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Abstract

The latest global statistics from 2008 show that 12.7 million new cancer cases and 7.6 million

cancer deaths occurred worldwide1. This accounts for 13% of all deaths for that year, mak-

ing cancer a common threat to all families. As technology becomes more efficient, a trend

towards computer aided diagnostic (CAD) tools for identification, prognosis prediction and re-

occurrence likelihood is becoming a reality. A cornerstone of CAD systems is the field of digi-

tal histopathology, where analyzing large quantities of cellular images can leverage the research

from the mature field of computer vision.

In this thesis we present two novel general theories, one focusing on homogeneity and one

which quantifies heterogeneity. From these theoretical roots, we explain our two algorithms,

Hierarchical Normalized Cuts (HNCuts) and Local Morphologic Scale (LMS), which when

used together, create a system which can automatically segment (via homogeneity) and classify

(via heterogeneity) lymphocytes from digital histology images as either tumoral or stromal.

There is strong evidence that this laborious task is a valuable prognostic indicator, motivating

the development of algorithms for its automation.

The first algorithm, HNCut, is responsible for segmenting the stained lymphocytes from

the digital image. By using a hierarchical data structure with a novel frequency weighted mean

shift for clustering, our approach is able to perform segmentation with very high throughput

in a reproducible robust manner. We take our theory which contributes a general approach

towards segmenting colors of interest defined by a user specified swatch and apply it to the

aforementioned histology task, which previously took a pathologist a day to complete. Using

our algorithm it can be completed in a matter of seconds.

The second algorithm, LMS, classifies the lymphocytes identified by HNCut as either

tumoral or stromal based on their local morphology. While available theories tend to focus

on quantifying homogeneity, our theory contributes a general approach towards quantifying

1World Heath Organization, GLOBOCAN 2008
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heterogeneity. This departure from the typical paradigm affords us the opportunity to more

aptly undertake typical biomedical problems such as classification. Since lymphocytes appear

the same regardless of their class (with surrounding cells providing the classification), they

represent a good opportunity to demonstrate our approach. By quantifying the heterogeneity of

the local neighborhood into a feature set, we create a classifier which competes with the current

state of the art. The notable benefits are a low dimensional representation, and the ability to

easily parallelize the approach to take advantage of multiple cores.

Using real-world datasets we compare our approaches to industry standard approaches. In

culmination, we show how when combined, the two algorithms create a robust high throughput

system for the automatic detection and classification of lymphocytes, a notable contribution to

the CAD paradigm.
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Chapter 1

Introduction

The practice of medicine extends from the very early stages of the human society. It is known

that the Egyptians and Babylonians both introduced the concepts of diagnosis, prognosis, and

medical examination over 5,000 years ago. The Egyptians are credited with the oldest descrip-

tion of cancer (although under a different name) 1, in an Egyptian textbook which dates back to

around 3000 B.C. It specifies that there is no treatment. The famous Indian physician Sushruta,

in his 600 B.C text Sushruta Samhita, identifies cancer as inflammatory or non-inflammatory

swelling and classifies tumors as either as ‘Granthi’ (minor neoplasm) or ‘Arbuda’ (major neo-

plasm) [1, 2]. His Ayurveda based treatments used various herbs. Hippocrates is credited with

the origin of the word ”cancer”, and documented several kinds around 400 B.C.; his treatments

were blood letting and obscure diets.

Yet, in 2008, 12.7 million new cancer cases and 7.6 million cancer deaths occurred world-

wide2. This accounts for 13% of all deaths for that year, making it the leading cause of death

world wide according to the World Health Organization. It is curious to see a problem so old

still an ever present threat even in our current day.

One of the most notable attributes of the human race is the application of tools and tech-

nology to resolve problems. The question then becomes, how can we use advances of medical,

mathematical and computational resources, defined as both knowledge and efficiency, to further

advance our cause of a disease-free healthy life.

One field which has grown along these lines especially in recent years is that of com-

puter aided diagnostics (CAD). While the field encompasses many disciplines, techniques and

1http://www.cancer.org/cancer/cancerbasics/thehistoryofcancer/the-history-of-cancer-what-is-cancer
2World Heath Organization, GLOBOCAN 2008
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modalities, its sole purpose is to assist medical professionals in their decision making process

by providing accurate information. This information can come from statistical analysis of past

patients, or individual data points such as identifying anomalies in biopsies, MRI, or X-rays.

In this thesis we focus specifically on the field of histopathology, or the study and diagnosis

of disease using cellular and tissue information, for CAD. A typical example is obtaining a

biopsy from a suspected tumor and examining the sample under the microscope to both confirm

a cancer diagnosis and stage the cancer. The exciting part of this approach is that with the advent

of microscope slide scanners, we can create digital images of exactly what the pathologist is

seeing under the microscope. Once in digital form, not only can the images be easily shared

across institutions, but the application of previous research from the rich field of computer

vision becomes possible.

There are a multitude of reasons driving these types of research. Firstly, one of the scarcest

resources in medicine is the time of trained professionals. Simply by automating time consum-

ing tasks, resources can be refocused on problems which are known to be difficult or impossible

for computers to solve, raising the overall level of care. Secondly, by exactly quantifying at-

tributes of diseases in a reproducible manner, we can eliminate observer variance and raise the

level of precision of diagnostic tools. Additionally, with these algorithmic standards in place,

cross institutional collaboration and knowledge sharing becomes easier as there is already a

consensus in place on the values of properties being discussed. Lastly, and perhaps the most

interesting for scientists, is the possibility of mining large amounts of both old and new data

to identify patterns and prognostic indicators. For example, there are in existence large tissue

repositories around the world which could contain valuable insights into the behavior, treatment

and outcome of various diseases, yet the process of analyzing this data unaided is intractable.

By developing high throughput algorithms, which can accurately quantify and inspect various

correlations, we potentially have the ability to unearth powerful approaches to these age old

diseases.

In the future, the gold standard of medical care will be personalized medicine. Personal-

ized medicine is the idea that medical decisions and practices will be custom tailored to each

individual patient’s exact medical situation, resulting in the most direct treatment with the least

amount of collateral damage. The key to reaching this goal is, simply stated, the creation,

management and analyses of vast amounts of previous information. This is exactly where algo-

rithms, and in a small part this thesis, fit into the future.

4



1.1 Problem Definition

Figure 1.1: Three major tasks associated with computer aided diagnostic include acquisition of data,

segmentation of regions of interest (ROI), and lastly the classification and registration of these ROI. The

thesis makes notable contributions in segmentation (third chapter) and classification (fifth chapter), with

a potential extension to registration .

Figure 1.1 gives a high level overview of the broad research fields used in CAD, and

where this thesis fits relative to them. Naturally, all information must first be acquired from

its respective data source. With public and private histology banks in existence, storing years

of samples across thousands of patients, a vast amount of data is already in existence. Once

obtained, the image data is pre-processed to extract biological information via segmentation;

thus determining regions of interest (ROI). This information can include the size, location and

chromatic properties of various cellular entities or organs. Once the region is identified, one of

two courses of action is typically taken. The first possible course, classification, is illustrated by

the case of cancer detection where the region is classified as either cancerous or non-cancerous.

The second possible course, registration, is rooted in the desire to align the current region to an

existing model, perhaps to identify anomalies in shape or location of critical organs.

This thesis develops techniques applicable to a vast number of areas in the broader com-

puter vision domain including segmentation, classification, and registration via two novel state

of the art methods. Here we focus on the important problem domain of histopathology and

more specifically on determining the class of a lymphocyte as either tumor infiltrating (TIL)

or non-TIL. We illustrate how our rapid automated detection system progresses by performing
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segmentation which feeds a morphologically aware classification system. Each of the individual

sub-problems and challenges are explained below.

1.1.1 Segmentation Using Hierarchical Normalized Cuts

Figure 1.2: (a) A tissue micro array and (b) a representative magnified tissue cylinder culled out from

(a) with the extracted biomarker presented in (c) delineated in red. A typical microarray could contain

over 500 individual cylinders, making the biomarker detection via traditional image analysis algorithms

a challenge.

One of the common tasks in digital pathology is quantification of properties associated with ex-

tent of stain as a result of staining for identification of biomarkers. For example in the domain of

Ovarian cancer (OCa), recent works [3, 4, 5, 6, 7] suggest that specific tumor vascular biomark-

ers (TVMs) may be identifiable on OCa tissue microarrays (TMA) that could have prognostic

significance, helping to not only predict the survival rate but also help determine a more specific

course of treatment. It has also been suggested that genes expressed uniquely by the vasculature

of tumors may provide important therapeutic targets. Biomarkers are typically discovered by

staining explicitly for TVMs of interest on OCa TMAs, essentially requiring a vast study for

each biomarker of interest. Precise quantification of the extent and intensity of the stain could

serve as a prognostic metric reflecting risk of disease recurrence and patient survival. However,

due to the data size involved in each of the studies it is currently infeasible in terms of both time

and effort for an expert pathologist to perform this segmentation manually.

Our specific problem definition in this sub-domain is then identified as taking a histology

image and extracting the stained regions as demonstrated in Figure 1.2. These types of images

are especially challenging because the visual appearance of specimens are inconsistent as they

are affected by temperature, time, concentration of stains, scanning equipment and other en-
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vironmental variables. The confidence necessary to provide an industry standard approach is

non-trivial as these variances, along with a wide range of user defined input parameters, create

a complex problem domain.

Challenges

While examining histology images are notoriously challenging, a few reasons which make our

particular problem unique are:

• Datasets are very large and thus require a highly efficient algorithm to make computation

tractable. Additionally, a large number of these datasets already exist in tissue repositories

waiting to be mined.

• Images are not consistent across the dataset due to lighting, staining, and human prepa-

ration variations. This anomaly becomes more significant as various institutions create

samples at different times, essentially ensuring a large variance in visual appearance.

• Annotation of training data is laborious and time consuming, and thus limited supervised

data is available. Additionally, each new stain would require an equal investment to re-

annotate and thus re-train.

• Precise reproducibility based on a wide range of input parameters is necessary for confi-

dence and data exchange between operators. For an algorithm to become useful, institu-

tions need to witness that the output created is less variant than intra-expert variability.
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1.1.2 Local Region Classification

(a) (b)

Figure 1.3: Stroma region manually circled in green. Although they are both stromatic regions, notice

the stark difference in size and shape between the two regions in (a) and (b). Selection of an appropriate

window size or shape in a typical approach such as texture features is difficult.

In the domain of classification, we aim to provide a signature at the pixel level which can

be used to successfully differentiate tumor regions from stromal regions. As shown in Fig-

ure 1.3, the chaotic nature of region size and shape prevents the selection of optimal operating

parameters for standard industry algorithms, such as window size for texture features. The

specific challenging task we have chosen is the classification of a region as either tumoral or

stromal. One application of the resulting identification is to separate tumor infiltrating lympho-

cytes (TILs) from non-TILs, as shown in Figure 1.4. A lymphocyte is a type of white blood

cell that is sent to the proximity of objects which the body considers foreign. Recent work

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17] has suggested that a valuable prognostic indicator is based

on the extent to which the patient’s own immune response, namely their lymphatic response,

has attacked the cancer. While TILs and non-TILs are visually identical, their sole differenti-

ating factor is their location in or around a tumor. This motivates the necessity for a solution

to the broader problem of classifying a region as tumor or stroma. We note, however, that the

technique developed here is not specific to only tumor and stroma classification.
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(a) (b) (c)

Figure 1.4: Lymphocytes in all panels are stained in red. All of the lymphocytes in (a) the stroma region

image are non-TILs, while all of the lymphocytes in (b) the tumor region image are TILs. In (c) we see

both TILs (left half) and non-TILs (right half).

Challenges

Due to the chaotic nature of cancer cell growth, the associated cellular structure is unorganized

and unpredictable making analysis and generalization difficult. In addition there are the follow-

ing specific challenges:

• Domain specific approaches require information about individual cells, such as size and

dispersion pattern relative to its peers. The segmentation of individual cells is difficult

due to clumping as a result of a three dimensional tissue sample being scanned in two

dimensions, and thus computationally expensive methods are needed for cell separation.

• Selection of an appropriate window size for standard approaches. We can see from Figure

1.3 that the pre-selection of a texture window would be challenging because of the varying

sizes and shapes of such a window (a normal rectangle would not work).

• The stroma region is often nestled between areas of tumor, making not only its boundaries

not clearly defined but also the size of the associated region difficult to pre-determine.

1.2 Contributions Made in This Thesis

The problem domain we have chosen is the identification of lymphocytes as either tumor infil-

trating (TIL) or non-TIL. Our approach is to first use our Hierarchical Normalized Cuts (HN-

Cut) to segment necessary information for our Local Morphologic Scale (LMS) algorithm to

successfully classify pixels of interest as either tumor or stromal regions. This thesis contributes

the necessary theory and implementation for the chain of these two novel algorithms.
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• A high-throughput hierarchical segmentation scheme which not only operates on large

(1.5 million pixels) images in under 10 seconds, but also is easily scalable to entire TMAs.

• Parameter insensitive segmentation for large images and the ability to discriminate be-

tween regions with similar color values.

