!}+2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{2}-2\right)!}+\cdots+2 \frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1} \cdot\left(\frac{m}{4}\right)!\left(\frac{m}{4}-1\right)!}\right]
\end{aligned}
$$

Using the identity $\sum_{i=0}^{N} \frac{1}{i!\cdot(N-i)!}=\frac{2^{N}}{N!}$ on the terms in the first and last square braces we get,

$$
\begin{aligned}
f_{m}(n) \leq[& \left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}-2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}-1\right)!}-2\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot 2!\cdot\left(\frac{m}{2}-2\right)!}+2\left(\frac{14}{15}\right)^{\frac{m-2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}}\left(\frac{m}{2}-1\right)!} \\
& \left.+2\left(\frac{14}{15}\right)^{\frac{m+2}{6}} \frac{n^{\frac{m}{2}}}{2^{\frac{m}{2}} \cdot 2!\cdot\left(\frac{m}{2}-2\right)!}\right]+\left[\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}\right]\left[1+1+\frac{1}{2!}+\cdots+\frac{1}{\left(\frac{m}{2}-2\right)!}\right] \\
& +\frac{2 n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{2^{\frac{m}{2}-2}} \frac{m}{4}+\frac{n^{\frac{m}{2}-1}}{\left(\frac{m}{2}-1\right)!}
\end{aligned}
$$

Upon simplifying, we have

$$
\begin{aligned}
f_{m}(n) \leq & \left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}\left[1-\frac{m}{2^{\frac{m}{2}}}\left\{1-\left(\frac{14}{15}\right)^{-\frac{1}{3}}\right\}-\frac{m^{2}}{2^{\frac{m}{2}+2}}\left\{1-\left(\frac{14}{15}\right)^{\frac{1}{3}}\right\}\right]+\left[\frac{2 n^{\frac{m}{2}-1} \log \left(\frac{n}{2}\right)}{2^{\frac{m}{2}-1}}\right] e \\
& +\frac{2 n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{2^{\frac{m}{2}-2}} \frac{m}{4}+\frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1}} \\
\leq & \left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}\left[1-\frac{m}{2^{\frac{m}{2}}}\left\{1-\left(\frac{14}{15}\right)^{-\frac{1}{3}}\right\}-\frac{m^{2}}{2^{\frac{m}{2}+2}}\left\{1-\left(\frac{14}{15}\right)^{\frac{1}{3}}\right\}\right]+\left[\frac{2 \cdot e \cdot n^{\frac{m}{2}-1} \log n}{2^{\frac{m}{2}-1}}\right. \\
& \left.-\frac{2 \cdot e \cdot n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1}}\right]+\frac{2 n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{2^{\frac{m}{2}-2}} \frac{m}{4}+\frac{n^{\frac{m}{2}-1}}{2^{\frac{m}{2}-1}} \\
\leq & \left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+\frac{2 e \cdot n^{\frac{m}{2}-1} \log n}{2^{\frac{m}{2}-1}}+\frac{m n^{\frac{m}{2}-2} \log ^{2}\left(\frac{n}{2}\right)}{2 \cdot 2^{\frac{m}{2}-2}} \\
\leq & \left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+n^{\frac{m}{2}-1} \log n\left[\frac{2 e}{2^{\frac{m}{2}-1}}+\frac{m \log \left(\frac{n}{2}\right)}{n \cdot 2^{\frac{m}{2}-1}}\right]
\end{aligned}
$$

For all values of $m \geq 8,\left[\frac{2 e}{2^{\frac{m}{2}-1}}+\frac{m \log \left(\frac{n}{2}\right)}{n \cdot 2^{\frac{m}{2}-1}}\right] \leq 1$. Therefore,

$$
f_{m}(n) \leq\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+n^{\frac{m}{2}-1} \log n
$$

For the case that m is a multiple of 2 but not 4 , an argument similar to the above can be used to show that $f_{m}(n) \leq\left(\frac{14}{15}\right)^{\frac{m}{6}} \frac{n^{\frac{m}{2}}}{\left(\frac{m}{2}\right)!}+n^{\frac{m}{2}-1} \log n$.

We now prove the stated bound for c_{125}.
Lemma 1. For any S and T, and even a and b and $r=a+b+1,\binom{S}{a} \times\binom{ T}{b+1} \cup\binom{S}{a+1} \times\binom{ T}{b}$ can be exactly covered using at $\operatorname{most}\binom{|S|}{\frac{a}{2}} \cdot\binom{|T|}{\frac{b}{2}}$ blocks.

