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a b s t r a c t

Let fr (n) represent the minimum number of complete r-partite r-graphs required
to partition the edge set of the complete r-uniform hypergraph on n vertices. The
Graham–Pollak theorem states that f2(n) = n − 1. An upper bound of (1 + o(1))

( n
⌊
r
2 ⌋

)
was known. Recently this was improved to 14

15 (1+ o(1))
( n
⌊
r
2 ⌋

)
for even r ≥ 4. A bound of[

r
2 (

14
15 )

r
4 + o(1)

]
(1 + o(1))

( n
⌊
r
2 ⌋

)
was also proved recently. Let cr be the limit of fr (n)

( n
⌊
r
2 ⌋)

as

n → ∞. The smallest odd r for which cr < 1 that was known was for r = 295. In this
note we improve this to c113 < 1 and also give better upper bounds for fr (n), for small
values of even r .

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An r-uniform hypergraph H (also referred to as an r-graph) is said to be r-partite if its vertex set V (H) can be partitioned
into sets V1, V2, . . . , Vr , so that every edge in the edge set E(H) of H consists of choosing precisely one vertex from each
set Vi. That is, E(H) ⊆ V1 × V2 × · · · × Vr . Let fr (n) be the minimum number of complete r-partite r-graphs needed to
partition the edge set of the complete r-uniform hypergraph on n vertices. The problem of determining fr (n) for r > 2
was proposed by Aharoni and Linial [1]. For r = 2, f2(n) is the minimum number of bipartite subgraphs required to
partition the edge set of the complete graph. Graham and Pollak ([5,6] see also [4]) proved that at least n − 1 bipartite
graphs are required to cover the complete graph on n vertices. Other proofs were found by Tverberg [10], Peck [9] and
Vishwanathan [11,12].

For a general r , constructions due to Alon [1] and later Cioabă, Kündgen and Verstraëte [2] give an upper bound for
fr (n). Cioabă et al. showed that by ordering the vertices, the collection of r-graphs whose even positions are fixed partitions
the edge set of the complete r-uniform hypergraph. The cardinality of the collection of r-graphs obtained is

(n−(r+1)/2
(r−1)/2

)
for odd r , and

(n−r/2
r/2

)
for even r . The upper bound described below is from the above construction and the lower bound

is obtained using the ideas from linear algebra by Alon [1].

2(2⌊r/2⌋
⌊r/2⌋

) (1 + o(1))
(

n
⌊
r
2⌋

)
≤ fr (n) ≤ (1 − o(1))

(
n

⌊
r
2⌋

)
.

Alon also proved that f3(n) = n− 2 [1]. Cioabă and Tait [3] showed that the construction is not tight in general but there
was no asymptotic improvement to Alon’s upper bound. In a breakthrough paper, Leader, Milićević and Tan [7] showed
that f4(n) ≤ ( 1415 )(1 + o(1))

(n
2

)
. Using this they observed that fr (n) ≤ ( 1415 )(1 + o(1))

(n
r
2

)
for even r . Let cr be the smallest
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c such that fr (n) ≤ c(1 + o(1))
( n
⌊
r
2 ⌋

)
. Later, Leader and Tan [8] showed that for a general r ≥ 4, cr ≤

r
2 (

14
15 )

r
4 + o(1) and

as a direct consequence showed that c295 < 1 [8]. The smallest odd r0 for which cr0 < 1 is important since this implies
that cr < 1 for all r > r0. In this note we improve the smallest known odd r , for which cr < 1 to r = 113. We also give
an improved upper bound for fr (n) for even r and 8 ≤ r ≤ 1096 which is used in the above result. We show that for all
even r ≥ 6,

fr (n) ≤

(14
15

) r
6
(1 + o(1))

(
n
r
2

)
.

2. The main result

Let S and T be two disjoint sets. Let
(S
a

)
×

(T
b

)
denote all subsets X of S ∪ T such that |X ∩ S| = a and |X ∩ T | = b.