• Layman initialization of the system is possible, obviating the need for detailed ground

truth annotation from an expert that is required for more sophisticated supervised classi-

fiers.

• A novel signature definition allowing for quantitatively characterizing local heterogeneity.

This is especially relevant in the context of histopathology which consists of notoriously

heterogeneous images.

• Our rotationally invariant, non-domain specific, quantitative signature at the pixel level

which can be used for region classification, segmentation, and registration.

• This signature is accurate across a range of window sizes, overcoming common downfalls

of texture and template matching based classifiers.

• While our approach is already high throughput, it is additionally well suited for GPU

computing, motivating unbounded data-analysis.

• Our algorithms work together to form a novel system for the very important problem of

separating out tumoral from stromal regions via application of LMS.

1.3 Organization of Thesis

The structure for the thesis is as follows:

Chapter 1 In this chapter we have introduced Computer Aided Diagnostics and discussed the prob-

lem scope and challenges. We developed in abstract terms an overview of the material in

this thesis, breaking it down into two parts, segmentation and classification. We explained

on a high level how these two algorithms fit together.

Chapter 2 To clearly illustrate how our theories and algorithms differentiate themselves from exist-

ing work, in this chapter we provide a targeted literature survey. By transparently exam-
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ining the weak and strong points of the various but similar approaches, our contribution

becomes clearly identifiable.

Chapter 3 We develop the theory for the HNCut algorithm which combines a hierarchical data struc-

ture with normalized cuts to extract colors of interest from the color space. In this chap-

ter we also give explicit algorithms for the implementation of HNcut using a frequency

weighted mean shift for a complete high-throughput approach.

Chapter 4 To validate the theory presented in the previous chapter on HNCut, we conducted nu-

merous experiments which validate not only the speed and efficiency but also the repro-

ducibility and robustness of our approach. Further we compare our approach to both

an unsupervised (k-means) and supervised learning algorithms (Probabilistic Boosting

Trees).

Chapter 5 In this chapter we explain the Local Morphologic Scale, an approach which quantizes lo-

cal morphology as a feature descriptor which could be used in registration, segmentation,

classification or retrieval. This explanation includes the necessary theoretical background

and algorithms and is further elucidated by a discussion on the various properties it pos-

sesses.

Chapter 6 The properties discussed in the previous chapter are fully vetted by using a synthetic-data

set across numerous experiments. These experiments quantitatively prove the proper-

ties which were proposed in theory section. Additionally, an experiment comparing the

efficiency parameter versus computation time is presented.

Chapter 7 We introduce the combination of these two algorithms to the real world application of TIL

identification. This chapter explains the training and testing methodology used across 5

different data domains. A thorough discussion and set of experiments which demonstrate

the impact of the various parameters is also provided.

Chapter 8 The final chapter contains a summary of the previous chapters and how this work is seated

in the histopathology domain. We identify the contributions made in this thesis as well as

discuss the possible shortcomings of our techniques. We conclude by indicating ways to

extend some of the proposed ideas in future works.
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Chapter 2

Literature Survey

As discussed in the previous chapter, the desire to use computer aided tools for diagnostic

purposes is not unfounded. In this chapter we develop three sections. The first two sections are

for the core aspects of this thesis, namely the two algorithms (HNCut and LMS) mentioned in

the previous chapter. We compare and contrast them to previous works and identify the building

blocks used for the theory in the upcoming chapters. The third section is devoted to previous

approaches for tumor identification. This allows for the study of previous shortcomings and

thus motivate the need for novel solutions.

2.1 Relevant Work in Segmentation

Most previous computerized image analysis algorithms for TMAs have involved thresholding

based schemes [18], [19], [20]. These methods are known to be highly sensitive to even slight

changes in color and illumination. Clustering based approaches, including k-means [18], have

also been investigated for the analysis of TMAs. However, k-means is a non-deterministic algo-

rithm and is highly sensitive to the initial choice of cluster centers [21]. Active contour schemes

[22], while suitable for cell and nuclear segmentation in digital pathology, are not ideally suited

to the problem of pixel level classification. Additionally they are typically infeasible for prob-

lems where hundreds of objects need to be concurrently segmented on very large images [23].

While supervised learning methods such as Probabilistic Boosting Trees (PBT) [24, 25]

have become popular for image classification and segmentation, these methods are constrained

by the difficulty [26] in obtaining ground truth segmentations from experts for classifier training

of the object of interest. Manual annotation of the data, apart from being time-consuming and
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laborious, can also be expensive if only a medical practitioner is capable of providing accurate

annotations. Additionally, if the target of interest changes, considerable effort might be required

to generate new annotations and re-train the classifier.

Normalized Cuts (NCut) [27] is among the final mature descendants from a series of graph

cutting techniques ranging from max cut to min cut [28, 29, 30, 31]. It is a popular scheme

in spite of its main drawbacks: (1) the large number of calculations needed for determining

the affinity matrix and (2) the time consuming eigenvalue computation. For large images the

computation and overhead of these border on the infeasible [27]. Consequently, a significant

amount of research has focused on avoiding their direct calculations [32, 33].

The mean shift algorithm (MS) [34] has been employed and modified in [35] as an unsu-

pervised technique for mode discovery instead of k-means. MS attempts to identify the cluster

mean within a pre-defined bandwidth. By using a steepest gradient approach, a fast convergence

to the set of true means of the statistical data can be found [36]. The improved fast Gauss trans-

form (IFGT) implementation of the MS algorithm [37] allowed computation times for large

images to become reasonable. For the rest of this thesis, we will make no distinction between

IFGT-MS and MS.

The attempt to merge NCuts and mean shift is not new [38]. To overcome the compu-

tational issues associated with NCut, a novel approach of combining both the MS and NCut

algorithms was presented in [38]. Clustering the image by running the MS algorithm to con-

vergence produced class assignments for the pixels. By taking the average intensity value of

the regions obtained via the MS clustering step and using them as the vertices in the NCut

algorithm, a significant speed improvement was obtained.

It was later noticed in [39] that when points of similar values are within an ε neighborhood

of each other, their contribution to the overall system can be merged, providing an efficiency

improvement by reducing the number of computations needed per iteration. We use this to

extend the MS work of [38] in a hierarchical fashion which is more pertinent and amenable

to problems in digital pathology and biomedical imaging. This allows us to perform the same

detection or segmentation task in less than one third the time (under .5 seconds for HNCut as

compared to the reported 1.78 seconds for [39]).

While there are similarities between our approach and [38, 39], there are also significant

differences. The proposed algorithm is specifically designed for rapid extraction of pixels of

interest in a minimally supervised manner, as opposed to unsupervised clustering which is in-

14



sensitive to the user’s domain knowledge as the aforementioned approaches take. Thus, we first

manually identify the desired target class based on individual representative colors (referred to

as a swatch) selected from the target class by a user. This swatch, which can be changed based

on the desired target class or domain, lends HNCut significant flexibility and ease of use.

2.2 Relevant Work in Localized Scale

The notion of scale in the context of image processing has been routinely employed over the last

few decades to facilitate multi-resolution feature analysis; the assumption being that certain per-

tinent image features are only discernible at certain image scales and hence a spectrum of image

resolutions needs to be considered for object recognition. Multi-scale approaches (scale-space

[40] and hierarchical pyramids [41]) envisioned image processing operations being applied on a

single image at varying levels of resolution; homogeneous regions being operated on at a lower

resolution, with more heterogeneous regions being examined at higher resolutions. A limitation

of these multi-scale techniques is that an ”optimal” image resolution needs to be selected from

within the image pyramid [41]. Additionally, some approaches [42] might require selection of

multiple image scales for classification of a single image region.

To overcome these difficulties, the idea of locally adaptive scale emerged [43]. The con-

cept of local scale was introduced to characterize varying levels of image detail so that localized

image processing tasks could be performed, yielding an optimal result globally. Pizer et al.

[44] suggested that having a locally adaptive definition of scale was necessary even for mod-

erately complex detailed images. By quantifying these image details, an adaptive local scale

image could encode implicit information present in the image intensity values. Locally adap-

tive scale has seen application in a variety of image processing tasks including MRI bias field

correction[45], image segmentation[46], image registration [47], and image coding [48].

With that said, in the context of this thesis, we break away from that definition of scale and

extend it in a different context. The idea of scale can also be defined as ”a graduated range of

values forming a standard system for measuring or grading something” 1. Examples of common

scale spaces include temperature (heat), barometric (pressure) and altitude (elevation). This in

itself is not novel in the imaging domain. Saha and Udupa introduced the notion of ball-scale

[49] which at every spatial location was defined as the value corresponding to the radius of the

1Oxford Dictionary, Oxford University Press, 2013
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.1: The associated b-scale ((a)-(d)), g-scale ((e)-(h)), and (proposed in this thesis) LMS signa-

tures ((i)-(l)) shown for a candidate image location on an OCa biopsy image in red.

largest ball encompassing all locations neighboring the location under consideration and satis-

fying some pre-defined homogeneity criterion. In [50], Saha extended the ball-scale idea to a

tensor-scale (t-scale), where the t-scale was defined as the largest ellipse at every spatial loca-

tion where the pixels within the ellipse satisfied some pre-defined homogeneity criterion. The

shape constraints of both (b-scale) and (t-scale) were overcome by Madabushi and Udupa with

the introduction of generalized scale (g-scale)[46]. g-scale was defined as the largest connected

set associated with every spatial location, such that all spatial locations in this set satisfied a

pre-defined homogeneity criterion. Finally, with these scale space definitions in place, we refer

back to the value of the multi-scale idea and note that similar pixels in these scale spaces can

still be treated similarly, motivating the creation of scale spaces which are relevant to individual

features so that groupings can be leveraged and exploited for efficiency.

The common thread among these space scale concepts was that they were defined based

on some homogeneity criterion linking the pixels neighboring the spatial location under con-
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(a) (b)

Figure 2.2: An example of a (a) TIL and (b) a non-TIL. We pose the hypothesis that perhaps homogeneity

is not as interesting in histopathology as the ability to quantify heterogeneity. In the two images, we can

see that the local regions surrounding the lymphocytes (stained in red) are both indeed heterogeneous,

all be it in a different manner. A quantification of that difference, which is what our LMS aims to provide,

is intended to lead to a valuable classifier.

sideration. Figure 2.1 reveals that both the b-scale ((a)-(d)) and g-scale ((e)-(h)) representations

for a specific spatial location (located in the center of the image) attempts to identify the largest

ball and set of pixels, respectively, that is homogeneous with respect to the pixel under consid-

eration. For the stromal regions the associated b-scale ((a), (b)) and g-scale ((e), (f)) regions

are large, reflecting the relative image homogeneity in that location of the image. Note however

that the corresponding g-scale set is affected by the presence of local heterogeneity (g-scale has

multiple cavities). The LMS ((i), (j)) for stromal regions has particles radiating far out in certain

directions, but is also locally constrained (to the right) on account of neighboring nuclei. For the

tumor regions ((c), (d)), the corresponding b-scale is small, with g-scale resulting in an amor-

phous shape with multiple cavities. Additionally the g-scale sets for the tumor regions in ((g),

(h)) appears dramatically different. The corresponding LMS ((k), (l)) while not constrained by

a prior shape model, yields a local structural signature that is consistent across both ((k), (l))

and distinctly different from the corresponding non-tumor LMS signatures ((i), (j)). Note that

the initial motivation of both b-scale, and g-scale was from the perspective of noise filtering and

bias field correction [45], image processing operations that warranted identification of locally

connected homogeneous regions.
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Using an example of a TIL and non-TIL in Figure 2.2, we pose the question: is homo-

geneity interesting in this domain, or is the ability to quantify heterogeneity of greater value?

Consequently the scale definitions are not necessarily optimized to capture local heterogeneity,

except as a very small ball (in the case of b-scale) or set (in the case of g-scale) of homogeneous

pixels in image regions with significant complexity.

It is important here to note that the b-, t-, and g-scale formulations were not devised with

the purpose of object classification in mind. While both the b- and t- scale definitions assign a

feature vector (ball radius and parameters of ellipse respectively) to each image location, which

could then potentially be used to perform pixel-level classification, it is not clear whether these

b-, t- scale related parameters are discriminatory enough. For instance, for an ovarian cancer

(OCa) biopsy image (Figure 2.1), the b-scale at two different locations in the image (Figures 2.1

(c), (d)), are identical in spite of significantly different local structural attributes. Similarly the

g-scale representations at 4 different image locations from within the OCa biopsy image does

not appear to yield a signature that is amenable to object or pixel level classification.

2.3 Relevant Work in Tumor Identification

While the historical works in the field of tumor versus stroma identification are varied, they

tend to fall under three categories. As a result, we focus on one representative work from each

category to provide the reader with a sufficient breadth of knowledge.