Proof. Order the elements of S and T. Pick $\frac{a}{2}$ elements of S, say $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i_{\frac{a}{2}}}$, and $\frac{b}{2}$ elements of T, say $t_{j_{1}}, t_{j_{2}}, \ldots, t_{j_{\frac{b}{2}}}$. We associate a block corresponding to these sets as follows:

$$
\begin{aligned}
& \left\{s_{1}, \ldots, s_{i_{1}-1}\right\},\left\{s_{i_{1}}\right\}, \ldots,\left\{s_{\frac{a}{2}-1}+1, \ldots, s_{i_{\frac{a}{2}}-1}\right\},\left\{s_{i_{\frac{a}{2}}}\right\} \\
& \left\{t_{1}, \ldots, t_{j_{1}-1}\right\},\left\{t_{j_{1}}\right\}, \ldots,\left\{t_{j_{\frac{b}{2}-1}+1}, \ldots, t_{j_{\frac{b}{2}}-1}\right\},\left\{t_{j_{\frac{b}{2}}}\right\},\left\{s_{\frac{a}{2}+1}, \ldots, s_{p}, t_{j_{\frac{b}{2}}+1}, \ldots, t_{q}\right\} .
\end{aligned}
$$

Here p is the index of the last remaining element after picking $s_{i_{1}}, s_{i_{2}}, \ldots, s_{i \frac{a}{2}}$ from S in the ordering. Likewise, q is the index of the element from T. Among these take only the blocks which have $a+b+1$ parts. Note that these form a disjoint cover.

Lemma 2. For large S and T, and even a and b, $\binom{S}{a} \times\binom{ T}{b+1} \cup\binom{S}{a+1} \times\binom{ T}{b}$ can be exactly covered using $\left[\left(\frac{14}{15}\right)^{\frac{b}{6}}+\left(\frac{14}{15}\right)^{\frac{a}{6}}\right](1+$ $o(1))\binom{|S|}{\frac{a}{2}} \cdot\binom{|T|}{\frac{b}{2}}$ blocks. Here the $o(1)$ term is as $|S| \&|T|$ go to ∞.

Proof. The hypergraph $\binom{S}{a} \times\binom{ T}{b+1}$ can be exactly covered using $f_{a}(|S|) \cdot f_{b+1}(|T|)$ blocks. By Theorem 1, this is at most $\left(\frac{14}{15}\right)^{\frac{a}{6}}(1+o(1))\binom{|S|}{\frac{a}{2}}\binom{|T|}{\frac{b}{2}}$ blocks. Likewise, $\binom{S}{a+1} \times\binom{ T}{b}$ can be exactly covered using $\left(\frac{14}{15}\right)^{\frac{b}{6}}(1+o(1))\binom{|S|}{\frac{a}{2}}\binom{|T|}{\frac{b}{2}}$ blocks.

Lemma 3. For any odd $r=4 d+1$, if $\binom{\frac{n}{2}}{\left\lfloor\frac{r}{2}\right\rfloor} \times\binom{\frac{n}{2}}{\left[\frac{r}{2}\right\rceil} \cup\binom{\frac{n}{2}}{\left[\frac{r}{2}\right\rceil} \times\binom{\frac{n}{2}}{\left\lfloor\frac{r}{2}\right\rfloor}$ can be covered using $\alpha(1+o(1))\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2}$ blocks such that $\alpha<1$, then $f_{r}(n) \leq c_{r}(\alpha) \cdot(1+o(1))\left(\begin{array}{c}\left.n \frac{r}{2}\right\rfloor\end{array}\right)$ where $c_{r}(\alpha)<1$.

