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Introduction

The latest global statistics from 2008 show that 12.7 million new cancer cases and 7.6 million

cancer deaths occurred worldwide1. This accounts for 13% of all deaths for that year, mak-

ing cancer a common threat to all families. As technology becomes more efficient, a trend

towards computer aided diagnostic (CAD) tools for identification, prognosis prediction and re-

occurrence likelihood is becoming a reality.

Figure 1: Three major tasks associated with computer aided diagnostic include acquisition
of data, segmentation of regions of interest (ROI), and lastly the classification and registration
of these ROI. The thesis makes notable contributions in segmentation (second chapter) and
classification (third chapter), with a potential extension to registration .

Figure 1 gives a high level overview of the broad research fields used in CAD, and where

this thesis fits relative to them. Naturally, all information must first be acquired from its re-

spective data source. With public and private histology banks in existence, storing years of

samples across thousands of patients, a vast amount of data is already in existence. Once ob-

tained, the image data is pre-processed to extract biological information via segmentation; thus

determining regions of interest (ROI). This information can include the size, location and chro-

matic properties of various cellular entities or organs. Once the region is identified, one of two

courses of action are typically taken. The first possible course, classification, is illustrated by

the case of cancer detection where the region is classified as either cancerous or non-cancerous.

The second possible course, registration, is understood via the desire to align the current region

to an existing model, perhaps to identify anomalies in shape or location of critical organs.

1World Heath Organization, GLOBOCAN 2008
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Problem Scope

As shown in Figure 1, this thesis aims to make contributions in segmentation, classification, and

registration via two state of the art methods.

Figure 2: (a) A tissue micro array and (b) a representative magnified tissue cylinder culled out
from (a) with the extracted biomarker presented in (c) delineated in red. A typical microarray
could contain over 500 individual cylinders, making the biomarker detection via traditional
image analysis algorithms a challenge.

In the domain of segmentation, we aim to take a histology image and extract the stained

regions as demonstrated in Figure 2. These types of images are especially challenging because

the visual appearance of specimens are inconsistent as they are affected by temperature, time,

concentration of stains, scanning equipment and other environmental variables. The confidence

necessary to provide an industry standard approach is non-trivial as these variances, along with

a wide range of user defined inputs parameters, create a complex problem domain.

(a) (b)

Figure 3: Stroma region manually circled in green. Although they are of the same class, notice
the stark difference in size and shape between the two regions in (a) and (b). Selection of an
appropriate window size or shape in a typical approach such as texture features is difficult.
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In the domain of classification, we aim to provide a signature at the pixel level which can

be used to successfully differentiate tumor regions from stromal regions. As shown in Fig-

ure 3, the chaotic nature of region size and shape prevents the selection of optimal operating

parameters for standard industry algorithms, such as window size for texture features. We note,

however, that the technique developed here is not specific to only tumor and stroma classifica-

tion.

(a) (b) (c)

Figure 4: Lymphocytes in all panels are stained in red. All of the lymphocytes in (a) the stroma
region image are non-TILs, while all of the lymphocytes in (b) the tumor region image are TILs.
In (c) we see both TILs (left half) and non-TILs (right half).

The problem domain we have chosen is the identification of lymphocytes as either tumor

infiltrating (TIL) or non-TIL, an example of which we can see in Figure 4. Our approached is to

first use our Hierarchical Normalized Cuts (HNCut) to segment necessary information for our

Local Morphometric Scale (LMS) algorithm to successfully classify pixels of interest as either

tumor or stromal regions. This thesis contributes the necessary theory and implementation for

an automated lymphocyte extraction and classification system via the chain of these two novel

algorithms. We discuss our approaches, challenges, and contributions briefly in the following

sections, followed by the layout of the thesis chapters.

Segmentation Using Hierarchical Normalized Cuts

One of the common tasks in digital pathology is quantification of properties associated with

extent of stain as a result of staining for identification of biomarkers. For example in the do-

main of Ovarian cancer (OCa), recent work [1] suggests that specific tumor vascular biomarkers

(TVMs) may be identifiable on OCa tissue microarrays (TMA) that could have prognostic sig-

nificance, helping to not only predict the survival rate but also help determine a more specific

course of treatment. It has also been suggested that genes expressed uniquely by the vasculature
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of tumors may provide important therapeutic targets. Biomarkers are typically discovered by

staining explicitly for TVMs of interest on OCa TMAs, essentially requiring a vast study for

each biomarker of interest. Precise quantification of the extent and intensity of the stain could

serve as a prognostic metric reflecting risk of disease recurrence and patient survival. However,

due to the data size involved in each of the studies it is currently infeasible in terms of both time

and effort for an expert pathologist to perform this segmentation manually.

