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1. Introduction

An r-uniform hypergraph H (also referred to as an r-graph) is said to be r-partite if its vertex set V(H) can be partitioned
into sets V1, V5, ..., V,, so that every edge in the edge set E(H) of H consists of choosing precisely one vertex from each
set V;. That is, E(H) € V; x V5 x --- x V,. Let f.(n) be the minimum number of complete r-partite r-graphs needed to
partition the edge set of the complete r-uniform hypergraph on n vertices. The problem of determining f.(n) for r > 2
was proposed by Aharoni and Linial [1]. For r = 2, f5(n) is the minimum number of bipartite subgraphs required to
partition the edge set of the complete graph. Graham and Pollak ([5,6] see also [4]) proved that at least n — 1 bipartite
graphs are required to cover the complete graph on n vertices. Other proofs were found by Tverberg [10], Peck [9] and
Vishwanathan [11,12].

For a general r, constructions due to Alon [1] and later Cioaba, Kiindgen and Verstraéte [2] give an upper bound for
fr(n). Cioaba et al. showed that by ordering the vertices, the collection of r-graphs whose even positions are fixed partitions

the edge set of the complete r-uniform hypergraph. The cardinality of the collection of r-graphs obtained is ("(_r(ﬁ)l/)z/z)
for odd r, and (";;2/2) for even r. The upper bound described below is from the above construction and the lower bound
is obtained using the ideas from linear algebra by Alon [1].

2 n n
————(1+o0(1 +(n) < (1-o0(1 .
(ZLL:/ZZJJ)( + o D(L;J) = fr(n) = (1 —of ))<L§J)

Alon also proved that f3(n) = n — 2 [1]. Cioaba and Tait [3] showed that the construction is not tight in general but there

was no asymptotic improvement to Alon’s upper bound. In a breakthrough paper, Leader, Mili¢evi¢ and Tan [7] showed

that fu(n) < (12)(1 + 0(1))(}). Using this they observed that f,(n) < (32)(1 4 o(1))(1) for even r. Let ¢, be the smallest
2
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¢ such that f.(n) < c(1+ o(l))(LgJ). Later, Leader and Tan [8] showed that for a general r > 4, ¢, < %(%)ﬁ + o(1) and
as a direct consequence showed that cy9s < 1 [8]. The smallest odd ro for which ¢, < 1 is important since this implies
that ¢, < 1 for all r > r. In this note we improve the smallest known odd r, for which ¢, < 1 to r = 113. We also give
an improved upper bound for f.(n) for even r and 8 < r < 1096 which is used in the above result. We show that for all

evenr > 6,

14\ §
i = (35)°a +o(1))('§).

2

2. The main result

Let S and T be two disjoint sets. Let (3) x (}) denote all subsets X of S U T such that [X NS| =aand |XNT| = b.

A set I' of complete r-partite r-graphs over S U T is said to exactly cover a hypergraph F, if the hypergraphs in I" are
edge-disjoint and the union of the edges of the hypergraphs in I" is F. A complete r-partite r-graph is also referred to as
a block.

So f;(n) is the minimum number of complete r-partite r-graphs required to exactly cover the edge set of the complete
r-uniform hypergraph on n vertices.

Theorem 1. For evenr > 6, fi(n) < (%)%(1 + o(1)(7).

(Here the o(1) term is as n — oo with r fixed.)

Proof. We show that for even m > 8, and n > m,

The proof is by induction on m and n.
We use the following known bounds: f,(n) <n—1, f3(n) <n— 2.
By dividing the set [n] into two parts of size % each, we get the following recurrence for f,(n).

o) = 2-40(3) + 2501 (5) + 252 (5)8(5) + 2-0(3) ()
o2 fya(3) pa(5) + 0y ()
14

The bound fy(n) < (%)’;—2! + nlogn follows from [7]. We prove that fs(n) < (ﬁ)g + n?logn first. The base case for
fe(n) holds since f5(6) = 1. Assume it is true for all values less than n.

fsm =26(5) +26(5) +26(5)R(5) +£(5)6(5)

14\ n*  n’log(§ 2 14\ n?>  nlog(5 2
<2[<) L g(2)}+24n +2n[<) L g(z)]+n

(1)

- 15/8-3! 4 2! 2|1\15/4.2! 2 4
< (]4>n3 +n%logn
—\15/ 3! &
Now we prove that f,(n) < %)% e fnz! log n. The base case for f;,(n) holds since fi,(m) = 1. Assume it is true for

(R
all values less than n. as stated earlier. Suppose m is a multiple of 4. By rearranging the terms in (1) according to even
and odd indices we have,