2.3.1 Specialized Staining

One of the common approaches to tackling this challenge revolves around using specialized

staining. In some cases, it is possible to stain directly for a specific tumor type of interest allow-

ing for a clear separation of regions. Since this is often not the case, the authors in [51] present

an approach which requires specially stained fluorescence images from which they extracted the

DAPI (49,6-diamidino-2-phenylindole) channel. They formed cell graphs based on the topo-

logical distribution of the tissue cell nuclei and extracted the corresponding graph features. By

using topological, morphological and intensity based features they built a supervised classier

using support vector machines which obtains an accuracy of 88%± 6.68. We can contrast this

with our approach, obtaining on par results with a much smaller variance 86%± .000354 while

operating on solely industry standard Hematoxylin (H) or Hematoxylin & Eosin (H&E) stained
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images, allowing broader usage in pre-existing tissue repositories.

2.3.2 Computationally Expensive

There are notable approaches to the domain which given our current technological knowledge

and infrastructure are intractable for immediate application in a clinical setting. For example,

an N-point correlation function [52] (N-pcfs) for constructing an appropriate feature space for

achieving tissue segmentation in histology-stained microscopic images was presented. The N-

pcfs estimates microstructural constituent packing densities and their spatial distribution in a

tissue sample. Afterwards, they represented the multi-phase properties estimated by the N-pcfs

in a tensor structure. Using a variant of a higher-order singular value decomposition (HOSVD)

algorithm, they realize a classifier that provides a multi-linear description of the tensor feature

space. While the approach wasn’t used directly for tumor versus stroma identification, they

showed > 90% accuracy of their segmentations in a case-study that focuses on understanding

the genetic phenotyping differences in mouse placentae. Unfortunately, the authors note in their

discussion section the need to invest additional research in finding more optimal data structures

and algorithms to reduce the overall time associated with computations. We show that our

feature set can be generated in as little as .0058s per sample, motivating the immediate usage

in a high-throughput system.

2.3.3 Full-Featured

C-path, as described in [53], first performed an automated, hierarchical scene segmentation

that generated thousands of measurements, including both standard morphological descriptors

of image objects and higher-level contextual, relational, and global image features. Using the

concept of superpixels, they measured the intensity, texture, size, and shape of the superpixel

and its neighbors. Afterwards, to produce more biologically meaningful features, they classified

superpixels as epithelium or stroma. Using these classified superpixels they created more than

6600 features. Their approach found a set that were associated with samples from patients who

had a shorter survival period. The key aspect of this analysis was that these features were not

predefined by a pathologist as being relevant to cancer; instead, the software itself found the

cancer-related features among the very large set of measurements of the image and obtained an

accuracy of 89% in the superpixel classification. Their novelty was defined by their successful
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combination of existing features. Our work presents a significantly lower dimensional novel

morphological feature set, which obtains 86% accuracy on the same task, clearly indicating a

competitive approach. Additionally, since we have the ability to perform on par using only a

single feature, we believe that our approach is far more scalable and thus applicable in a clinical

setting.

2.3.4 Summary

We can see from the three categories presented above that while this specific problem domain

has previously been considered, no proposed solution which covers all the required facets cur-

rently exists. The core components of speed, scalability and cost-effectiveness are needed in

order to have a clinically viable solution. The LMS framework presented in later chapters was

specifically designed to meet these needs and thus advance the technological influence of com-

puter aided diagnostics.
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Chapter 3

Hierarchical Normalized Cuts (HNCut):

Theory

3.1 Introduction to Stain Quantification

Cells are inherently hard to see under a microscope due to their highly transparent nature and

thus require staining in order to increase their visibility. Additionally, many chemical properties

are not visible at all unless they are specifically targeted via chromatic staining. During this

chemical process a visible chromatic dye binds to the desired molecule, leaving a visual marker

of the molecule’s presence. A valuable property of staining, as indicated by the Beer-Lambert

law [54], is that the staining will visually manifest itself in locations where there is a higher

concentration of the tagged molecule. As a result, by examining the intensity and extent of

the stain, it becomes possible to have a quantitative measure of an otherwise immeasurable

chemical property.

One main clinical result of this chemical reaction is that it becomes possible to stain for

biomakers. Biomarkers are unique chemical signatures which are indicative of an important

underlying chemical process. Pertinent to this chapter on Ovarian cancer (OCa), there are spe-

cific tumor vascular biomarkers (TVMs) [3, 4, 5, 6, 7] which are suggested as having prognostic

significance, helping to not only predict the survival rate, and disease risk factors, but also help

determine a more specific course of treatment.

Unfortunately, biomarkers are typically discovered by staining explicitly for individual

molecules, essentially requiring a vast study for each biomarker of interest. This creates an

undue burden on pathologists to manually annotate or review each stained biopsy to quantify
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the stain presence. While tissue mircoarrays (TMAs) help to alleviate some of the burden

in the preparation and reviewing of the specimens, the actual quantification process is still

unnecessarily time consuming, worsened by the size of the image data being too large for typical

automated approaches.

(a) (b) (c)

Figure 3.1: (a) A TMA and (b) a representative magnified tissue cylinder drawn from (a) with the

extracted stained TVM presented in (c). A typical TMA could contain over 500 individual cylinders,

making the biomarker detection via traditional image analysis algorithms a challenge.

As an introduction to TMAs, the OCa specimens mentioned above are produced by taking

needle biopsies as small as 0.6 mm in diameter from regions of interest. These tissue cores are

then inserted in a recipient paraffin block in a precisely spaced array pattern where sections are

cut using a microtome and mounted on a microscope slide. As shown in Figure 3.1, each slide

can contain 100–500 samples, are over 26 gigabytes (uncompressed), and have typical sizes of

11500 x 78000. There is research underway to push the amount of these samples (or spots) on

a TMA to over 10,000 [55]. For illustrative purposes, consider having 10 patient studies each

with a TMA of 500 cylinders. Overall, there are 5000 1500×1500 images to analyze. An expert

clinician could expect to invest 5 minutes per image, thus resulting in over 400 hours to analyze

all of the data.

As an end result, in order to provide any type of statistical analysis for patient prognosis, a

large number of these TMAs must be analyzed in a high throughput, yet reproducibly accurate

manner. The new tools developed to combat these difficulties should provide accurate results

that could lead to a standard approach, such that the results can be shared comfortably between

institutions.

Computationally speaking, a grid alignment technique for TMAs has already been pro-

posed by [18] making it trivial to analyze this one large TMA image as a set of smaller spots
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by extracting each of them as a separate image. Since each of these specimens is operated on

individually but has the identical algorithm performed on it, the process becomes an obvious

choice for parallel computing, further motivating the need for high-throughput, accurate algo-

rithms. When we consider our proposed algorithm, using a laptop, we could complete the same

aforementioned work in about 10 hours. Using a standard 8 core machine, the analysis could

be completed in just over an hour.

3.2 Challenges and Contributions

The major contribution of this chapter is a fast, novel, hierarchical unsupervised segmentation

method (HNCut), which we demonstrate with an application in ovarian TMAs. Unlike tradi-

tional clustering algorithms, we aim to extract a single cluster pertaining to the stained region,

while ignoring pixels in all other clusters. In traditional algorithms, pixels are allocated to the

cluster that they are least dissimilar with, as opposed to being removed. Our setup encour-

ages cuts that confidently trim away these undesired pixels. The unsupervised aspect of HNCut

is particularly desirable for image analysis applications in histopathology and TMAs where

obtaining annotated samples for training a supervised classifier depends on the annotations pro-

vided by an expert and hence difficult to obtain.

Our region of interest, the reactive area, is a chemically stained dark brown region (Figure

3.1). The light brown areas are to be ignored as they are considered to be artifacts. Our goal then

becomes the robust rapid extraction of this stained region given minimal domain knowledge

from a layman.

3.2.1 Contributions

This is the first attempt at combining a frequency weighted MS (FWMS), also a contribution in

this thesis, with an existing partitioning algorithm for the task of segmentation. With FWMS

accomplishing the same clustering task as MS, but doing so significantly more efficiently, previ-

ously intractable images become tractable. FWMS exploits the fact that as each iteration of MS

completes, more points converge. We demonstrate how the convergence of our novel FWMS

scheme allows us to perform clustering, the first step of our HNCut segmentation approach, 15

times faster than the traditional MS algorithm [38]. We can see from the run times presented

in [38] that for a 240x160 pixel image the running time is 2.18 seconds. By working directly
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in the color space, and using FWMS as the first stage, we can perform a similar segmentation

operation in 6 seconds on an image 58 times larger.

We can thus summarize the important methodological and clinical contributions juxta-

posed by their challenges as:

• A novel hierarchical segmentation approach that marries our innovative Frequency Weighted

Mean Shift with the well-known Normalized Cuts (HNCut). This speaks directly to the

nature of the large data size and efficiency needed as HNCut not only operates on large

(1.5 million or greater) images in under 10 seconds, but is easily scalable to entire TMAs.

The affinity matrix can now take advantage of multiple features, and multiple color spaces

efficiently across large window sizes.

• Parameter insensitive segmentation for large images and the ability of HNCut to discrim-

inate between regions with similar color values provides a robust approach in a domain

where there are great variances in lighting, staining, and human preparation protocols.

The parameter for the Gaussian kernel in the affinity matrix of NCut is automatically

computed. The parameters for the mean shift are automatically adjusted based on the

variance of the output.

• Layman initialization of the system is possible, obviating the need for detailed ground

truth annotation from an expert that is required for more sophisticated supervised classi-

fiers. With this constraint removed, the investment required for each additional stain/domain

is minimal.

• The first attempt, to our knowledge, to precisely quantify in a reproducible manner a

vascular marker on OCa TMAs. Given a wide range of input parameters we show small

variance in results, making the approach amenable to the ultimate objective of creating a

trustworthy quantitative image based metric for OCa prognosis and survival.

3.3 Overview

Figure 3.2 presents a high level overview of the 4 stages associated with the HNCut algorithm.

Each of these stages are discussed in detail in the following subsections. We present an overview

here to guide the reader through the various stages.
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Figure 3.2: A flow chart of the HNCut process. Proceeding left to right, the user selects the domain

swatch, which then gets fed into our FWMS with the image’s pixel values. This results in the original im-

age being decomposed into multiple levels of color resolution, which is then followed by the application

of NCuts at each of the color resolutions generated. At each pyramid level colors not deemed to be part

of the swatch are eliminated. Following the application of NCuts on the color pyramid (from the lowest

to the highest color resolution), the color values that have not been eliminated are mapped back to the

spatial domain via their original pixel locations, and the final segmentation is obtained.

We start by requiring the user to select a few sample pixels from the target class, termed

a swatch, from an image. We use these pixels to guide the subsequent pixel classification

process across all images in the same domain. Intuitively, one may think of this sample as the

foreground.

Next, we employ our novel version of a mean-shift algorithm, frequency weighted mean

shift (FWMS), on the color values in the image to form a hierarchical data structure (represented

by the levels in the color pyramid in the second box in Figure 3.2). Intuitively, the FWMS algo-

rithm allows for identification of color values which are within some specified tolerance of each

other and assigns them to the same mode. A popular graph partitioning algorithm, normalized

cuts [27] (NCuts), then operations on only the unique values at each level of the pyramid, as

opposed to all possible color values, allowing for a factorization resulting in significantly fewer

computations. This reduction is key as it allows NCuts to operate on images which were pre-

viously infeasible due to data size constraints. An illustration of the application of the scheme

to an OCa TMA, for detecting a TVM, is illustrated in Figure 3.3. We then compute the weight

for each unique mode, which reflects the actual frequency of the number of pixels associated

with it.
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Figure 3.3: (a) Original image with desired TVM stain enclosed in red, (b) image at the bottom of

the color pyramid during FWMS, (c) image at the bottom of the color pyramid following application of

NCuts, (d) final segmentation results obtained by mapping colors not eliminated by HNCut spatially onto

the original image. Note that between (a) and (b) a significant reduction in color resolution occurs, which

allows NCuts to be performed on an image with several orders of magnitude fewer colors compared to the

original image (a). NCuts is then applied at progressively higher color resolutions, while at each pyramid

level colors not deemed to be part of the swatch are eliminated. The colors retained at the highest

resolution are then spatially mapped onto the corresponding pixels to yield the final segmentation.

Using this pyramid we can drastically reduce the large segmentation problem in the color

space to a set of much smaller graph partitioning problems (the third box from the left in figure

3.2), which we show can be solved far more efficiently by NCuts. By starting at the bottom of

the pyramid, we partition the unique values (typically on the order of 10 values) into two sets

such that all of the values selected by the user in the first step are assigned to the first partition.

Subsequently, we eliminate the second partition and map the colors in the first partition to an

immediately higher color resolution level in the pyramid. This process continues until the entire

pyramid is traversed. The last step involves mapping the color values not eliminated back into

the spatial domain.

The hierarchical set of operations described above makes for an extremely efficient and

accurate algorithm; thus applying the NCut at the lowest levels of the pyramid is relatively

simple to do and encourages a more sophisticated definition of pixel affinity. While in this work

only chromatic information was leveraged, the method is easily and efficiently extensible to

incorporate additional image features (e.g., texture).

Figure 3.3 displays an image from our dataset undergoing the HNCut procedure, with the
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intent of quantification of the vascular marker stain (brown color). The numbers shown in the

boxes in Figure 3.3 represent the reduced number of colors and pixels generated by the HNCut

scheme at different levels of the pyramid within a single cylinder (1500× 1500 pixels, 300,000

colors) from a TMA.