Challenges and Novel Contributions to Segmentation

The major contribution of this piece of the thesis is a fast, novel, hierarchical unsupervised

segmentation method (HNCut), which we demonstrate with an application in Ovarian TMAs.

• Datasets are very large and thus require a highly efficient algorithm to make computation

tractable. Additionally, a large number of these datasets already exist in tissue repositories

waiting to be mined.

• Images are not consistent across the dataset due to lighting, staining, and human prepa-

ration variations. This anomaly becomes more significant as various institutions create

samples at different times, essentially ensuring a large variance in visual appearance.

• Annotation of training data is laborious and time consuming, and thus limited supervised

data is available. Additionally, each new stain would require an equal investment to re-

annotate and thus re-train.

• Precise reproducibility based on a wide range of input parameters is necessary for confi-

dence and data exchange between operators. For an algorithm to become useful, institu-

tions need to witness that the output created is less variant than intra-expert variability.

Contributions

• A tested hierarchical segmentation approach that marries an accelerated Mean Shift [2]

method and the Normalized Cuts [3] method which we term Hierarchical Normalized

Cuts (HNCut)[4] . A Matlab implementation of HNCut not only operates on large (1.5

million pixels) images in under 10 seconds, but is easily scalable to entire TMAs.

• Parameter insensitive segmentation [5] for large images and the ability of HNCut to dis-

criminate between regions with similar color values. The parameter for the Gaussian
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kernel in the affinity matrix of NCut is automatically computed. The parameters for the

mean shift are automatically adjusted based on the variance of the output.

• Layman initialization of the system is possible, obviating the need for detailed ground

truth annotation from an expert that is required for more sophisticated supervised classi-

fiers.

Related work

Most previous computerized image analysis algorithms for TMAs have involved thresholding

based schemes [6, 7, 8]. These methods are known to be highly sensitive to even slight changes

in color and illumination. Clustering based approaches, including k-means [6], have also been

investigated for the analysis of TMAs. However, k-means is a non-deterministic algorithm and

is highly sensitive to the initial choice of cluster centers [9]. Active contour schemes [10],

while suitable for cell and nuclear segmentation in digital pathology, are not ideally suited to

the problem of pixel level classification. Additionally they are typically infeasible for problems

where hundreds of objects need to be concurrently segmented on very large images [11]. Su-

pervised learning methods [12, 13] are constrained by the difficulty [14] in obtaining ground

truth segmentations from experts for classifier training of the object of interest.

Overview

Figure 5 presents a high level overview of the four stages associated with the HNCut algorithm.

We start by requiring the user to select a few sample pixels from the target class from an

image. We use these pixels to guide the subsequent pixel classification process across all images

in the same domain.

Next, we employ the mean-shift algorithm on the color values in the image to form a

hierarchical data structure (represented by the levels in the color pyramid in the second box

in Figure 5). Intuitively, our novel Frequency Weighted Mean Shift (FWMS) variant allows

for identification of color values which are within some specified tolerance of each other and

assigns them to the same mode. Employing the NCuts operation only on the unique values at

each level of the pyramid, as opposed to all possible color values, allows for a summarization

resulting in significantly fewer computations.
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Figure 5: A flow chart of the HNCut process. Proceeding left to right, the user selects the
domain swatch, followed by the Frequency Weighted Mean Shift of the image. This results
in the original image being decomposed into multiple levels of color resolution, which is then
followed by the application of NCut at each of the color resolutions generated. At each pyramid
level colors not deemed to be part of the swatch are eliminated. Following the application of
NCut on the color pyramid (from the lowest to the highest color resolution), the color values
that have not been eliminated are mapped back to the spatial domain via their original pixel
locations, and the final segmentation is obtained.

Figure 6: (a) Original image with desired TVM stain enclosed in red, (b) image at the bottom
of the color pyramid during FWMS, (c) image at the bottom of the color pyramid following
application of NCuts, (d) final segmentation results obtained by mapping colors not eliminated
by HNCut spatially onto the original image. Note that between (a) and (b) a significant reduc-
tion in color resolution occurs, which allows NCuts to be performed on an image with several
orders of magnitude fewer colors compared to the original image (a). NCuts is then applied
at progressively higher color resolutions, while at each pyramid level colors not deemed to be
part of the swatch are eliminated. The colors retained at the highest resolution are then spatially
mapped onto the corresponding pixels to yield the final segmentation.

