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a b s t r a c t

Let fr (n, p) represent the minimum number of complete r-partite r-graphs required to
cover every edge of the complete r-uniform hypergraph on n vertices at least once and
at most p times.

Graham–Pollak theorem states that f2(n, 1) = n − 1. Upper and lower bounds were
known for r = 2 and a general p. In this note we give bounds for fr (n, p) for general r
and p.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

An r-uniform hypergraph H (also referred to as an r-graph) is said to be r-partite if its vertex set V (H) can be partitioned
nto sets V1, V2, . . . , Vr , so that every edge in the edge set E(H) of H intersect Vi in one vertex. The complete r-uniform
ypergraph with n vertices has an edge set consisting of all r-sized subsets of [n].
Let fr (n) be the minimum number of complete r-partite r-graphs needed to partition the edge set of the complete

-uniform hypergraph on n vertices. The problem of determining fr (n) for r > 2 was proposed by Aharoni and Linial [1].
or r = 2, f2(n) is the minimum number of bipartite subgraphs required to partition the edge set of the complete graph
n n vertices. Graham and Pollak ([10,11] see also [3] and [9]) proved that at least n − 1 bipartite graphs are required
o partition the edge set of the complete graph Kn. Since the edges of the complete graph Kn can be partitioned into
− 1 disjoint bipartite graphs, this shows that f2(n) = n − 1. Other proofs were found by Tverberg [17], Peck [15] and
ishwanathan [18,19].
Alon [1] showed that f3(n) = n − 2 and showed that there exist positive constants c1(r) and c2(r) such that

1(r) · n⌊
r
2 ⌋

≤ fr (n) ≤ c2(r) · n⌊
r
2 ⌋, for fixed r ≥ 4. Cioabă, Kündgen and Verstraëte [6] improved Alon’s bounds in the

ower order terms. In a breakthrough result Leader, Milićević and Tan [13] made asymptotic improvements on c2(r). See
also [13,14] and [4].

Let [p] = {1, 2, . . . , p}. An r-partite p-multicover of a complete r-uniform hypergraph K (r)
n is a collection of complete

-partite r-graphs such that every hyperedge of K (r)
n is contained in l of the r-partite r-graphs for some l ∈ [p]. In other

ords, every edge of the complete r-uniform hypergraph appears at least once and at most p-times in the collection. The
inimum size of such a covering is called the r-partite p-multicovering number and is denoted by fr (n, p).
The problem of bipartite p-multicovering of the complete graph Kn on n vertices was first studied by Alon [2]. For a list

if each edge occurs in some l r-partite r-graphs for some l ∈ L, then the collection of r-graphs is called an L-covering.
ioabă and Tait [7] investigated bipartite covering for a general list L. Note that f2(n, {1}), the biclique partition number of
n is the same as f2(n). For fixed p ≥ 2, Alon [2] showed that (1+o(1))(p!/2p)1/pn1/p

≤ f2(n, p) ≤ (1+o(1))pn1/p. Huang and
udakov [12] improved Alon’s lower bound to (1+o(1))(p!/2p−1)1/pn1/p

≤ f2(n, p). For a fixed natural number λ, f2(n, {λ})
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as studied by De Caen, Gregory, and Pritikin [5]. For list L of all odd numbers, f2(n, L) was studied by Radhakrishnan,
en and Vishwanathan [16]. Cioabă and Tait [7] provided lower bound for bipartite L-covering number for any list and
onstructive upper bounds for f2(n, L) for several L.
In Section 2, the following lower bound of fr (n, p) is proved. For even r > 2,

fr (n, p) ≥
n

r
2p · p

e
3r−2
2p +2−r

· r (r+1)(1− 1
2p )−

1
2

and for odd r > 2,

fr (n, p) ≥
n

r−1
2p p

e
3r−5
2p +3−r

· (r − 1)r(1−
1
2p )−

1
2
(1 − o(1))

In Section 3, we achieve the following upper bound for fr (n, p) for r > 2.

fr (n, p) ≤
n

r
p ⌊

r
2 ⌋

· pe(
r
p +1)⌊ r

2 ⌋

2⌊
r
2 ⌋r (

r
p −2)⌊ r

2 ⌋

2. Lower bound

In this section, we obtain lower bounds for fr (n, p), the r-partite p-multicovering number for the complete r-graph
(r)
n . The proof is a considerable generalization of the proof for the biclique covering of the complete graph Kn.