A set Γ of complete r-partite r-graphs over S ∪ T is said to exactly cover a hypergraph F , if the hypergraphs in Γ are
edge-disjoint and the union of the edges of the hypergraphs in Γ is F . A complete r-partite r-graph is also referred to as
a block.

So fr (n) is the minimum number of complete r-partite r-graphs required to exactly cover the edge set of the complete
r-uniform hypergraph on n vertices.

Theorem 1. For even r ≥ 6, fr (n) ≤ ( 1415 )
r
6 (1 + o(1))

(n
r
2

)
.

(Here the o(1) term is as n → ∞ with r fixed.)

Proof. We show that for even m ≥ 8, and n ≥ m,

fm(n) ≤

(14
15

)m
6 n

m
2

(m2 )!
+ n

m
2 −1 log n.

The proof is by induction on m and n.
We use the following known bounds: f2(n) ≤ n − 1, f3(n) ≤ n − 2.
By dividing the set [n] into two parts of size n

2 each, we get the following recurrence for fm(n).

fm(n) ≤ 2 · fm
(n
2

)
+ 2 · fm−1

(n
2

)
+ 2 · fm−2

(n
2

)
f2
(n
2

)
+ 2 · fm−3

(n
2

)
· f3

(n
2

)
+ · · · + 2 · fm

2 +1

(n
2

)
· fm

2 −1

(n
2

)
+ [fm

2

(n
2

)
]
2.

(1)

The bound f4(n) ≤ ( 1415 )
n2
2! + n log n follows from [7]. We prove that f6(n) ≤ ( 1415 )

n3
3! + n2 log n first. The base case for

f6(n) holds since f6(6) = 1. Assume it is true for all values less than n.

f6(n) ≤ 2f6
(n
2

)
+ 2f5

(n
2

)
+ 2f2

(n
2

)
f4
(n
2

)
+ f3

(n
2

)
f3
(n
2

)
≤ 2

[(14
15

) n3

8 · 3!
+

n2 log( n2 )
4

]
+ 2

n2

4 · 2!
+ 2

n
2

[(14
15

) n2

4 · 2!
+

n log( n2 )
2

]
+

n2

4

≤

(14
15

)n3

3!
+ n2 log n

Now we prove that fm(n) ≤ ( 1415 )
m
6 n

m
2

(m2 )! + n
m
2 −1 log n. The base case for fm(n) holds since fm(m) = 1. Assume it is true for

all values less than n. as stated earlier. Suppose m is a multiple of 4. By rearranging the terms in (1) according to even
and odd indices we have,

fm(n) ≤ 2 · fm
(n
2

)
+ 2 · fm−2

(n
2

)
f2
(n
2

)
+ · · · + [fm

2

(n
2

)
]
2

+ 2 · fm−1

(n
2

)
+ 2 · fm−3

(n
2

)
· f3

(n
2

)
+ · · · + 2 · fm

2 +1

(n
2

)
· fm

2 −1

(n
2

)
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Substituting for f2( n2 ), f4(
n
2 ) and f6( n2 ) and using the inductive hypothesis for all even i ≥ 8 and fi( n2 ) =

( n
2

⌊
i
2 ⌋

)
for all odd

i ≥ 3, we get

fm(n) ≤ 2
[(14

15

)m
6 n

m
2

2
m
2 (m2 )!

+
n

m
2 −1 log( n2 )

2
m
2 −1

]
+ 2

(n
2

)[(14
15

)m−2
6 n

m
2 −1

2
m
2 −1(m2 − 1)!

+
n

m
2 −2 log( n2 )

2
m
2 −2

]
+ 2

[(14
15

) n2

22 · 2!
+

n log( n2 )
2

][(14
15

)m−4
6 n

m
2 −2

2
m
2 −2(m2 − 2)!

+
n

m
2 −3 log( n2 )

2
m
2 −3

]
+ 2

[(14
15

) n3

23 · 3!
+

n2 log( n2 )
22

][(14
15

)m
6 −1 n

m
2 −3

2
m
2 −3(m2 − 3)!