Proof. Recall the inequality.

$$
f_{r}(n) \leq 2 \cdot f_{r}\left(\frac{n}{2}\right)+2 \cdot f_{1}\left(\frac{n}{2}\right) \cdot f_{r-1}\left(\frac{n}{2}\right)+\cdots+2 \cdot f_{\frac{r-1}{2}}\left(\frac{n}{2}\right) \cdot f_{\frac{r+1}{2}}\left(\frac{n}{2}\right)
$$

Pairing up two consecutive terms and using Lemma 1 for each pair we have:

$$
f_{r}(n) \leq 2(1+o(1))\left[\sum_{i=0}^{\frac{r-5}{4}}\binom{\frac{n}{2}}{i}\binom{\frac{n}{2}}{\frac{r-1}{2}-i}\right]+f_{\left\lfloor\frac{r}{2}\right\rfloor}\left(\frac{n}{2}\right) f_{\left[\frac{r}{2}\right\rceil}\left(\frac{n}{2}\right)+f_{\left\lceil\frac{r}{2}\right\rceil}\left(\frac{n}{2}\right) f_{\left\lfloor\frac{r}{2}\right\rfloor}\left(\frac{n}{2}\right)
$$

Using the hypothesis and by adding and subtracting $\binom{\frac{n}{2}}{\left[\frac{r}{4}\right\rfloor}^{2}$ to the above equation we have:

$$
\begin{aligned}
f_{r}(n) & \leq 2(1+o(1))\left[\sum_{i=0}^{\frac{r-5}{4}}\binom{\frac{n}{2}}{i}\binom{\frac{n}{2}}{\frac{r-1}{2}-i}\right]+\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2}+\alpha(1+o(1))\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2}-\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2} \\
& \leq(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}+\alpha(1+o(1))\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2}-\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2} \\
& \leq(1+o(1))\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}-(1-\alpha)(1+o(1))\binom{\frac{n}{2}}{\left\lfloor\frac{r}{4}\right\rfloor}^{2} \\
& \leq\left[1-\frac{(1-\alpha)}{e^{\frac{r}{2}}}\right]\binom{n}{\left\lfloor\frac{r}{2}\right\rfloor}
\end{aligned}
$$

Lemma 4. $f_{125}(n) \leq c \cdot(1+o(1))\binom{n}{62}$, for a constant $c<1$.
Proof. For $a=b=62$ and $|S|=|T|=\frac{n}{2}$ in Lemma 2, the hypergraph $\binom{n / 2}{62} \times\binom{ n / 2}{63} \cup\binom{n / 2}{63} \times\binom{ n / 2}{62}$ can be exactly covered using at most $2 \cdot\left(\frac{14}{15}\right)^{\frac{62}{6}}(1+o(1))\binom{n / 2}{31}^{2} \leq 0.981 \cdot(1+o(1))\binom{\frac{n}{2}}{31}^{2}$ blocks. The result follows from Lemma 3.

As a consequence of Lemma 4, we have $c_{125}<1$. In fact solving the recurrence exactly for Theorem 1 using a computer program yields $c_{113}<1$.

Declaration of competing interest

None.

References

[1] N. Alon, Decomposition of the complete r-graph into complete r-partite r-graphs, Graphs Combin. 2 (1) (1986) 95-100.
[2] S.M. Cioabă, A. Kündgen, J. Verstraëte, On decompositions of complete hypergraphs, J. Combin. Theory Ser. A 116 (7) (2009) $1232-1234$.
[3] S.M. Cioabă, M. Tait, Variations on a theme of Graham and Pollak, Discrete Math. 313 (5) (2013) 665-676.
[4] R.L. Graham, L. Lovász, Distance matrix polynomials of trees, Adv. Math. 29 (1) (1978) 60-88.
[5] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell Labs Tech. J. 50 (8) (1971) 2495-2519.
[6] R.L. Graham, H.O. Pollak, On embedding graphs in squashed cubes, in: Graph Theory and Applications, Springer, 1972, pp. 99-110.
[7] I. Leader, L. Milićević, T.S. Tan, Decomposing the complete r-graph, J. Combin. Theory Ser. A 154 (Supplement C) (2018) 21-31.
[8] I. Leader, T.S. Tan, Improved bounds for the Graham-Pollak Problem for Hypergraphs, Electron. J. Combin. 25 (1) (2018) 1-4.
[9] G.W. Peck, A new proof of a theorem of Graham and Pollak, Discrete Math. 49 (3) (1984) 327-328.
[10] H. Tverberg, On the decomposition of K_{n} into complete bipartite graphs, J. Graph Theory 6 (4) (1982) 493-494.
[11] S. Vishwanathan, A polynomial space proof of the Graham-Pollak theorem, J. Combin. Theory Ser. A 115 (4) (2008) 674-676.
[12] S. Vishwanathan, A counting proof of the Graham-Pollak theorem, Discrete Math. 313 (6) (2013) 765-766.

[^0]: * Corresponding author.

 E-mail address: anandb@cse.iitb.ac.in (A. Babu).