3.4 Theory and Algorithms

3.4.1 Notation

An image scene is defined as C = (C, f) where C is a 2D Cartesian grid of N pixels, c ∈ C,

where c = (x, y). f is a color intensity function, where f ∈ R3. We define as F1 ∈ R3 the

vector of colors associated with all pixels c ∈ C at the full color resolution (top of the color

pyramid). The elements of F1, namely f1,i, are derived such that for pixel ci, f1,i = f(ci) and

f1,i ∈ R3.

3.4.2 Integrating Domain Knowledge to Guide Normalized Cuts

A user via manual selection defines a small color swatch S1 = {f1,ατ |ατ , τ ∈ {1, . . . , N}}

where ατ is an index value to the original color vector. Note that S1 is easily obtained by

annotating (manually) a few pixels from the object of interest on a representative image and

may be easily changed based on the application. As we will describe in further detail later, S1

is only used to identify which color partition (A or B from Eq. 3.8) to retain during NCut. It

is important to note that since S1 is a reference to a subset of the color values in the original

image, it is available at, and undergoes, all steps of the HNCut algorithm. will undergo all of

the MS and NCut operations presented below. Note that S1 is the swatch originally defined by

the user at the full resolution, k = 1.

3.4.3 Frequency Weighted Mean Shift (FWMS)

Theory

The mean shift algorithm is used to detect modes in data using a density gradient estimation.

For a more detailed explanation of the algorithm we refer the reader to [36].
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We start with the fixed point iteration update ∀j ∈ {1, . . . , N} in MS (described in [36])

as

fk+1,j ←−
∑N

i=1 fk,iG(fk,j − fk,i)∑N
i=1G(fk,j − fk,i)

, (3.1)

where G is a Gaussian function with a bandwidth parameter σMS, which is used to compute the

kernel density estimate at data point cj ,G(fk,j−fk,i)=exp(− ||fk,j−fk,i||2
σ2
MS

), with ||·||2 representing

the L2 norm. k ∈ {1, . . . , K} represents various levels of color resolution produced at each

iteration. The overall computation time for Equation 3.1 isO(N2). By employing the Improved

Fast Gauss transform (IFGT) [37], we can reduce the computation complexity to O(N) with

minimal precision loss.

It becomes possible to exploit the fact that after each iteration of the MS many of the

data points, in our case color values, converge. If we consider what that convergence means

mathematically, essentially two points cβ1 , cβ2 , where β1, β2 ∈ {1, . . . , N}meet the requirement

that |fk,β1 − fk,β2| ≤ ε where ε is a pre-defined tolerance value. We can thus rewrite the

numerator of Eq. 3.1, which is

fk,β1G(fk,j − fk,β1) + fk,β2G(fk,j − fk,β2)

+
N∑

i=1,i 6=β1,β2

fk,iG(fk,j − fk,i), (3.2)

in the form:

2fk,β1G(fk,j − fk,β1) +
N∑

i=1,i 6=β1,β2

fk,iG(fk,j − fk,i), (3.3)

thereby avoiding the explicit calculation of G(fk,j − fk,β2) where j, β1, β2 ∈ {1, . . . , N}, k ∈

{1, . . . , K}. This results in one less computation for the Gaussian, which is by far the most

expensive operation in the entire MS clustering process. The formulation in Equation 3.3 results

in a significant computational efficiency improvement. The computational savings apply to the

denominator as well, as it follows the same reduction.

As a result, we may rewrite the update presented in Equation 3.1 as a multi step update.

Initially, we determine the unique values in iteration k (i.e., Fk) under the constraint that any

color values |fk,i− fk,j| ≤ ε are considered equivalent. Thus from Fk = {fk,1, fk,2, . . . , fk,|Fk|}

we can construct the vector F̂k, where F̂k ⊂ Fk and F̂k is a set of only unique values in Fk,

with |F̂k| = Mk. A weight vector wk = {wk,1, . . . , wk,Mk
} is then computed for F̂k as
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wk,j =

|Fk|∑
i=1,fk,i=f̂k,j

wk−1,i, (3.4)

where j ∈ {1, . . . ,Mk} and w0 = 1, since at k = 1 each color value has equal weighting.

Equation 3.4 is summing the weights from the previous level into the new unique values that

resulted from the next iteration of mean shifting. As a result,wk,j contains a count of the number

of original pixels that have migrated to fk,j through mean shifting. Now, the number of points

in the system that have converged to some intensity (color) value f̂k,j is represented by wk,j . It

is important to note the following definition of Mk where

|wk| = |F̂k| = |Fk+1| = Mk, (3.5)

and

Mk∑
i=1

wk,i = N, (3.6)

which leads us to the update of Equation 3.1:

fk+1,j ←
∑Mk

i=1wk,if̂k,iG(f̂k,j − f̂k,i)∑Mk

i=1wk,iG(f̂k,j − f̂k,i)
, (3.7)

for j ∈ {1, . . . ,Mk}.

An illustration of the steps described in Equations 3.3-3.7 is presented in Figure 3.4. The

images depict a standard probability density function (PDF in red) computed from the Gaussian

contributions (in blue) from the 1 dimensional data points (red circles). From Figure 3.4(a) we

can see that colors fβ1 and fβ2 will converge in the next iteration of the MS. We exploit the fact

that once fβ1 and fβ2 converge, it becomes possible to factor out fβ2 from the system, and move

its contribution into fβ1 , without altering the distribution (Figure 3.4(b)).

We call this new approach the Frequency Weighted Mean Shift (FWMS). FWMS helps to

produce a pyramidal scene representation Ck = (C,Fk), where k ∈ {1, . . . , K} represents K

levels of the color pyramid. Note that M1 ≥ M2 ≥ . . . ≥ MK , indicating level 1 has the most

colors and MK the least. In other words, FWMS results in a series of scenes Ck, all mutually

aligned, but with a smaller number of colors in {CK , CK−1, . . .} compared to {C1, C2, . . .}, which

allows for NCut to be tractable. The FWMS algorithm is given in Algorithm 1.
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(a) (b)

Figure 3.4: A visual representation of the probability density functions (pdf) illustrating the difference

between the (a) traditional MS and the (b) frequency weighted MS. The red circles on the x-axis are

the given values in a 1 dimensional system, the blue arcs are the associated Gaussian contributions,

while the red line above represents the summation of all of the contributions, i.e., the pdf. In (b), when

points fβ1 and fβ2 converge, fβ2 is removed from the system, and its contribution is moved into fβ1 as a

multiplication, avoiding an additional expensive step in the computation of the Gaussian pdf.

Algorithm

The convergence requirement stated in line two of Algorithm 1 may be specified via three

possible criteria. The first is the maximum number of iterations, a number specified by the

user. The second more common approach is to stop the algorithm when the difference between

any two iterations falls below a pre-defined threshold (i.e., the amplitude of the migrations

associated with each point reduces significantly). Lastly, convergence can be reached when the

number of elements in F̂ becomes small enough that additional clustering provides no efficiency

benefit as the overhead in the NCut starts to outweigh the computation time. This process was

illustrated in Figure 3.3 as the sequence of steps going from (a) to (b). It may be seen from

Figure 3.3 that the overall color resolution is significantly reduced as the algorithm proceeds

from level 1 to level K. In this example, the original image containing about 300,000 unique

color values was reduced to 44 unique values. This significantly smaller set of values makes the

NCut step tractable since we operate directly in the color space.
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Algorithm 1 Frequency Weighted Mean Shift to Generate Color Pyramid
Input: F1 of C1
Output: F̂1, F̂2, . . . , F̂K

1: k = 1

2: while not converged do

3: Compute the unique values of Fk and store them in F̂k

4: Compute frequency of colors in F̂k as they appear in Fk using Eq 3.4, store in wk

5: Generate Fk+1 using Eq 3.7

6: k = k + 1

7: end while

8: return F̂1, F̂2, . . . , F̂K

3.4.4 Normalized Cuts on Frequency Weighted Mean Shift Reduced Color

Space

Theory

Normalized cuts [27] is a graph partitioning method, used to separate data into disjoint sets. For

our problem, the hierarchical pyramid created by FWMS at various levels of color resolution

(F̂1, F̂2, . . . , F̂K) serves as the initial input to the NCut algorithm. NCut takes a connected graph

G=(E, V ), with vertices (V ) and edges (E) and partitions the vertices into disjoint groups. By

setting V equal to the set of color values F̂K , and having the edges represent the similarity

(or affinity) between the color values, we can separate the vertices into groups of similar color

values. A normalized cut is defined as the process by which the removal of edges leads to two

disjointed partitions A and B such that the variance of values (in our case colors) in A and

B are minimized and the difference in average value (intensity of colors) between A and B is

maximized. We present the high level formulation as described in [27]:

NCut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (3.8)

where cut describes the affinity between the sets, encouraging higher dissimilarity between

sets, and assoc describes the affinity between a set and the whole system, encouraging sets of

significant size. The ψ function is used to define the affinity between two points. Our ψ function

is defined as:

31



ψ(f̂k,i, f̂k,j) = exp(−||f̂k,i − f̂k,j||
2
2

σNcut
) (3.9)

with σNcut as a bandwidth parameter. It is worth noting that in the traditional NCut paper [27],

their affinity calculation took into account both a spatial and color component. For even small

images, this made the affinity matrix intractable. As a result, the ψ function had a spatial con-

straint introduced such that Equation 3.9 is set to zero if the associated pixels are farther away

than a user specified distance. This constraint forced the affinity matrix Ψ to typically be sparse,

making its storage and subsequent operations applied to it less burdensome. Nevertheless, for

large images, the affinity matrix is still too large (in spite of the spatial constraints), and as

such we choose to operate solely in a significantly reduced color space, without the imposition

of spatial constraints. In Figure 3.3, we can see at the bottom of the hierarchical pyramid for

a color image with original dimensions of 1200 × 1200 with about 300, 000 unique colors, we

would have an affinity matrix of only 7×7, and at the highest level a size of 1572×1572 instead

of the naive NCuts implementation resulting in an affinity matrix of 300, 000× 300, 000.

Algorithm

The main steps comprising the HNCut technique are shown in Algorithm 2. We begin by

applying NCut on the lowest image resolution generated in the above section, by setting k = K,

Vk = {f̂k,1, f̂k,2, ..., f̂k,Mk
}, i.e., the set of unique color values present at level K from FWMS.

Step 1: We apply NCut to partition the scene into two disjoint color sets A and B, where

A,B ⊂ Vk. To perform this partition, we compute the affinity matrix ΨK ∈ RMk×Mk using

Equation 3.9 for all i, j ∈ {1, . . . , |Vk|}. σNCut is a scaling parameter set to some initial value.

Step 2: As a result of the partitioning, we need to identify if either A or B uniquely contains all

colors in Sk, our user selected color swatch at level k of our hierarchy. Hence if Sk ⊆ A and

Sk ∩ B = ∅ then eliminate all colors in B by setting Vk = A. If Sk ⊆ B and Sk ∩ A = ∅,

similarly eliminate A by setting Vk = B. However if Sk is not uniquely contained in either A

or B, we increase σNCut and proceed back to Step 1. We keep incrementing σNCut until Sk is

uniquely contained within either of A or B, and set Vk to that partition.

Step 3: Begin the process again with the new Vk until no further partitioning of the color space

at level k is possible; that is until Sk cannot be contained uniquely within a single color partition

for any value of σNCut < σmax.

Step 4: Using this process, we sequentially climb the hierarchical data structure F̂k where k ∈
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{1, ..., K}. Thus, we migrate to the next higher image resolution, level k − 1 and set Vk−1 to

Vk, i.e., the set of colors retained at resolution level k, and repeat the process again. We return

to Step 1 until k = 1.

Step 5: At level 1, V1 contains a subset of values from F̂1, which are considered to be the

chromatic values of the region of interest. Thus the final image is computed by retaining all

pixels j ∈ {1, . . . , N} such that f1,j ∈ V1, and eliminating the others.

Algorithm 2 NCuts on FWMS Reduced Color Space

Input: F̂1, F̂2, . . . , F̂K , S1

Output: V1 is returned, which contains all retained color values

1: k = K

2: Vk = F̂k

3: Using Equation 3.9 build Ψk from Vk

4: while k 6= 1 do

5: σNCut = intial σ value

6: while σNCut < σmax do

7: Solve for A,B by using Eq. 3.8

8: if Sk is not uniquely contained in A or B then

9: Increase σNCut by a factor of 10

10: else

11: Vk =

 A, if Sk ⊆ A

B, if Sk ⊆ B

12: end if

13: Using Equation 3.9 re-construct Ψk from Vk

14: end while

15: k = k − 1

16: Vk = f̂k,i,∀i where fk+1,i ∈ Vk+1

17: Using Equation 3.9 re-construct Ψk from Vk

18: end while

19: return V1
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Chapter 4

HNCut: Experiments & Results

4.1 Dataset

Our image database comprises of a total of seven digitized TMAs of ovarian cancer (OCa),

in turn comprising a total of over 500 tissue cylinders from 100 patients, from which 130 were

randomly selected for performing quantitative evaluation (qualitative evaluation was done on all

500). Only 130 of them were submitted to our pathologist for annotation due to the laborious

nature of the work, which further motivates the utility and clinical motivation for HNCut.