+
n

m
2 −4 log( n2 )

2
m
2 −4

]
+ · · ·

+

[(14
15

) m
12 n

m
4

2
m
4 (m4 )!

+
n

m
4 −1 log( n2 )

2
m
4 −1

][(14
15

) m
12 n

m
4

2
m
4 (m4 )!

+
n

m
4 −1 log( n2 )

2
m
4 −1

]
+

[
2
( n

2
m
2 − 1

)
+ 2

( n
2

m
2 − 2

)( n
2
1

)
+ · · · + 2

( n
2
m
4

)( n
2

m
4 − 1

)]
Grouping terms according to their asymptotic behavior of n and since there are at most m

4 terms, each contributing
2n

m
2 −2 log2( n2 )

2
m
2 −2 , we have

fm(n) ≤

[
2
(14
15

)m
6 n

m
2

2
m
2 (m2 )!

+ 2
(14
15

)m−2
6 n

m
2

2
m
2 (m2 − 1)!

+ 2
(14
15

)m+2
6 n

m
2

2
m
2 · 2! · (m2 − 2)!

+ · · ·

+ 2
(14
15

)m
6 n

m
2

2
m
2 · ( i

2 )!(
m
2 −

i
2 )!

+ · · · +

(14
15

)m
6 n

m
2

2
m
2 (m4 )!(

m
4 )!

]
+

2n
m
2 −1 log( n2 )

2
m
2 −1

+
2n

m
2 −1 log( n2 )

2
m
2 −1

+ 2
[(14

15

)n
m
2 −1 log( n2 )

2
m
2 −1

· 2!
+

(14
15

)m−4
6 n

m
2 −1 log( n2 )

2
m
2 −1

· (m2 − 2)!

]
+ 2

[(14
15

)n
m
2 −1 log( n2 )

2
m
2 −1

· 3!
+

(14
15

)m−6
6 n

m
2 −1 log( n2 )

2
m
2 −1

· (m2 − 3)!

]
+ · · ·

+

[(14
15

) m
12 n

m
2 −1 log( n2 )

2
m
2 −1

· (m4 )!
+

(14
15

) m
12 n

m
2 −1 log( n2 )

2
m
2 −1

· (m4 )!

]
+

2n
m
2 −2 log2( n2 )

2
m
2 −2

m
4

+

[
2

n
m
2 −1

2
m
2 −1

· (m2 − 1)!
+ 2

n
m
2 −1

2
m
2 −1

· (m2 − 2)!
+ · · · + 2

n
m
2 −1

2
m
2 −1

· (m4 )!(
m
4 − 1)!

]
Since ( 1415 )

k < 1, for positive k, for the terms of asymptotic order n
m
2 −1 log n, we have

fm(n) ≤

[
2
(14
15

)m
6 n

m
2

2
m
2 (m2 )!

+ 2
(14
15

)m−2
6 n

m
2

2
m
2 (m2 − 1)!

+ 2
(14
15

)m+2
6 n

m
2

2
m
2 · 2! · (m2 − 2)!

+ · · ·

+ 2
(14
15

)m
6 n

m
2

2
m
2 · ( i

2 )!(
m
2 −

i
2 )!

+ · · · +

(14
15

)m
6 n

m
2

2
m
2 (m4 )!(

m
4 )!

]
+

[
2n

m
2 −1 log( n2 )

2
m
2 −1

+
2n

m
2 −1 log( n2 )

2
m
2 −1

+
2n

m
2 −1 log( n2 )

2
m
2 −1

· 2!
+

2n
m
2 −1 log( n2 )

2
m
2 −1

· (m2 − 2)!

+
2n

m
2 −1 log( n2 )

2
m
2 −1

· 3!
+

2n
m
2 −1 log( n2 )

2
m
2 −1

· (m2 − 3)!
+ · · ·

+
n

m
2 −1 log( n2 )

2
m
2 −1

· (m4 )!
+

n
m
2 −1 log( n2 )

2
m
2 −1

· (m4 )!