Using this pyramid we can drastically reduce the large segmentation problem in the color

space to a set of much smaller graph partitioning problems (the third box from the left in figure
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5), which we show can be solved far more efficiently by NCut. By starting at the bottom of

the pyramid, we partition the unique values (typically on the order of 10 values) into two sets

such that all of the values selected by the user in the first step are assigned to the first partition.

Subsequently, we eliminate the second partition and map the colors in the first partition to an

immediately higher color resolution level in the pyramid. This process continues until the entire

pyramid is traversed. The last step involves mapping the color values not eliminated back into

the spatial domain.

The hierarchical set of operations described above makes for an extremely efficient and

accurate algorithm; thus applying the NCut at the lowest levels of the pyramid is relatively

simple to do and encourages a more sophisticated definition of pixel affinity. While in this work

only chromatic information was leveraged, the method is easily and efficiently extensible to

incorporate additional image features (e.g. texture).

Figure 6 displays an image from our dataset undergoing the HNCut procedure, with the

intent of quantification of the vascular marker stain (brown color). The numbers shown in the

boxes in Figure 6 represent the reduced number of colors and pixels generated by the HNCut

scheme at different levels of the pyramid within a single cylinder (1500× 1500 pixels, 300,000

colors) from a TMA.

Results

As an example of the value of HNCut, we present in Figure 7 a comparison against a classical

k-means approach and a powerful supervised classifier termed Probablistic Boosting Trees [12].

As we can see, in both accuracy and computation time, HNCut is a superior algorithm at this

segmentation task.

Local Region Classification

Another challenging task in the field of digital pathology is the classification of a region as

either tumoral or stromal. One application of the resulting identification is to separate tumor

infiltrating lymphocytes (TILs) from non-TILs. A lymphocyte is a type of white blood cell that

is sent to the proximity of objects which the body considers foreign. Recent work [15, 16, 17]

has suggested that a valuable prognostic indicator is based on the extent to which the patient’s

own immune response, namely their lymphatic response, has attacked the cancer. While TILs
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(a) (b)

Figure 7: (a) False Negatives (FN), True Positives (TP) and False positives (FP) presented for
the three different algorithms. From this visualization it is apparent that HNCut outperforms
each of the other algorithms. (b) A comparison of the run times of the different algorithms.
We can see that HNCut performs the fastest out of those tested, motivating its high throughput
capabilities. Interestingly, the training time of PBT is long enough such that in a race HNCut
would have already completed 25% of the segmetnation task before PBT had begun its testing
phase.

and non-TILs are visually identical, their sole differentiating factor is their location in or around

a tumor. This motivations the necessity for a solution to the broader problem of classifying a

region as tumor or stroma.

Challenges and Novel Contributions to Classification

The major contribution of this piece of the thesis is to develop a system which can accurately

classify pixels as being embedded in either tumor or stromal regions, and thus extendable to

classifying lymphocytes as either TILs or non-TILs.

• Domain specific approaches require information about individual cells, such as size and

dispersion pattern relative to its peers. The segmentation of individual cells is difficult

due to clumping as a result of a three dimensional tissue sample being scanned in two

dimensions, and thus computationally expensive methods are needed for cell separation.

• Selection of an appropriate window size for standard approaches. We can see from Figure

3 that the pre-selection of a texture window would be challenging because of the varying

sizes and shapes of such a window (a normal rectangle would not work).
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• The stroma region is often nestled between areas of tumor, making not only its boundaries

not clearly defined but the size of the associated region difficult to pre-determine.

Contributions

• A novel signature definition, which we term Local Morphometric Scale (LMS)[18], al-

lows for quantitatively characterizing local heterogeneity . This is especially relevant in

the context of histopathology which consists of notoriously heterogeneous images.

• The LMS yields a rotationally invariant, non-domain specific, quantitative signature at

the pixel level which can be used for region classification, segmentation, and registration.

• This signature is accurate across a range of window sizes, overcoming common downfalls

of texture and template matching based classifiers.

• The algorithm is well suited for GPU computing, allowing for a very high throughput.

• We develop a novel approach to the very important problem of separating out tumoral

from stromal regions via application of LMS.

Related Work

The desire to differentiate tumor and stromal regions has been addressed recently using different

approaches. In [19] an attempt at a shotgun approach using over 6000 well known features

obtained only a 89% accuracy. Their novelty was defined by their successful combination of

existing features. Our work presents a significantly lower dimensional novel morphometric

feature set, which obtains 88% accuracy on the same task, clearly indicating a competitive

approach. In [20], the authors present an approach which requires specially stained fluorescence

images, while ours uses industry standard H&E, allowing broader usage in pre-existing tissue

repositories. Lastly, the tensor classification using N-point correlation functions presented in

[21], while notable, is a non-scalable approach which is computationally expensive.