.1. Preliminaries

Let r be even. Consider an r-uniform hypergraph H . Define the adjacency matrix of H , AH as an
( n
r/2

)
×

( n
r/2

)
matrix,

with rows and columns indexed by r/2 sized subsets of [n], as follows:

AH (e1, e2) =

{
1, e1 ∪ e2 ∈ E(H)
0, otherwise.

When H is the complete r-uniform hypergraph the matrix A can also be defined as follows:

A(e1, e2) =

{
1, e1 ∩ e2 = φ

0, otherwise.

For even r , the Kneser graph, KN(n, r/2), is the graph whose vertex set is
(

[n]
r/2

)
. Two vertices are adjacent if and only

f they correspond to disjoint subsets. The adjacency matrix of the complete r-uniform hypergraph can be viewed as the
djacency matrix of the Kneser graph, KN(n, r/2).

emma 1 ([8]). The eigenvalues of the adjacency matrix of Kneser graph, KN(n, r/2) are the integers (−1)i
(n−r/2−i

r/2−i

)
, for

= 0, 1, . . . , r/2.

roof. Refer Theorem 9.4.3. (Page 200). □

emma 2. Let A be the adjacency matrix of a Kneser graph, KN(n.r/2), then rank(A) =
( n
r/2

)
.

roof. Using Lemma 1, since all the eigenvalues of Kneser graph(n, r/2) are non-zero, the adjacency matrix A has full
ank. □

heorem 1. The r-partite p-multicovering number of the complete r-graph K (r)
n , fr (n, p) ≥ nr/2p

·
1

(2r)r/2+1/2 (1− o(1)), for even
> 2.

roof. As in the graph case, we associate a matrix A with the complete r-uniform hypergraph and matrices Ni with each
omplete r-partite r-uniform hypergraph. Then write A as a sum of the Nis. The bound on the number of Nis follows by
howing that the rank of A is large while the rank of each Ni is small. The adjacency matrix for complete r-partite r-graphs
as used by Alon [1] and also by S.M. Cioabă, A. Kündgen and J. Verstraëte [6] for obtaining lower bounds for fr (n). It also
ses a similar proof idea Huang and Sudakov [12] used for r = 2.
Suppose the edges of the complete r-uniform hypergraph on n vertices are covered by d complete r-partite r-graphs,

i ≡ (U1
i ,U2

i , . . . ,U r
i ) for 1 ≤ i ≤ d. Here U j

i are the parts of the complete r-partite r-graph. The edges of the hypergraph
i are obtained by taking one vertex from each part. such that every r-hyperedge is covered at least once and at most p
imes.
2
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For each i, 1 ≤ i ≤ d and each L ∈
(

[r]
r/2

)
, define a matrix M(Ui, L) whose rows and columns are indexed by r

2 sized
ubsets as follows:
For e1, e2 ∈

(
[n]
r
2

)
,

M(e1, e2) =

{
1, if e1 ∈

⨀
l∈L U

l
i and e2 ∈

⨀
l∈[r]−L U

l
i

0, otherwise.

ere
⨀

l∈L U
l
i = {e ∈

(
[n]
r
2

)
: |e ∩ U l

i | = 1, forl ∈ L}.
Note that the adjacency matrix of the complete r-partite r-graph Ui denoted by N(Ui) is equal to

∑
L M(Ui, L). It is easy

o see that the rank of M(Ui, L) is one and hence by the sub-additivity of ranks we have, Rank[N(Ui)] ≤
( r

r
2

)
. Note that

(e1, e2) is 1 iff e1 concatenated with e2 is an edge in Ui.
For a non-empty set S ⊂ [d] of indices, with size at most p, let HS denote the hypergraph with the edge set consisting

f all edges present in each of the hypergraphs Ui, for i ∈ S. HS = ∩i∈SUi.
Let N(HS) denote the adjacency matrix of HS . We show below that N(HS) can be written as a sum of (r!)s−1 matrices

each corresponding to complete r-partite r-graphs.
Fix a set S = {i1, i2, . . . , is}. Fix permutations σ1, σ2, . . . , σs−1 of [r]. One can now define a complete r-partite r-graph

ith parts X1, X2, . . . , Xr as follows:

Xj = U j
i1

∩ Uσ1(j)
i2

∩ · · · ∩ Uσs−1(j)
is , 1 ≤ j ≤ r

Let the adjacency matrix of this complete r-partite r-graph be denoted by HS(σ1, σ2, . . . , σs−1). Then N(HS) =∑
σ1,σ2,...,σs−1

HS(σ1, σ2, . . . , σs−1)
Therefore, by the principle of inclusion–exclusion we have the adjacency matrix, A =

∑
S⊂[d],0<|S|≤p (−1)|S|N(HS).