]
+

2n
m
2 −2 log2( n2 )

2
m
2 −2

m
4

+

[
2

n
m
2 −1

2
m
2 −1

· (m2 − 1)!
+ 2

n
m
2 −1

2
m
2 −1

· (m2 − 2)!
+ · · · + 2

n
m
2 −1

2
m
2 −1

· (m4 )!(
m
4 − 1)!

]
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Using the identity
∑N

i=0
1

i!·(N−i)! =
2N
N!

on the terms in the first and last square braces we get,

fm(n) ≤

[ (14
15

)m
6 n

m
2

(m2 )!
− 2

(14
15

)m
6 n

m
2

2
m
2 (m2 − 1)!

− 2
(14
15

)m
6 n

m
2

2
m
2 · 2! · (m2 − 2)!

+ 2
(14
15

)m−2
6 n

m
2

2
m
2 (m2 − 1)!

+ 2
(14
15

)m+2
6 n

m
2

2
m
2 · 2! · (m2 − 2)!

]
+

[
2n

m
2 −1 log( n2 )

2
m
2 −1

][
1 + 1 +

1
2!

+ · · · +
1

(m2 − 2)!

]
+

2n
m
2 −2 log2( n2 )

2
m
2 −2

m
4

+
n

m
2 −1

(m2 − 1)!
.

Upon simplifying, we have

fm(n) ≤

(14
15

)m
6 n

m
2

(m2 )!

[
1 −

m

2
m
2

{
1 −

(14
15

)−
1
3
}

−
m2

2
m
2 +2

{
1 −

(14
15

) 1
3
}]

+

[
2n

m
2 −1 log( n2 )

2
m
2 −1

]
e

+
2n

m
2 −2 log2( n2 )

2
m
2 −2

m
4

+
n

m
2 −1

2
m
2 −1

≤

(14
15

)m
6 n

m
2

(m2 )!

[
1 −

m

2
m
2

{
1 −

(14
15

)−
1
3
}

−
m2

2
m
2 +2

{
1 −

(14
15

) 1
3
}]

+

[
2 · e · n

m
2 −1 log n

2
m
2 −1

−
2 · e · n

m
2 −1

2
m
2 −1

]
+

2n
m
2 −2 log2( n2 )

2
m
2 −2

m
4

+
n

m
2 −1

2
m
2 −1

≤

(14
15

)m
6 n

m
2

(m2 )!
+

2e · n
m
2 −1 log n

2
m
2 −1

+
mn

m
2 −2 log2( n2 )

2 · 2
m
2 −2

≤

(14
15

)m
6 n

m
2

(m2 )!
+ n

m
2 −1 log n

[
2e

2
m
2 −1

+
m log( n2 )

n · 2
m
2 −1

]
.

For all values of m ≥ 8,
[

2e

2
m
2 −1 +

m log( n2 )

n·2
m
2 −1

]
≤ 1. Therefore,

fm(n) ≤

(14
15

)m
6 n

m
2

(m2 )!
+ n

m
2 −1 log n.

For the case that m is a multiple of 2 but not 4, an argument similar to the above can be used to show that
fm(n) ≤ ( 1415 )

m
6 n

m
2

(m2 )! + n
m
2 −1 log n. □

We now prove the stated bound for c125.

Lemma 1. For any S and T , and even a and b and r = a + b + 1,
(S
a

)
×

( T
b+1

)
∪

( S
a+1

)
×

(T
b

)
can be exactly covered using at

most
(
|S|
a
2

)
·
(
|T |

b
2

)
blocks.

Proof. Order the elements of S and T . Pick a
2 elements of S, say si1 , si2 , . . . , si a

2
, and b

2 elements of T , say tj1 , tj2 , . . . , tj b
2
.

We associate a block corresponding to these sets as follows:

{s1, . . . , si1−1}, {si1}, . . . , {si a
2 −1+1, . . . , si a

2
−1}, {si a

2
},

{t1, . . . , tj1−1}, {tj1}, . . . , {tj b
2 −1

+1, . . . , tj b
2

−1}, {tj b
2
}, {si a

2
+1, . . . , sp, tj b

2
+1, . . . , tq}.