On the theory front, the notion of locally adaptive scale is also not new and has already

seen applications in a variety of image processing tasks including MRI bias field correction[22],

image segmentation[23], image registration [24], and image coding [25]. Saha and Udupa in-

troduced the notion of ball-scale[26] which at every spatial location was defined as the value
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corresponding to the radius of the largest ball encompassing all locations neighboring the loca-

tion under consideration and satisfying some pre-defined homogeneity criterion. Tensor-scale

(t-scale) [27] was later defined as the largest ellipse at every spatial location where the pixels

within the ellipse satisfied some pre-defined homogeneity criterion. The shape constraints of

both (b-scale) and (t-scale) were overcome by Madabhushi and Udupa with the introduction

of Generalized scale (g-scale)[23]. G-scale was defined as the largest connected set associated

with every spatial location, such that all spatial locations in this set satisfied a pre-defined ho-

mogeneity criterion. It is noteworthy to notice that all of the previous scale definitions have

been inhibited by either shape constraints or homogeneity constraints. LMS is able to easily

distinguish itself as a shape-free, heterogeneous modeling technique.

Overview

Figure 8 presents an overview of the LMS creation processing as it applies to the problem of

tumor versus stromal differentiation. These steps are described below in the context of lympho-

cyte classification.

Figure 8: Overview of the LMS signature creation process. We can get the intuition that the
more heterogeneous an area is the higher number of deviations from the straight line trajectory
occur, on account of the rays attempting to take the path of least resistance and hence overcome
obstacles along the way. On the other hand, the LMS signature will be smoother as a result of
comprising fewer and smaller objects in homogeneous areas.

Step 1: Identify centers of interest by extracting the stained lymphocytes using HNCut.

Also produce the resulting binarized images by extracting, again with HNCut, the blue stain

which highlights the endothelial and tumor cells. Binarized images indicate which pixels which

will be incorporated in the morphologic signature of the POI.
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Step 2: The LMS involves projecting connected paths, radially outwards from any POI

(e.g. nucleus center identified in step 1), as shown in Step 2 of Figure 8. The green box is used

to illustrate the path of a single ray more clearly.

Algorithm 1 LMS Signature Creation
Input: A query pixel q ∈ C , binary function g, interval size ε, window size w

Output: A set of rays R(q)

1: S = C−qx,−qy , a tranformation such that q is located at the origin

2: for θ = 0 : 2π
ε
: 2π do

3: δ = (cos(θ) ∗ w, sin(θ) ∗ w) Identify location of desired end point

4: Rθ(q) = minm pq,δ,m = |pq,δ|, ∀g(pq,δ) = 0 Compute path with the least deviation

5: end for

6: R(q) = {Rθ|∀θ} LMS is the set of all of the individual rays

7: return R(q)

Figure 9: Point of interest is marked as X in the center of the image. We can see that 4 rays are
projected from the center, and as they encounter obstructions in their path, they proceed around
and return to the straight path as soon as possible.

We can see from the examples in Figure 10, the end result of our algorithm is set of

connected pixels (shown in red), which travel from the POI, q, transformed to the center of

the image, towards evenly spaced end points δ. We determine the location of these end points

δ by casting them on a unit circle and multiplying by the window size to get the appropriate

magnitude as seen in step 3 of 1. The path is a connected sequence of pixels, pq,δ, found by

calculating the route with the least deviation from a straight line from q to δ such that none of

the pixels are foreground pixels (defined by g(c) = 1). Essentially, this constraint results in the

behavior that when an object in the foreground is encountered while traveling on a straight line

from q to δ, we avoid it and return to the straight path as soon as possible, as shown in Figure 9.
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Step 3: The quantification of the average local topography of all these paths (via Fourier

descriptors [28]) yields a measure of local heterogeneity.

Step 4: Use the LMS feature vector created by the Fourier descriptors to train a supervised

classifier to identify signatures as either located in tumor or stromal regions.

Figure 10: The LMS signature (in red or green) overlaid on a tumor regions (top) and benign
regions (bottom) in an ovarian, prostate, breast, and prostate (different stain) images. Three rays
are sampled from each image and presented beneath their respective images. We can see that in
the non-tumor regions the LMS rays has fewer and smaller objects to obstruct its path, and thus
the rays are less tortuous, unlike in the tumoral regions.