The TMAs were obtained by sampling OCa tissue and were stained for the presence of

the TVM ESM-1, resulting in vascular regions with the antibody to ESM-1 staining brown.

The digitized version of the TMAs were obtained by scanning the slides at 40x resolution on

a whole slide digital scanner, but subsequently these were down-sampled and stored at 20x

magnification. This resulted in over 500 digital images of individual cylinders, each of which

were approximately 1,500 × 1,500 pixels in dimension. An expert pathologist annotated the

precise spatial extent of the TVM on all of the 130 tissue cylinders considered for the test. Care

was taken by the pathologist to include even those instances where only a few isolated pixels

were picked up by the TVM.

4.2 Implementation

All experiments were run on a 2.8Ghz Linux machine running Matlab 2008b with 32Gb of

RAM. The setup of HNCut was as follows. All experiments were performed after converting the

RGB input images to the HSV colorspace, though the algorithm is extensible to scalar valued
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images (such as grayscale images) as well. 1 The FWMS was performed using σMS = .05.

NCut was subsequently performed using the Silverman function [56] to determine the value

for the initial σNCut, which was then incremented by a factor of 10 as prescribed in step 9 in

Algorithm 2. The Improved Fast Gauss Transform’s clustering variable, as suggested by [37],

was set to the square root of the number of data points. When the number of remaining clusters

fell below this value, it was reset to the square root of the number of remaining clusters.

The procedure that we used to enforce the ε distance for the generation of F̂k from Fk

as discussed in Section 3.4.3 was implemented as follows. Since the human visual system is

unable to easily discriminate between subtle variations of the same color, we can set ε to a

relatively large value. The easiest way to apply this ε requirement in an algorithmic form is to

simply choose the desired precision level (such as 10, 0, .01 or .001, depending on the format

of the data) and then simply round to that level. Since our data is stored using double precision

in the range [0, 1], we have used the thousandths decimal place. The subsequent procedure of

locating unique values and computing their frequencies is as simple as generating a histogram

of the data values with each unique value occupying its own bin. This is a significant benefit,

as the production of histograms is not only well studied but easily transformable into a parallel

computing problem [57].

4.3 Evaluation Description

A total of 4 experiments were conducted to evaluate the accuracy, efficiency, and reproducibility

of the HNCut algorithm, specifically in terms of its ability at (1) identifying pixels whose colors

are within the swatch and also in terms of (2) identifying contiguous vascular regions annotated

by the pathologist. It was felt that both pixel level and region level statistics were required to

comprehensively and reliably evaluate HNCut performance.

1Experiments were run using RGB space with less success, the main issue being that the colorspace is not flat

or intuitive, so as the colors were mean-shifted unnatural combinations were created. This is especially notable

when trying to obtain brown stain in an H&E image where the red dye becomes quite similar to the brown stain in

RGB space.
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Region level metric

We define Ra,ς as the regions identified by HNCut and Rb,z as the corresponding expert an-

notated regions, with z ∈ {1, . . . , Z} and ς ∈ {1, . . . ,k}, where Z and k are the number of

regions in the HNcut and expert annotated images, respectively. If for anyRb,z, |R
b,z∩Ra,ς |
|Rb,z | > 0.3

then Ra,ς is identified as a true positive (TP). If for any Ra,ς there is no Rb,z for which this

condition is satisfied then Ra,ς is identified as a false positive (FP). If there is a Rb,z for which

no Ra,ς can be found that satisfies the above condition, Rb,z is deemed to be a false negative

(FN). The .3 threshold was experimentally determined based on interactions with our expert

pathologist. The complex nature of the stain shapes necessitated a lower threshold.

Pixel level metric

Pixel-level statistics are defined using the basis of P a and P b, a collection of all pixels in the seg-

mented result (∪kς=1R
a,ς) and the ground truth (∪Zz=1R

b,z), respectively. From there we can de-

fine, the True positive rate (i.e., sensitivity, |P
a∩P b|
|P b| ), Positive predictive value ( |P b|

|P b|+|Pa−(Pa∩P b)| ),

False negative rate ( |P
b−(Pa∩P b)|
|P b| ) and True negative rate (i.e., specificity, |C−(P

a∪P b)|
|C−P b| ). In all

cases the | ◦ | notation defines the cardinality of the set.

4.4 Comparative Strategies

PBT was implemented as described in [24] using suggested default values for both of PBT’s

variables θ and ε (.45 and .4 respectively). PBT iteratively generates a hierarchical tree struc-

ture in the training stage where each node of the tree is converted into an Adaboost classifier

[58] constituting 7 weak classifiers. During testing, the conditional probability of the sample

belonging to the target class is calculated at each node based on the learned hierarchical tree.

The discriminative model is obtained at the top of the tree by combining the probabilities as-

sociated with probability propagation of the sample at various nodes. Unlike other commonly

used classifiers, such as AdaBoost [58] and decision trees [59], which provide a hard binary

classification, PBT generates a posterior conditional probability value p(1|c), p(−1|c) ∈ [0, 1],

for each sample c as belonging to one of two classes. The feature vector was created by taking

a 3 × 3 window around every c ∈ C, across all 3 color channels in HSV space, resulting in

a 27 dimensional vector. 1000 random positive (stained) samples and 1000 random negative

(unstained and spuriously stained) samples were selected from 25 randomly selected images,
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resulting in a total training vector of size 27 × 50,000. Training and testing was done via 50

runs of cross validation. This consisted of randomly selecting 25 images and training the classi-

fier as described above, followed by testing on the other 105 images. The probabilities returned

by the PBT were subjected to thresholds at 92% and 97% (represented via the first two columns

in Figures 4.2, Figures 4.3 and Figures 4.4 ). The choice of thresholds was determined as fol-

lows. During each run of the randomized cross validation, a receiver operating characteristic

(ROC) curve (representing the tradeoff between sensitivity and specificity) was generated and

the threshold was set at the determined operating point. This value was found to range between

92% and 97%.

4.5 Experiment 1: Comparison of HNCut to PBT and k-

means

Design

We compared the detection performance of HNCut with k-means and PBT. A standard k-means

algorithm [60] was performed using 10 clusters. Since k-means is not deterministic and is

notoriously sensitive to the choice of cluster centers, offline experiments were performed to

identify initial cluster centers (cluster centers being identified both within and outside of the

target object of interest), which were qualitatively determined as being optimal.

A subset of qualitative segmentation results are presented in Figure 4.1. The first column

represents the original stained TVM OCa image cropped to an area of interest, with the bound-

ary of the ground truth highlighted by the pathologist labeled in red. The first row illustrates a

case where all of the algorithms performed comparatively. The second and third rows illustrate

instances where the HNCut algorithm performs better compared to PBT and k-means, both of

which yield several false positives. The final row is used to illustrate a scenario where false

negatives occur for all three methods. The middle region for the image in Figure 4.1(m) is cor-

rectly segmented in all algorithms, while the three other regions are incorrectly rejected. This

specific image is a very difficult case as the stain in those regions is only barely visible to an

expert. k-means results in the largest number of positives compared to the two other methods;

a consequence of k-means requiring all pixels to be assigned to a cluster.

Figures 4.2,4.3, and 4.4 quantitatively illustrates the mean and variance of false negatives,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4.1: The first column ((a), (e), (i), (m)) represents the ground truth annotations of the vascular

stained areas on 4 different cylinders. Columns 2-4 (left to right) represent corresponding segmentation

results from HNCut ((b), (f), (j), (n)) for σMS = .05, PBT ((c), (g), (k), (o)) at the 97% threshold, and

k-means ((d), (h), (l), (p)) using 10 clusters. It can be seen that k-means always overestimates the stain

extent, resulting in a large number of false positives. While PBTs perform better compared to k-means,

(g) and (k) show how the PBT can occasionally retain spuriously stained pixels. On the other hand,

HNCut’s results closely resemble the ground truth. Note however that none of the algorithms are able

to correctly identify the faintly stained regions in the upper portion of (m), since the stain there is barely

discernible.
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false positives and true positives, respectively, for the region level metric for the different algo-

rithms across 10 runs. The red line indicates the mean value across all 10 runs, the blue box

marks the positions where 25% of the 10 values on either side of the mean are encapsulated, and

the black line extends to where 75% of the values that are on either side of the mean are con-

tained. Thus, the closer the blue and black markers are to the red mean line, the more consistent

the algorithm was able to perform. For the PBT this process involved 10 runs using different

training and testing sets, while for HNCut we selected 10 different swatches. Finally, we note

HNCut provides a similar mean for false negatives, while still providing a similar percentage

for true positives. The false positive rate for HNCut versus PBT reveals that HNCut on average

yields better performance, with a much smaller variance. The threshold of 92% for the PBT en-

courages few false negatives at the cost of many false positives. Figure 4.5 reveals that HNCut

significantly outperforms both the PBT and k-means algorithms in terms of execution time.

Interestingly, randomly generating the training set for the PBT from the ground truths

provided by the expert seems to lead to a larger variance in the false positive metric. This can

be as a result of human error in performing the ground truth annotation, or in the selection of

pixels that are not truly representative of the rest of the desired class.

Figure 4.2: Mean and variance of the region-based performance measure for False Negatives over 10

runs for the PBT classifier (92% and 97% threshold), PBT classifier trained using HNCut (97% and 99%

threshold), HNCut and k-means over 130 images.

It is also worth noting that k-means does quite poorly. There is no variance associated

with the algorithm since we determined the optimal centers offline, thus removing the non-
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Figure 4.3: Mean and variance of the region-based performance measure for False positives over 10

runs for the PBT classifier (92% and 97% threshold), PBT classifier trained using HNCut (97% and 99%

threshold), HNCut and k-means over 130 images.

Figure 4.4: Mean and variance of the region-based performance measure for True Positives and over

10 runs for the PBT classifier (92% and 97% threshold), PBT classifier trained using HNCut (97% and

99% threshold), HNCut and k-means over 130 images.

deterministic aspect of the scheme. Figures 4.1 and 4.6 reveal the reason for the large number

of false positives associated with k-means, it tends to retain many spuriously stained pixels (as

visible by the light brown pixels) as being part of the target class.
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Figure 4.5: A comparison of computation times of each algorithm across 130 images reveals that HNCut

significantly outperforms both the PBT and k-means algorithms in terms of execution time.

Pixel level performance measure

Table 4.1 quantitatively illustrates the mean and variance of the pixel level performance measure

for the different algorithms across 10 sets of randomly selected training and test sets. HNCut’s

mean true positive rate (59%) places it in between the two PBT setups (63%, 51%), while still

outperforming (99%) the true positive rate associated with the PBT on the two trials (98%,

98.3%). HNCut was intermediate in performance to the two runs of PBT in terms of positive

predictive (36% versus 35% and 46%) and false negative rates (40% versus 36% and 47%).

HNCut, thus, appears to provide a good balance between precision and recall.

4.6 Experiment 2: Reproducibility of HNCut with Respect

to Swatch and Parameter Sensitivity

The results produced by HNCut are dependent upon the selection of the swatch and the size

of the σMS bandwidth parameter. Clearly if there is a great deal of heterogeneity within the

target class and the choice of swatch is not representative of the target class, the quality of

the segmentation will be sub-optimal. Consequently, the user has the choice of either (a) sam-

pling additional values corresponding to the target class, or (b) repeating the segmentation with

HNCut a few times with different swatches until the desired target class segmentation is ob-
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True Positive True Negative Positive Predictive False Negative

Percentage Percentage Percentage Percentage

HNCut 59.24%±7.36 99.01% ± 0.56 36.34% ±52.30 39.95% ±7.36

PBT (92%) 62.65% ± 0.87 98.09% ±0.16 35.23% ±14.42 35.71%±0.87

PBT (97%) 51.72%±3.26 98.33%±0.07 46.70% ±5.08 46.65%±3.26

PBT W.

HNCut (97%)
58.70%±4.09 98.46% ±0.06 56.18% ±6.44 39.66% ±4.09

PBT W.

HNCut (99%)
46.03% ±2.53 98.56% ±0.02 67.60% ± 2.29 52.34% ±2.53

k-means 71.89% 97.56% 14.34% 27.3%

Table 4.1: Quantitative results presented for the pixel-level performance measure across all of the algo-

rithms. The± value is the percent variance associated with the difference in running the algorithms with

10 different training sets or swatches. From Equation 15, we see it is possible to obtain a value greater

than 100% when the number of pixels identified are greater than the total number of pixels in the target

region.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Two bands across selected TMA cylinders are presented. The (a), (b) original input, with the

annotated ground truth in red, is presented on the top, followed by (c), (d) HNCut with σMS = .05, (e),

(f) PBT at the 97% threshold and (g), (h) k-means using 10 clusters.

tained. Note that both tuning procedures are only made possible by the superior computational

efficiency of HNCut.