Here p is the index of the last remaining element after picking si1 , si2 , . . . , si a
2
from S in the ordering. Likewise, q is the

index of the element from T . Among these take only the blocks which have a+b+1 parts. Note that these form a disjoint
cover. □

Lemma 2. For large S and T, and even a and b,
(S
a

)
×

( T
b+1

)
∪

( S
a+1

)
×

(T
b

)
can be exactly covered using [( 1415 )

b
6 + ( 1415 )

a
6 ](1 +

o(1))
(
|S|
a
2

)
·
(
|T |

b
2

)
blocks. Here the o(1) term is as |S| & |T | go to ∞.

Proof. The hypergraph
(S
a

)
×

( T
b+1

)
can be exactly covered using fa(|S|) · fb+1(|T |) blocks. By Theorem 1, this is at most

( 1415 )
a
6 (1 + o(1))

(
|S|
a
2

)(
|T |

b
2

)
blocks. Likewise,

( S
a+1

)
×

(T
b

)
can be exactly covered using ( 1415 )

b
6 (1 + o(1))

(
|S|
a
2

)(
|T |

b
2

)
blocks. □
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Lemma 3. For any odd r = 4d + 1, if
( n

2
⌊
r
2 ⌋

)
×

( n
2

⌈
r
2 ⌉

)
∪

( n
2

⌈
r
2 ⌉

)
×

( n
2

⌊
r
2 ⌋

)
can be covered using α(1 + o(1))

( n
2

⌊
r
4 ⌋

)2
blocks such that

α < 1, then fr (n) ≤ cr (α) · (1 + o(1))
( n
⌊
r
2 ⌋

)
where cr (α) < 1.

Proof. Recall the inequality.

fr (n) ≤ 2 · fr
(n
2

)
+ 2 · f1

(n
2

)
· fr−1

(n
2

)
+ · · · + 2 · f r−1

2

(n
2

)
· f r+1

2

(n
2

)
Pairing up two consecutive terms and using Lemma 1 for each pair we have:

fr (n) ≤ 2(1 + o(1))
[ r−5

4∑
i=0

( n
2
i

)( n
2

r−1
2 − i

)]
+ f⌊ r

2 ⌋

(n
2

)
f⌈ r

2 ⌉

(n
2

)
+ f⌈ r

2 ⌉

(n
2

)
f⌊ r

2 ⌋

(n
2

)
Using the hypothesis and by adding and subtracting

( n
2

⌊
r
4 ⌋

)2
to the above equation we have:

fr (n) ≤ 2(1 + o(1))
[ r−5

4∑
i=0

( n
2
i

)( n
2

r−1
2 − i

)]
+

( n
2

⌊
r
4⌋

)2

+ α(1 + o(1))
( n

2

⌊
r
4⌋

)2

−

( n
2

⌊
r
4⌋

)2

≤ (1 + o(1))
(

n
⌊
r
2⌋

)
+ α(1 + o(1))

( n
2

⌊
r
4⌋

)2

−

( n
2

⌊
r
4⌋

)2

≤ (1 + o(1))
(

n
⌊
r
2⌋

)
− (1 − α)(1 + o(1))

( n
2

⌊
r
4⌋

)2

≤ [1 −
(1 − α)

e
r
2

]

(
n

⌊
r
2⌋

)
□

Lemma 4. f125(n) ≤ c · (1 + o(1))
( n
62

)
, for a constant c < 1.

Proof. For a = b = 62 and |S| = |T | =
n
2 in Lemma 2, the hypergraph

(n/2
62

)
×

(n/2
63

)
∪

(n/2
63

)
×

(n/2
62

)
can be exactly covered

using at most 2 ·

(
14
15

) 62
6
(1 + o(1))

(n/2
31

)2
≤ 0.981 · (1 + o(1))

( n
2
31

)2
blocks. The result follows from Lemma 3. □

As a consequence of Lemma 4, we have c125 < 1. In fact solving the recurrence exactly for Theorem 1 using a computer
program yields c113 < 1.
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