Since there are s − 1 permutations of {1, 2, . . . , r} and
(d
s

)
choices of picking S, for |S| = s, HS is the disjoint union of at

ost (r!)s−1 r-partite r-graphs for fixed S. Hence A can be written as a disjoint union of at most
∑p

s=1(r!)
s−1

(d
s

)
r-partite

-graphs. By sub-additivity of ranks, we have

Rank(A) ≤

(
r
r
2

)
·

[ p∑
s=1

(r!)s−1
(
d
s

)]
(1)

Combining equation (1) and Lemma 2, we have:(
n

r/2

)
≤

(
r
r
2

)
·

[ p∑
s=1

(r!)s−1
(
d
s

)]

≤

(
r
r
2

)
·

[
(r!)p−1

p∑
s=1

(
d
s

)] (2)

Using the bounds ( nx )
x
≤

(n
x

)
≤ ( enx )

x for positive integers n, x with 1 ≤ x ≤ n, Eq. (2) becomes:(
n

r/2

)r/2

≤

(
er
r/2

)r/2

·

[
(r!)p−1

p∑
s=1

ds

s!

]
(

n
r/2

)r/2

≤

(
er
r/2

)r/2

·

[
(r!)p−1

p∑
s=1

(
ps

s!
·
ds

ps

)] (3)

Since ex =
∑

∞

i=0
xi
i! and using x! ≤ exx+1/2e−x for positive integer x, Eq. (3) becomes:(

n
r/2

)r/2

≤

(
er
r/2

)r/2

·

[
(r!)p−1

(
ep ·

dp

pp

)]
(

n
r/2

)r/2

≤

(
er
r/2

)r/2

·

[
(e · r r+1/2e−r )p−1

(
ep ·

dp

pp

)]
nr/2

≤ er/2+p−1−rp+r+p
· r r/2+rp−r+p/2−1/2 d

p

pp

d ≥
n

r
2p · p

e
3r−2
2p +2−r

· r (r+1)(1− 1
2p )−

1
2

for even r > 2 □
3
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Since for odd r , we have fr (n, p) ≥ fr−1(n−1, p), we have fr (n, p) ≥
(n−1)

r−1
2p p

e
3r−5
2p +3−r

·(r−1)
r(1− 1

2p )− 1
2

≥
n
r−1
2p p

e
3r−5
2p +3−r

·(r−1)
r(1− 1

2p )− 1
2
(1−

o(1)).

3. Upper bound

In this section, we obtain upper bounds for fr (n, p), the r-partite p-multicovering number for the complete r-uniform

hypergraph K (r)
n . We construct a covering of the complete r-graph using p · r rn

r2
2p complete r-partite r-graphs, so that each

dge is covered at least once and at most p times.
When p = 1, a simple construction (see [13]) using

( n
⌊r/2⌋

)
complete r-partite r-graphs is as follows. For odd r , define

complete r-partite r-graph corresponding to each subset of [n] of size ⌊
r
2⌋. The elements of the subsets form parts

hemselves and elements not in the subset between two elements in the subset form the other ⌈
r
2⌉ parts.

A natural way to get an r-partite p-multicovering is to consider cross products. The elements of the base set are
n] × [n] × · · · × [n](p times). For each co-ordinate i, we have a family of

( n
⌊r/2⌋

)
complete r-partite r-graphs mimicking

he one dimensional construction. Here the set size is np and the number of complete r-partite r-graphs is p ·
( n
r/2

)
. It is

een that no element is covered more than p times, however, there are r-subsets of the universe that are not covered by
he family.