Swatch selection

Figure 4.7 shows qualitative results reflecting the sensitivity of the segmentation as a function

of the choice of the swatch. A small patch was randomly selected from the desired class by a

non-expert user. The resulting segmentation was overlaid using a red boundary on the original

image. Subsequently, a few additional pixels were added to the swatch, and the segmentation

repeated. In Figure 4.7(b), we can see that when the user selects dark pixels within the swatch,

the segmentation focuses on the darker aspects of the stain. When the swatch shown in Figure
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(a) (b) (c) (d)

Figure 4.7: (a) Ground truth annotation of stain extent obtained from an expert pathologist. The seg-

mentation result shown in (b) was created using a swatch comprising 7 selected pixels. The next column

(c) contains the same values as (b) with the addition of another 5 values. The final column (d) has 18

values selected from the original image. The red line encapsulates the results of the segmentation algo-

rithm. We can see that the first set of results (b) are reasonable, but as more class representative samples

are used to construct the swatch, the results improve ((c), (d)). Red boundary delineates perimeter of

selected region for clear viewing.

4.7(d) was used (a true representation of the variance in the target class) the results approached

the annotations of the expert. Note that a non-expert user could easily determine which areas of

the target class were not sampled from, and include those in the s watch. This iterative process

could be repeated until the non-expert user observes the results that match the exact desired

output. Once the domain swatch is selected, it can safely be used for the rest of the images in

the TMA set.

Parameter sensitivity

σMS is the parameter, used in Gaussian function of the FWMS, which determines the variance

of the modes and is thus dependent upon the dataset considered. In Figure 4.8, the importance

of selecting the correct σMS becomes apparent. In the case where the σMS value is too large,

the FWMS aggregates together pixels not contained within the swatch. As a result, they can

never be pruned away as shown in (b). The highlighted blue section is dark enough in color that

it becomes associated with the stain due to the large bandwidth selection. On the other hand,
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: (a) Ground truth (pathologist) segmentation of stain extent, (b), (c) above show segmentation

outputs for two different σMS values (σMS = .01, .3). The algorithm rarely experiences unacceptable

segmentations except in the case when an intentionally inappropriate value of σMS for the domain swatch

is chosen. Figures 4.8 (d), (e), (f) are illustrated with σMS values of .01, .3, and .05 respectively, except

that for these cases, a non-representative swatch for the target class was deliberately selected.

when the appropriate swatch representative of the desired target class is selected, almost any

σMS value becomes acceptable, as shown with σMS = .01 in Figure 4.8(c). Unfortunately, in

the case where a swatch that is not representative of the target class is selected, as in Figures

4.8(d), (e) and (f), the results tend to be more sensitive to the choice of value for σMS.

In our specific application, using HNCut on 500 discs, about 10 of them failed to converge

properly (as determined by qualitative, visual inspection), resulting in very poor segmentations.

Interestingly, these 10 images all had little to no stain present. By computing the variance of

46



the color pixels in the segmented output against the domain swatch, we can assess the perfor-

mance of HNCut and make relevant adjustments in an unsupervised manner. For instance, if

the variance is larger than desired, adjusting σMS to a smaller value will produce new output

that is more similar to the domain swatch. For all 10 images considered in this experiment, the

scheme for automatically adjusting σMS resulted in excellent results.

4.7 Experiment 3: Efficiency and Speed Considerations of

HNCut

A crucially important property of HNCut is the efficiency of FWMS compared to the traditional

MS. To quantitatively evaluate the computational savings in using FWMS compared to MS, the

MS and FWMS procedures were executed over a total of 20 iterations and the corresponding

iteration times graphed. Additionally, we compared the time it took for PBT, k-means, and

HNCut to segment the 130 tissue cylinders for which quantitative evaluation was performed.

In order to clearly illustrate the high-throughput capabilities of HNCut, we compared its

runtime to PBT and k-means. Figure 4.5 illustrates a graphical representation of the results.

From the onset we can see that PBT’s training time of 181 seconds accounts for 25% of HNCuts

643 second run time. Typically this training time is divided amongst all of the tested samples;

thus the more samples that are tested, the cheaper it becomes to train the system. Regardless,

even upon excluding the training time for PBT, HNCut still performs significantly faster. The

average of 16 seconds per sample by PBT is easily beaten by the runtime of 6 seconds per

sample by HNCut (for each 1500 × 1500 cylinder on the TMA). This implies that HNCut is

roughly 62% faster compared to PBT.

In Table 4.2 we can see the expected time taken to perform the classification task on

images of different sizes. For larger images, the difference in execution time becomes even

more apparent. When we compare the time needed for HNCut versus that of a human expert

performing the same task, the need for a technological approach becomes apparent.

Figure 4.9 shows the numerical advantages to using FWMS over MS. When the initial

number of points is large, after each iteration, fewer computations need to be performed. The

larger ε is selected, the faster FWMS will converge, on the other hand, when ε is selected to be

extremely small the execution time for FWMS begins to approach that of MS.
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Image Dimensions

(Number of pixels)

323x323 646 x 646 1292 x 1292 2584 x 2584

(104,329) (417,316) (16,69,264) (96,677,056)

HNcut 0.6s 1.2s 7.2s 25s

K-means 6.9s 30s 104s 504s

PBT 0.678s 2.9s 12.5s 46s

Ncut 43s 585s
Insufficient Insufficient

Memory Memory

Est. Manual
30s 160s 600s 2600s

Segmentation

Table 4.2: Run times for segmentation of various sized images. We can see in all cases the HNCut

algorithm provides the best run times. Additionally, there are two cases in which NCut is unable to

finish because it exceeds the maximum amount of memory, a strong limitation for large scale usage. It

also becomes apparent that using an algorithm, as opposed to manual segmentation, is certainly a more

efficient process. The mentioned timings were performed using a 2GHz dual-core laptop having 8GB of

RAM.
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Figure 4.9: A graph showing the typical computation time in seconds for each iteration of the MS and

FWMS procedures. The original Improved Fast Gauss Transform (MS) Mean shift (top, in blue) has

constant time for each iteration. The benefits of the Frequency Weighted Mean Shift (FWMS) algorithm

(bottom, in red) become apparent within a few iterations of the clustering procedure as each additional

iteration requires significantly less time as additional data points converge to the cluster mean.

4.8 Experiment 4: Comparing a Supervised Classifier driven

by expert annotations versus HNcut

Since the production of the ground truth datasets by experts for training is laborious, we pose

the question: is it possible to differentiate a supervised classifier trained with expert human

annotated data from a supervised classifier trained with HNCut segmented data? In general, su-

pervised methods are viewed as more dependable because they rely on training data. However,

the question we pose is whether it is possible to use a minimally-supervised method to train

a supervised method and obtain on par or better results to a supervised classifier trained with

manually annotated data. Towards this end, we performed 10 iterations of the training/testing

procedure using the HNCut output as the ground truth for training in the PBT, and compared it

against the PBT output resulting from the pathologist annotated data. The choice of thresholds

was determined in a similar fashion as Experiment 1, except the operating point was found to

range between 97% and 99%, and thus we chose those two values.

The results presented in Figure 4.5 (using the ”PBT W. HNcut” label) suggest that when

a PBT is trained with the results from the HNCut, the results are actually superior to all other

classifier configurations considered (including PBT, k-means, and HNCut), with a much smaller

standard deviation. In the case of FP, the variance at the 99% threshold is almost negligible, giv-
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ing a high confidence of reproducibility. As a result, the output suggests that it is possible to

use HNCuts layman’s initialization to produce data that is of a similar quality to the expert’s

laborious annotation work, minimizing user interaction. This is especially interesting because

it means that the combination of the two outperforms a supervised method trained with expert

data. This result suggests that supervised classifier methods can be employed for accurate quan-

tification of biomarker extent by using HNCut to create the training set. This would be highly

beneficial, avoiding the extremely expensive overhead of laboriously and manually annotating

the target class. Based on these results, HNCut would appear to produce results which are

on-par with an expert for usage as training data in a supervised classifier.

4.9 Discussion of Segmentation Errors

As with any segmentation algorithm, HNCut is also subject to FP and FN errors. Below, we

briefly discuss some of these errors and possible reasons for these errors.

(a) (b) (c)

Figure 4.10: Typical reasons for false positive and false negative errors. Stain tends to fill the (a) void

where tissue is absent causing a re-active presence. The (b) rim of spots tend to stain darkly, these are

easily ignored by adding a distance from border threshold. Psamommas (c) are calcifications which

absorb stain and thus appear similar to target staining, the specific nature of the biological anomaly

makes it difficult to classify it correctly using only chromatic information.

Since the stain severity is proportional to the quantity of the biomarker, the stain will

vary greatly in intensity of color across not only all cylinders but also across all stained areas

themselves (Figure 4.10(a)). This high variance is one of the reasons why thresholding and k-
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means type algorithms tend to do poorly. Additionally, the rims of the cylinders (Figure 4.10(b))

are often corrupted with noise which manifests as a dark stain. The removal of these artifacts

could be done by simply choosing to ignore pixels that lie on or very close to the cylinder

boundary. In the situation where the disc is not well formed, either on account of tissue tearing

or an absence of cells, there is the possibility for large scale pooling of FP stain within the

void. Since the chromatic qualities of the FP regions are very similar to true positive areas, this

specific type of error is difficult to identify and eliminate.

Psammomas (Figure 4.10(c)) are calcified material within the center of a laminated whorl

of elongated fibroblastic cells [61]. Unfortunately, psammomas are exactly the same in color

and texture as the true positives, making it difficult for all save an expert reader to identify.

In the absence of additional domain knowledge, it would be impossible for any segmentation

algorithm (let alone HNCut) to distinguish these FP errors from the true positives.
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Chapter 5

Local Morphologic Scale (LMS): Theory

5.1 Introduction to Region Classification

Another common task in the field of digital pathology is the classification of a region as either

tumoral or stromal. An important application of the said task is the identification of tumor

infiltrating lymphocytes (TILs) versus non-TILs. Recent work [8, 9, 10, 11, 12, 13, 14, 15,

16, 17] has suggested that a valuable prognostic indicator is based on the extent to which the

patient’s own immune response has detected the cancer. This response can be characterized

by the behavior of lymphocytes. A lymphocyte is a type of white blood cell that is sent to the

proximity of objects which the body considers foreign, the more lymphocytes the greater the

perceived risk. In this case, the object of interest is a tumor, thus creating the dichotomy of

lymphocytes into tumor infiltrating lymphocytes (TIL) and a non-TIL.

Lymphocytes are fairly easily identified and segmented using a combination of targeted

staining and advanced image analysis techniques. Unfortunately, lymphocytes of both classes

appear morphologically similar, as can be seen in Figure 5.1. Thus, after segmentation, the

challenge of classification of the lymphocytes into the aforementioned two groups, TILs and

non-TILs, arises. Since they visually appear similar, it is impossible to determine the class of

a lymphocyte by merely examining the lymphocyte itself and thus a more global approach is

needed in order to accurately determine their embedding. This placement falls into two parts:

either the lymphocyte is in the tumor or the lymphocyte is in the stroma (see Figure 5.3). This

creates the dual problem of detecting stroma versus tumor regions.

To summarize: (a) lymphocytes are the body’s natural defense mechanism against foreign

bodies, (b) the number of lymphocytes present in a particular region is proportional to the per-
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(a) (b)

Figure 5.1: Under high magnification the TIL in (a), identified by the red stain in the center, appears

morphologically similar to the red non-TIL in (b). We know that internally the objects are the same, but

their classification is dependent upon their neighborhood, i.e., tumor for TILs and stroma for non-TILs.

Figure 5.2: Since histology images are 2D representations of a 3D structure, overlap artifacts are in-

evitable. The red arrow identifies an in-focus cell which occludes an out of focus cell(green arrow).

The yellow arrow is focused on a region which exhibits cell clumping. Both situations make identifying

cellular boundaries challenging.
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Figure 5.3: The defining features of the TILs identified by red arrows are (a) surrounded by larger more

circular tumor cells, (b) tumor cells tend to be a bit more hollow and (c) contain dark nuclei. The non-

TILs identified by green arrows also have their own properties. They tend to be (a) in a more sparse

region, (b) not embedded in tumor cells and (c) surrounded by spindle shaped endothelial cells
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ceived danger and (c) if there are a large number of lymphocytes present in a tumor, indicating

a strong immune response, there is potentially a better prognosis for the patient. Again, as in

Section 1.1.1, to accurately test this hypothesis, and further to successfully model the exact

quantification of lymphocyte configuration, the challenge of data size arises. In order to make

any definitive conclusions, a vast number of patients, and thus samples, must be analyzed. As

expected, the cost and time associated with an expert performing these tasks is not only insur-

mountable, but duplicated upon each inquest per new property analyzed. As such, off-loading

such laborious and repetitive tasks to computers provides significantly improved efficiency and

reproducibility.

5.2 Challenges and Contributions

In the context of biological images [62] (such as in microscopy applications or histopathology

imagery), the objective is often to identify local regions of heterogeneity (e.g., cancer nuclei,

lymphocytes), whereas larger homogeneous regions (e.g., benign stroma) may be less interest-

ing or informative from a diagnostic or prognostic perspective [63, 64]. Additionally, the shape

of the physical manifestation of this local heterogeneity may be highly predictive of a patho-

logic process (e.g., architectural arrangement of nuclei and glands in prostate cancer reflects the

Gleason grade and hence aggressiveness of the disease [65]). Hence for images where the most

interesting information is encoded in the local heterogeneity, and where the objective is to spa-

tially assign distinctive quantitative scale signatures to characterize and classify these regions,

it would appear that a new local scale definition is warranted.