) =2-fu(5) + 22 (5)R(5) + -+ 13 (5)P

a8 2 a8 ) 2 ) g (2)
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Substituting for f,(3), fa(3) and fs(5) and using the inductive hypothesis for all even i > 8 and fi(35) = (

i> 3, we get
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Grouping terms according to their asymptotic behavior o

m
2 2 logz(%)

m———, we have
22
14\% n? 14\"5*  n? 144 "5* n?
fm(n)§[2<15) 2%(m)v+2(15) 2%(E_1)v+2<ﬁ 5.2 (m = 2)
27 m 2 : m : 2 :
N <14)% nz - (14)% nz ]
15/ 2% (4 v(gm_%)v 15 3% mym)!
2n2""log(3) 2nz"'log(}) to (14)117’] log(3) N (l4>me_ n
2571 251 1 27-1.91 15 271
2(E)ﬁi!%§2+(ﬂ)%5jﬁjE§EL e
15/ 2%-1.3 15 251 S(m—3)!
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14\ "4 p22 n2 3 log(2)
1 25721 ) 2773

(14)%*1 nz-3 n%“‘log(g)
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I N

Since (E)k < 1, for positive k, for the terms of asymptotic order nz! logn, we have

m
2

14\2 n 14\"2  n2 14\ "2 n?
fm(n)§[2< )6 - +2(—> ° m7+2<7) s__n
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Using the identity Z?’: o Wt,), = f\,—N, on the terms in the first and last square braces we get,

fl) s[ (52)° g), - 2(1:)2(;

14\ % n? 14\"2 n
255 s 28
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For all values of m > 8, mz‘:l + '"'°§33} < 1. Therefore,
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For the casemthat m is a multiple of 2 but not 4, an argument similar to the above can be used to show that

fm(n) < (%)% (”%7), +n2 'logn. O

We now prove the stated bound for c1s.

Lemma 1. ForanySand T, and evenaand bandr =a+b+1, () x (,1,) U (,},) x (}) can be exactly covered using at
most (13) - (}') blocks.
2

2

Proof. Order the elements of S and T. Pick £ elements of S, say s;,, Si,. - .., Sis, and 2 elements of T, say t;,, tj,. ..., tj, -
. . 2 2
We associate a block corresponding to these sets as follows:
{517 LR Sil—l}v {Si1}» e {sf%_1+ls e Si%—l}v {S'g }7
{t1, ..., tj],1}, {tfl}’ ey {tjé,frl’ ey th,]}, {tjb 1, {S,'g+1, < Spy tjg+1v e, l'q}.
2 2 2 2 2
Here p is the index of the last remaining element after picking s;,, si,, ..., Si, from S in the ordering. Likewise, q is the

index of the element from T. Among these take only the blocks which have a—iz—b—i— 1 parts. Note that these form a disjoint
cover. [

Lemma 2. For large S and T, and even a and b, (3) x (bL) u (ail) x (}) can be exactly covered using [(%)% + (%)%](l +

o(l))(g') . (';) blocks. Here the o(1) term is as |S| & |T| go to oo.

Proof. The hypergraph (3) x (bL
IT|

) can be exactly covered using f,(|S|) - fo+1(|T|) blocks. By Theorem 1, this is at most
(81 + 0(1))(‘?)(%) blocks. Likewise, (,°,) x (}) can be exactly covered using (%)g(l + o(l))('?)(

IT|
o %) blocks. O
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Lemma 3. Forany odd r = 4d + 1, if
o < 1, then fr(n) < ¢(a) - (1 +o(1))(

Proof. Recall the inequality.

b =2(2) +2(3) hs(3) 4 420 (3) ()

Pairing up two consecutive terms and using Lemma 1 for each pair we have:

r—>5

fim) < 201 *"“”[i (j) (r_f_ 1)} +i(3) (3) (G (3)

i=0
Using the hypothesis and by adding and subtracting ( % ) to the above equation we have:

-5

4 n n n 2 n 2 n 2

-(n) < 21+ o(1 2 2)] (§> 1 1(5)—<i)
fi(n) < 2(1 + of ))|:,-_0 (l)(r;—i + ] +a(1+0(1)) ] o

n n 2 2
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2

n

—(1—a)1+0(1

QJ) (1 —a)(1+0of ))(L J)

-
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E RN SIE]
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Lemma 4. fi55(n) < ¢ - (14 0o(1))((). for a constant ¢ < 1.

Proof. Fora=b =62 and |S| = |T| = % in Lemma 2, the hypergraph () x () U (¥3) x () can be exactly covered
62

using at most 2 - ( ) 1+ 0(1))(”/2) <0.981-(1+ 0(1))(371) blocks. The result follows from Lemma 3. O

As a consequence of Lemma 4, we have ¢35 < 1. In fact solving the recurrence exactly for Theorem 1 using a computer
program yields cy13 < 1.
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