We show below that one can find a large enough subset of [n]p for which the family described above covers every r-set.
he key property we need of the elements of the universe is that for every subset of size r , the cover can be determined
y some co-ordinate. That is, for at least one co-ordinate all r-values must be distinct.
This motivates the following definition. Consider vectors which are ordered p-tuples each of whose co-ordinates takes

alues from {1, 2, . . . , n}. A set of ordered p-tuple vectors is defined to be r-split if for every collection of r vectors in the
et, there is at least one index where they all differ.

emma 3. There exists a set of r-split vectors in [n]p of size at least 2
p
r r1−

2p
r

e n
p
r .

roof. Consider a set S of m vectors, obtained by picking each of them uniformly and independently at random from the
et of all p-tuple vectors. Let Ai be the event that the ith subset of r vectors does not differ at any index. The probability
hat all elements at jth index of a fixed set of r vectors are different for 1 ≤ j ≤ p, is (nr)·r!

nr = (1−
1
n ) · (1−

2
n ) · · · (1−

r−1
n ) ≥

(1 −
r·(r−1)

2n ) ≥ (1 −
r2
2n ). Therefore, the probability that all elements at jth index are not different is 1 −

(nr)·r!
nr ≤

r2
2n . Thus

e have,

Pr[Ai] ≤

[
1 −

(n
r

)
· r!

nr

]p

≤

(
r2

2n

)p

ince there are
(m
r

)
subsets of size r in S, the probability that at least one of the events Ai occurs is at most

(m
r

)
( r

2

2n )
p.

For m =
2
p
r r1−

2p
r

e · n
p
r , we have

(m
r

)
( r

2

2n )
p

< 1. Thus with positive probability, no event Ai occurs and there is a set of

r-split p-tuple vectors of size at least 2
p
r ·r1−

2p
r

e · n
p
r . □

Theorem 2. The r-partite multicovering number of the complete r-graph, fr (n, p) ≤ p · r r · nr2/2p, for r > 2.

roof. Suppose a p-tuple from a set of r-split vectors as ⟨v1, v2, . . . , vp⟩. Consider the following family of complete
-partite r-graphs, H[i, a1, . . . , a⌊

r
2 ⌋], where i ∈ {1, 2, . . . , p} and a1 < a2 < · · · < a⌊

r
2 ⌋ where a1, a2, . . . , a⌊

r
2 ⌋ ∈

{1, 2, . . . , n}. Each part of H[i, a1, . . . , a⌊
r
2 ⌋] is defined as follows:

For odd r , part 1 contains those vectors whose vi < a1, part 2j contains those whose vi = aj and part 2j + 1 contains
hose whose aj < vi < aj+1 and the last part contains those whose vi > a⌊

r
2 ⌋. Likewise for even r , part 1 contains those

ectors whose vi < a1, part 2j contains those whose vi = aj and part 2j + 1 contains those whose aj < vi < aj+1 and the
ast part contains those whose vi = a⌊

r
2 ⌋.

It is clear that the above family of at most p ·
( n
⌊r/2⌋

)
complete r-partite r-graphs are sufficient to cover all r-sized

ubsets of the set of r-split vectors. Note that each r-sized subset of r-split vectors correspond to a r-hyperedge and the
amily of complete r-graphs H[i, a1, . . . , a⌊

r
2 ⌋] covers each r-hyperedge at most p times and at least once.

To obtain the upper bound for fr (n, p), the number of r-split vectors used in the above construction that are analogous
o number of vertices of K (r) must be n. In order to do so, we consider r-split vectors which take values from {1, 2, . . . ,N =
n

4
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e
r
p n

r
p

2r
r
p −2 }. Lemma 3 shows that there exists a set of r-split vectors of size at most n. Hence,

fr (n, p) ≤ p ·

(
N

⌊r/2⌋

)
≤

p · e⌊r/2⌋N⌊r/2⌋

⌊r/2⌋⌊r/2⌋

≤
p · e⌊r/2⌋

· e
r
p ⌊

r
2 ⌋n

r
p ⌊

r
2 ⌋

2⌊
r
2 ⌋r (

r
p −2)⌊ r

2 ⌋

≤
p · e(

r
p +1)⌊ r

2 ⌋n
r
p ⌊

r
2 ⌋

2⌊
r
2 ⌋r (

r
p −2)⌊ r

2 ⌋
for r > 2. □
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