The major contribution of this chapter of the thesis is the presentation of the concept of a

novel scale space, as described in Chapter 2.2, Local Morphologic Scale (LMS) which model

local heterogeneity and associate a quantitative local morphologic signature with every spatial

image location. Since lymphocytes in both the stromal and tumor regions appear identical,

identifying TILs requires identifying the kind of tissue that the lymphocyte is embedded in.

In other words, discriminating TILs from non-TILs has to do with quantifying the appearance

of the local neighborhood within which a lymphocyte is present. The difference in the LMS

signatures for the lymphocytes in Figures 2.1 (i), (j) and Figures 2.1 (k), (l), respectively could

be exploited to distinguish all TILs and non-TILs in the image, a laborious task for a human

to perform manually. As such, our objective is to train a supervised classifier to use LMS
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(a) (b)

Figure 5.4: The highly disorganized nature of the cells in (a), a high magnification field of view, makes

it seem like a cancerous region. When looking at a (b) bigger field of view, with (a) indicated by a red

box, we see that the area is actually non-cancerous and simply appears cancerous as a result of a biopsy

artifact.

signatures to accurately discriminate between stroma and non-stroma regions in OCa histology

images.

5.2.1 Challenges

There are numerous challenges, especially in the ovarian cancer domain, which inhibit the

classification of lymphocytes as TILs or non-TILs. First, we can see in Figure 5.2 that the

segmentation of individual cells would be difficult since they clump together as a result of a 3-

dimensional tissue sample being scanned in two dimensions. This artifact often leads to cellular

boundaries which are occluded or are ill-defined as they lay on top of other cells (Figure 5.2

yellow arrow). A great difficulty then arises in attempting to split these cells in order to define

clear boundaries required for domain specific feature extraction approaches. Needless to say,

these algorithms are often computationally expensive and complex [66, 67].

The selection of an appropriate window size and shape for typical algorithms is also no-

tably challenging. We can see from the varying optimal window shapes and sizes shown in

Figure 5.5 that the systematic determination of these inconsistent regions of interest, used in

algorithms such as texture features, is challenging. A simple square, as would normally be

used, is not an appropriate fit to the displayed diversity. This great variance in regions of in-

terest leads to a breakdown of standard approaches as an incorrect selection fails to encompass
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Figure 5.5: Optimal ellipses overlaid in red for their associated lymphocytes. Although the ellipse is

a rather simplistic shape, we can see the large complexity in variations among 4 examples in a single

image.

(a) (b)

Figure 5.6: Stroma region circled in green. Lymphocytes stained in red. Notice the stark difference

in sizes between the two green regions in (a) and (b). Consistently selecting an appropriate region of

interest for typical image techniques would be challenging. In (b) we can see some lymphocytes inside

the green delineated region, making them non-TILs, while their TIL counter parts lay outside.
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all the necessary information, and perhaps even incorrect information, leading to an incorrect

determination of the lymphocytes TIL or non-TIL status.

Lastly, to further complicate things, the stroma region is often nestled between areas of

tumor, making not only its boundaries not clearly defined but the size of the associated region

even more difficult to pre-determine as shown in Figure 5.6 and Figure 5.4(b). This is to say

that a lymphocyte must be firmly embedded in the tumor (i.e., surrounded by tumor cells) in

order for it to be a lymphocyte. When sitting on the boundary it becomes notably more difficult

to ascertain which side of the boundary the lymphocyte is sitting on, thus putting its TIL or

non-TIL status into question, hence requiring an orientation sensitive algorithm to make the

correct determination.

5.2.2 Contribution

In this chapter we present a new definition of local morphologic scale (LMS), which is appro-

priate for images with high degrees of local complexity, where existing local scale definitions

governed by satisfying homogeneity criterion break down. Our innovative approach models

the heterogeneity of a local region, allowing for the definition of local, quantitative signatures

of heterogeneity. Since LMS motivates the definition of local regions as regions which are to-

pographically similar, pixel level features can be defined from the corresponding LMS at that

location, features which can then be used for segmentation, registration, or classification. By

converting these signatures to feature vectors by using Fourier descriptors [68], we obtain the

valuable properties of scale, translational and rotational invariance.

The novel framework we present in this thesis is highlighted by the following important

contributions:

• A novel morphological signature definition that allows for quantitatively characterizing

local heterogeneity, unlike other local scale definitions focused on capturing local homo-

geneity.

• The LMS yields a rotationally invariant quantitative signature at the pixel level which can

be used for region classification, segmentation, and registration, especially relevant in the

context of highly heterogeneous images such as in histopathology.

• This signature generalizes to higher order class labels and is accurate across a range of

window sizes, overcoming common downfalls of texture and template matching based
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classifiers.

• We develop a novel approach to the important problem of separating out tumoral from

stromal regions via application of LMS which we show to be computationally efficient

and scalable to the large number of repositories in existence.

5.3 Overview

Figure 5.7: Overview of the LMS signature creation process. In Step 1 we create a binary map using

HNCut which indicates which pixels will be used to define local morphology. Step 2 produces the LMS

rays by extending a ray outwards from the point of interest and circumventing any obstructions in its

path. We quantify these rays using Fourier Descriptors in Step 3 and lastly train a supervised classifier

to differentiate between the two classes using our feature vectors.

Figure 5.7 presents an overview of the LMS creation process, with Figure 5.8 demon-

strating a TIL and non-TIL undergoing said process for comparison. These steps are described

below.

Step 1: Identify lymphocytes using a red swatch and HNCut, a hybrid mean shift and

normalized cuts algorithm [69]. Next, perform HNCut using a blue swatch to produce the

resulting binarized images (as seen in column B of Figure 5.8) and in Figure 5.9. Binarized

images indicate which pixels will be incorporated in the morphologic signature of the point of

interest (POI).

Step 2: Calculating LMS involves projecting connected paths, radially outwards from the

POI (nucleus center identified in step 1). Column C in Figure 5.8 shows the LMS signature (in
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Figure 5.8: Overview of the LMS signature creation process as it applies to the two classes of inter-

est. From column B we can directly see that the organization and properties of the cells as captured by

the binarized map are indeed visibly different. Next we can see that the tumor LMS signature contains

a noticeably increased number of deviations from the straight line trajectory, on account of the rays

attempting to take the path of least resistance and hence overcome obstacles along the way. In its asso-

ciated green box, the ray is forming a larger circular path indicative of encountering a tumor cell. On

the other hand, the LMS signature for the non-tumor region is much smoother as a result of comprising

fewer and smaller objects. In its green box, we can see that the obstructions are shorter and more spindle

like, the classical definition of endothelial cells residing in a stroma region.

red) for a TIL (top) and a non-TIL (bottom). In each image, a green box is used to illustrate the

path of a single ray more clearly. It can be seen that the different classes produce noticeably

different path characteristics. Morphologic features that characterize the local topography of

the binarized image via individual rays/paths should be able to quantify these characteristics to

provide class labeling for unseen samples.

Step 3: The quantification of the local topography of all these paths (via Fourier descrip-

tors [68]) yields a measure of local heterogeneity.

Step 4: Use the LMS signature vector created by the Fourier Descriptors to train a super-

vised classifier to identify signatures as either located in tumor or stromal regions.
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(a) (b)

(c) (d)

Figure 5.9: A tumor region (a) and non-tumor region (c) with their associated binary masks ((b) and (d),

respectively), as produced by using a blue swatch with HNCut. Note that the red lymphocytes are absent.

5.4 Theory and Algorithm

5.4.1 Notation

An image scene is defined as C = (C,g) where C is a 2D Cartesian grid of N pixels, c ∈ C,

where c = (x, y). g is a Boolean function (g(c) ∈ {0, 1}), where g(c) = 1 indicates a fore-

ground pixel, identified in our implementation by using a hybrid mean shift and normalized cuts

algorithm, contributing to the local morphological signature. The notation < c(1), . . . , c(m) >

denotes an ordered set of m pixels, with | ◦ | denoting the number of elements in a set. || ◦ ||p
denotes the standard p-norm. Lastly N4(c) = {(x+ xx, y + yy)|xx ∈ {−1, 1}, yy ∈ {−1, 1}}

and N8(c) = {(x+ xx, y + yy)|xx ∈ {−1, 0, 1}, yy ∈ {−1, 0, 1}}, or more commonly known

as the 4- and 8-neighborhood, respectively, around c.
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5.4.2 LMS Signature

Theory of Signature Generation

(a) (b)

Figure 5.10: Image (a) has consistent spacing and sizes for the white circles, implying a very low amount

of entropy, and thus indicating a homogeneous structuring. We can contrast this with a heterogeneous

image in (b) which is associated with a larger value of entropy, due to the large variance in sizes and

relative spacing.

Qualitative homogeneity (and thus heterogeneity) definitions can be quantified by low (or

high) entropy. Entropy, in this case, is defined classically in information theory literature [70]

as a measure of the uncertainty associated with a random variable. Without loss of generality, if

we consider only size and relative distance of objects as the random variables in our scene we

can get a feel for these qualitative definitions. From the simple example constructed in Figure

5.10, we can appreciate visually the concept that the more homogeneous a region is, as shown

in Figure 5.10(a), the less the observable object variables (such as size or proximity to other

objects) differ. On the other hand, the more heterogeneous a local structuring of objects is, as

shown in Figure 5.10(b), the greater the variables will vary resulting in higher entropy.

Going forward, we aim to justify that the LMS rays are linked to the random variables

associated with the local entropy of the point of interest.

Definition A path pr,s = {< c(1) = r, c(2), . . . , c(m−1), c(m) = s >: ||c(i) − c(i+1)||1 = 1, i ∈

{1, . . . ,m}} is a connected set of pixels which starts at r and ends at s.

Definition A µ-path is a pr,s path, denoted as ṗr,s such that the affinity constraint function

µ(c(i), c(i+1)) ≡ g(c(i)) + g(c(i+1)) = 0 , is met for i ∈ {1, . . . , |ṗr,s|}, implying sequential
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pixels are both background pixels.

Definition A minimal µ-path p̂r,s is a specific ṗr,s which is defined as

p̂r,s = min
|ṗr,s|

ṗr,s, intuitively making it a minimal µ-path from r to s such that the pixels are

not only connected, forming a path, but are also all background pixels.

Definition The LMS path Rw,θ(q) is p̂q,δ with q as the point of interest and δ positioned at a

distance w with angle θ. To simplify notation, we refer to it as Rθ(q) since w is user defined

and thus held constant.

Definition The unobstructed path Oθ(q) is similarly defined as Rθ(q), except it has no affinity

constraint, i.e., min
|pq,δ|

pq,δ, making it the straight set of connected pixels from q to δ.

(a) (b)

Figure 5.11: Revisiting the previous figure with possible LMS signatures overlaid on images in red. In

image (a) we can see that the rays have consistently interacted with the obstructions providing curves of

similar amplitude. On the other hand, with the heterogeneous image in (b), we can see that the rays are

notably different in amplitude and periodicity leading to a state of greater entropy.

Proposition Rθ(q) models local morphology, and thus an entropy surrogate, at point q in direc-

tion θ via deviations from Oθ(q). As the affinity function µ constrains the LMS path to back-

ground pixels, we can expect Rθ(q) to become more tortuous when the objects it encounters

require modeling additional entropy in the local neighborhood, resulting in a direct correlation

between the pixels selected for Rθ(q) and its associated heterogeneity.

• We can see that if the region contains no obstructions, Rθ(q) = Oθ(q), indicating the

most trivial case of homogeneity

• If Rθ(q) is computed in an image such as Figure 5.11(a), we would expect to see curves
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of similar amplitude at equally spaced intervals. These curves are indicative of the size,

shape and orientations of objects in the rays path; thus the curves encode the homogeneity

of those implicit variables.

• If Rθ(q) is computed in an image such as Figure 5.11(b), we would expect to see curves

of dissimilar amplitudes as the ray must circumvent circles of various sizes. These am-

plitudes would be unevenly spaced as the circles are not uniformly placed, as a result

modeling the heterogeneity of these two variables.

• Additionally, since we are not defining explicitly the domain specific attributes (in our

example of shape and size above), the ray is also subject to varying shapes, concavities,

etc.

Definition The LMS signature of a query pixel q is then R(q) = {R0(q), . . . , R2π(q)}, or the set

of rays in the desired sampling directions, giving a sampled view of the surrounding regions.

Morphologic Scale Computation

We present Algorithm 3 for computing the discrete LMS signatureR(q) for a query pixel q ∈ C.

Rq is defined by a series of sampled paths at ε interval from the query point q outward, sampling

the morphology of the surrounding region.