In Figure 10 homogeneous regions have few obstructions allowing the LMS rays to form

straighter lines. On the other hand, as the complexity of the local region increases, a noted

change in the LMS occurs. For very complex regions the LMS rays become increasingly tortu-

ous as they adapt to the local heterogeneity. Quantifying this behavior as a non-domain specific

feature set allows a supervised classifier to separate the two classes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11: 2 sample images from each of the datasets listed in Table 1. First row is prostate HE,
second row is prostate H and third row is Breast HE and last row is Ovarian H. We can see that
each of these domains has its own unique characteristics, both of chromatic and morphological
attributes, which makes a robust single approach challenging.
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Results

Data Type Prostate HE Prostate H Breast HE Ovarian H

AUC ± Range .88± .01 .87± .02 .80± .01 .88± .01

Table 1: Bayesian classifier area under the curve (AUC) in distinguishing stromal from tumoral
pixels for four different domains, holding all parameters constant.

As a demonstration of the power of LMS, we test its ability to identify tumor versus

stromal regions across 2 different types of stain, haematoxylin & eosin (HE) and solely haema-

toxylin(H), across 4 data domains: prostate HE, prostate H, breast HE and ovarian H. Sample

images from each domain can be seen in Figure 11. For each domains, we randomly sampled

pixels, separated them into non-overlapping training and test sets and used a naive Bayesian

classifier to perform the classification. From the ROC curve, we computed the mean area under

the curve (AUC) and associated range. We present the results in Table 1. What is especially

interesting to note is that the parameters for each data domain were kept constant, which we feel

indicates a strong non-domain specific feature set even though each domain appears noticeably

different.

Figure 12: Box plots for the AUC across 50 runs from 3 algorithms: LMS, texture features and
b-scale. The red line identifies the mean, the blue box encompasses 25th percentile, with the
black whiskers extending to the 75th percentile. Red dots are indicative of outliers. We can see
that the LMS provides a higher mean AUC than texture features with a smaller variance. On
the other hand, ball scale seems to produce a poor classifier.
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Also, using only the ovarian cancer domain, we compare our approach against two rele-

vant approaches: texture features and b-scale. The box plots for the 3 approaches can be seen in

Figure 12. We can see that with a mean AUC of .866 LMS provides a slightly better classifier

than texture features with .842. These are comparable to the current state of the art approach

[19] with their self stated .88 accuracy. We draw attention to the significantly lower dimension

of our approach (about 50) as compared to their 6,000 features. Lastly, we can see that homo-

geneity is not an ideal separating characteristic as b-scale fairs rather poorly in this classification

task, motivating the creation of our heterogeneous scale definition.

Organization of thesis

The structure for the thesis is as follows:

Chapter 1 In this chapter we have introduced Computer Aided Diagnostics and discuss the problem

scope and challenges. We developed a high level overview of the work in this thesis,

breaking it down into two parts, segmentation and classification. We explain on a high

level how these two algorithms fit together.

Chapter 2 To clearly illustrate how our theories and algorithms differentiate themselves from exist-

ing work, in this chapter we provide a targeted literature survey. By transparently exam-

ining the weak and strong points of the various but similar approaches, our contribution

become clearly identifiable.

Chapter 3 We develop the theory for the HNCut algorithm which combines a hierarchical data struc-

ture with normalized cuts to extract colors of interest from the color space. In this chap-

ter we also give explicit algorithms for the implementation of HNcut using a frequency

weighted mean shift for a complete high-throughput approach.

Chapter 4 To validate the theory presented in the previous chapter on HNCut, we conducted nu-

merous experiments which validate not only the speed and efficiency but also the repro-

ducibility and robustness of our approach. Further we compare our approach to both

k-means and a supervised learning algorithm called Probabilistic Boosting Trees.

Chapter 5 In this chapter we explain the Local Morphologic Scale, an approach which quantizes

local morphology as a feature descriptor which could be used in registration, segmenta-
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tion, classification or retrieval. This explanation includes the necessary theoretical back-

ground and algorithms and is further elucidated by a discussion on the various properties

it posses.

Chapter 6 The properties discussed in the previous chapter are fully vetted using a synthetic-data

set across numerous experiments. These experiments quantitatively prove the proper-

ties which were proposed in theory section. Additionally, an experiment comparing the

efficiency parameter versus computation time is presented.

Chapter 7 We introduce the combination of these two algorithms to the real world application of TIL

identification. This chapter explains the training and testing methodology used across 5

different data domains. A thorough discussion and set of experiments which demonstrate

the impact of the various parameters is also provided.

Chapter 8 We conclude the thesis in this chapter by summarizing the contributions made in this

thesis. We also discuss the possible shortcomings of our techniques and also discuss

ways to extend some of the ideas proposed in this thesis.
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