Algorithm 3 LMS Signature Creation
Input: A query pixel q ∈ C , binary function g, interval size ε, window size w

Output: R(q)

1: S = C−qx,−qy , a transformation such that q is located at the origin

2: for θ = 0 : ε : 2π do

3: δ = (cos(θ) ∗ w, sin(θ) ∗ w)

4: if @p̂q,δ then

5: δ = argmin
d∈C,g(d)=0

||d− δ||2

6: end if

7: Rθ(q) = p̂q,δ = min
|ṗq,δ|

ṗq,δ

8: end for

9: R(q) = {Rθ|∀θ}

10: return R(q)
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We can see from the examples in Figure 5.8, the end result of our algorithm is set of

connected pixels (shown in red), which travel from the POI q to δ. The algorithm proceeds by

translating the image such that q is placed at the origin. For each of the Rθ , we determine the

location of the end point δ by casting it on a unit circle and multiplying by the window size to

get the appropriate magnitude, as shown in step 3 of Algorithm 3. There is often the case where

the desired end point δ is not a background pixel (g(δ) = 1) and thus we assign δ to the closest

possible pixel, in the Euclidian sense, which has the required property (g(δ) = 0). Afterwards,

we identify the minimal µ-path, p̂q,δ, which is intuitively Oθ(q) with minimal divergence to

circumvent obstacles. This is to say when the path hits an object, the resulting affinity function

threshold criterion is exceeded and hence the path continues along a new direction of lower

resistance (satisfying the affinity criterion). We apply these steps multiple times, each time

moving δ at an interval of ε radians, and produce R(q) the set of individual rays.

Figure 5.13 presents the LMS signature in red over a TIL and non-TIL. In both images,

we can see that as the complexity of the local region increases a noted change in the LMS

occurs, which is to say as the entropy of the neighborhood structures rises, the rays become

more chaotic. We can see in Figure 5.13(b) homogeneous regions have few obstructions, and

thus the LMS paths form straighter lines. In Figure 5.13(a), we can see for a very complex

region the LMS signature becoming increasingly tortuous as it adapts to the local heterogeneity.

By quantifying this notable change, we are able to train a supervised classifier to differentiate

between the two classes.

LMS Algorithmic Implementation

The implementation of the LMS signature computation comes with a few points of note.

First, to ensure that the origin point meets the criteria that it is a background pixel, we apply

a circular mask around q of a user specified size forcing g(c) to return 0. Next, computing the

globally optimal p̂q,δ (i.e., such that we are guaranteed the shortest past), is notably computa-

tionally expensive. This expense is as a result of need to use algorithms such as Dijkstra [71] or

a Fast Marching [72] approach to compute the global minimum length path. On the other hand,

we can sacrifice some precision, and obtain a ”minimal path” but not the shortest path, and

benefit from orders of magnitude improvement in efficiency. To do so, we present Algorithm 4,

which is an iterative greedy approach towards solving for ˜̂pq,δ, a sampled approximation of p̂q,δ.

The algorithm proceeds by defining the first pixel in the path (c(0)) as the query pixel (q),
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Algorithm 4 Compute Sampled Minimal Path
Input: A query pixel q , end pixel δ, valid pixel indicating function fθ, maximum iterations M

Output: ˜̂pq,δ

1: m = 0

2: c(m) = q

3: while c(m) 6= δ and m < M do

4: m+ +

5: c(m) = argmin
t
||t− δ||2, subject to t ∈ N8(c

(m−1)), f(t) = 1, t /∈ {c(0), . . . , c(m−1)}

6: end while

7: return ˜̂pq,δ =< c(0), . . . , c(m) >

then it iteratively selects the next pixel in the path by determining, using Euclidian distance,

which of the possible pixels in the 8-neighborhood is closest to its goal. If there are two pixels

which meet the same criteria in the path, we sample from them with equal probability. The

key to this approach is the valid pixel indication function fθ(c), which is specific to the θ being

considered. The value of fθ(c) is defined by the logical equation

fθ(c) = (c ∈ Oθ(c) ∨ Σd∈N4(c)g(d) > 0) ∧ ¬g(c). (5.1)

Intuitively, this function returns a true value for pixels which are on the edge of the objects or

if the pixel is on the unobstructed path Oθ(q), causing the path to be constrained to objected

borders or the line from q to δ.

We also note that the selection of ε in Algorithm 3 acts as a Monte-Carlo type parameter,

allowing for the selection of appropriate sampling in proportion to the total computation time.

Additionally, not only is the algorithm computationally straight forward (i.e., requiring only

the most basic of arithmetic or logic operations), it can be seen that each ray is computed in

a deterministic manner not dependent upon its peer rays. These two properties are beneficial

as it allows for parallel computation of the individual rays on GPU technology resulting in

calculation of rays en masse.

5.4.3 Fourier Descriptors of LMS

Fourier descriptors (FD) [68] are a technique for quantifying the morphologic structure of a

closed curve as a feature vector which is scale, translationally and rotationally invariant. These
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properties are a necessity in domains such as biomedical image analysis where information

is represented in an orientation-free plane. We use a slightly modified version, as the scale

invariance is not important to our domain as all samples are drawn from the same magnification.

Unfortunately, at first glance, R(q) is not a closed curve and thus these techniques cannot be

directly applied. In the following section we define a theoretical foundation for conversion of

the open set of R(q) to a closed curve J(q).

Theory of Conversion from R(q) to a Closed Curve

Definition Return pathKθ(q) is a minimal path from δ returning to q, essentiallyOθ(q) reversed.

Definition Returned path segment Jθ(q) is < Rθ(q), Kθ(q) >, i.e., the concatenation of Rθ(q)

and Kθ(q), forming a path which starts at q and forms the shortest constrained path to δ and

then returns in a straight line to q forming a closed curve.

Definition LMS closed signature J(q) =< J0(q), . . . , J2π(q) >

Proposition J(q) forms a closed curve. By induction, consider the path

J0(q) ≡< R0(q), K0(q) > = < c(1) = q, . . . , c(m) = q >. We can see that it both begins and

ends at the same point, q, thus forming a local closed contour. Now we take < R1(q), K1(q) >

= < e(1) = q, . . . , e(m) = q > we can see c(m) = e(1) and c(1) = e(m), thus each < R,K >

combination starts where the previous ended, forming a closed contour. We can therefore gen-

eralize to < R0(q), K0(q), . . . , R2π, K2π > (i.e., < J0(q), . . . , J2π(q) >). Intuitively, we can

see that this is no different than the petals of a flower all starting from the center and proceeding

in their respective angles outwards; the center in this case is q and the petal is each individual

ray concatenated with its return path.

Definition S(q) =< rot0(R0(q)), rot0(K0(q)), . . . , rot−2π(R2π(q)), rot−2π(K2π(q)) >, where

rotp is a rotation function which rotates the function around the domain p radians, making S(q)

a 1D representation of J(q).

Proposition J(q) is a non-domain specific signal of the heterogeneity.

Fourier Descriptor’s Computation

The steps followed for the creation of the feature vector from R(q) using FD are presented

below and are illustrated by Figure 5.12.

Step 1: Rotate each Jθ(q) by −θ, resulting in all rays originating at q and having an

orientation of 0◦.
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Step 2: Concatenate each Jθ to create J(q). We can see the result of this in Figure 5.12(b)

is a 1D signal representation of R(q).

Step 3: Compute the magnitude of F(J(q)), the Fourier transform of J(q), as F (q). From

the proof demonstrated in [68], this leads to a rotationally invariant representation of J(q) in

the frequency space, F (q).

Algorithmic Notes

Typically the Fourier transform quantifies the frequency presence in a signal. In the case of

using image data, which is discrete, there is often a high amplitude sawtooth wave like property

as shown in the blue curve of Figure 5.14(a). These sawtooth signals require a high number of

FFT coefficients to accurately represent them without adding a large amount of residual noise

due to the approximation. To compensate, we smooth F (q) using a simple moving average

filter. Figure 5.14 shows a zoomed in example of this smoothing operation. we can see in

Figure 5.14(b) that the red curve is indeed less susceptible to the discrete nature of the image

scene, and thus could be more easily represented by fewer FFT coefficients.

As the end points of the 1D signal tend to suffer the most from approximation, we com-

pensate by wrapping the signal, e.g., joining the last 25% of the signal to the beginning, and the

first 25% of the signal to the end. Post smoothing we undo this process by removing the added

information. This creates noticeably smoother boundary values.

5.4.4 Training Classifier for Differentiation

For all q of interest, as identified by HNCut using the red swatch in Step 1 of Section 5.3, we

arrange their respective F (q) row-wise to form a matrix M and compute the t rank truncated

Singular Value Decomposition such that M̂ = UtΣtV
T
t , and thus represent each F (q) as its

dimensionality reduced Ut(q) counterpart. This allows for the training of classifiers that are

simultaneously accurate and computationally efficient.
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(a) (b)

(c)

Figure 5.12: Visual example of the conversation of R to J . In (a) and (b) the blue cells represent

obstructions causing local heterogeneity. As the µ-paths are minimized, we can see avoidance of these

objects. Afterward we form a closed contour J , in (b) by the red and green lines, by concatenating R,

the red lines in (a), and K, the green lines in (b). The S computed from J is displayed in (c). This results

in a 1 dimensional signal which can be used to compute feature vector.
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(a) (b)

Figure 5.13: Overlaid red LMS signatures in both (a) TIL and (b) a non-TIL image. We can see that the

homogeneity of (b) is higher, and as a result the LMS rays appear more smooth and less contorted. On

the other hand, in (a), we see a TIL which results in notably more tortuous LMS rays.

(a) (b)

Figure 5.14: A selected piece of (a) R(q) shows that it tends to be subject to the discrete nature of the

pixel image domain. On the other hand, after applying a (b) smoothing filter (in red) we can see that

the function possesses qualities which are better suited for Fourier transform representation, namely a

stronger signal with less fluttering.
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Chapter 6

LMS: Experiments & Results

6.1 Dataset Description

To quantitatively evaluate the properties of LMS associated with differentiation between various

classes using our non-domain specific features, we created 10 synthetic datasets, as shown in

Figure 6.1. The production of the 1000 250 × 250 images per datasets is described in Table

6.1. Further, we compare the results to both texture features and ball-scale, which as was

discussed in Chapter 1.1.2 and Chapter 2.2, are potential other solutions to the TIL versus non-

TIL classification problem.

6.2 Experimental Setup

Only a single point was used for the classification of each image. For all queried points in the

datasets (q ∈ Q), 50% were used as training data (Qtr) while the remaining 50% were used

as test data (Qte) such that Qte ∪ Qtr = Q. For the datapoints in Qtr, the respective feature

vector was fed into a naive Bayesian supervised classifier [73] which fits a multivariate normal

density to each class, using a pooled estimate of covariance. The classes which were used were

stromal = 0 and tumoral = 1, thus we attempted to provide a high probability for TILs. Qte were

classified as belonging to the first of the dataset classes and a Receiver Operating Characteristic

curve (ROC) was computed. The Area Under the ROC (AUC) was computed for the run. This

procedure was performed 50 times, each time a new training and testing set was randomly

chosen. Mean and variance of the AUC was calculated.
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Set Description

Z1 10 circles of size 10± 2, randomly placed. The goal was to model tumor regions.

Z2 10 ellipses of size 10± 2 with a ratio of .2 of major to minor axis, spindle shape in

nature, randomly orientated and placed. The goal was to model the stroma region.

Z3 Similar to Z1, except all circles are forced to be in quadrant IV.

Z4 Similar to Z1, except all circles are forced to be in quadrant I.

Z5 Similar to Z1, except all circles are forced to be within 60 pixels from the center.

Z6 Similar to Z1, except all circles are forced to be greater than 80 pixels from the

center.

Z7 Combination of Z1 and Z2 with the first 2/3 allocated to objects from Z2 and the

remaining 1/3 solely for Z1

Z8 Combination of Z1 and Z2 with the first 2/3 allocated to objects from Z1 and the

remaining 1/3 solely for Z2

Z9 Combination of Z1 and Z2 with quadrants I, II, and III allocated to objects from Z1

and quadrant IV allocated to objects from Z2

Z10 Combination of Z1 and Z2 with quadrants I, II, and III allocated to objects from Z2

and quadrant IV allocated to objects from Z1

Table 6.1: Explanation of the 10 synthetic datasets presented in Figure 6.1.

6.2.1 LMS Setup

The LMS was generated for the center point. The LMS signature L(q) was 2048 Fourier coeffi-

cients large and their respective Ut, as computed in the previous chapter, with t = 5. The other

parameters used were ε = 5, the smoothing average was set to a neighborhood of 5, and the

initial mask was set to a 10 pixel radius from the point of interest. This mask size was selected

as intentionally as the average expected size of the objects.

6.2.2 Texture Features

To provide some qualitative comparison, we performed the same experiment as described above

with the standard 16 Haralick texture features as described in [74]. These consisted of {angular

second moment, contrast, correlation, sum of squares, variance, inverse difference moment,

shade, prominence, sum average, sum variance, sum entropy, entropy, difference variance, dif-
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ference entropy, information measures of correlation, maximal correlation coefficient}. Since

these are binary images, the co-occurrence matrix was computed for 2 gray levels (black and

white). Again each feature vector of size 16 was fed into the same type of naive Bayesian

supervised classifier.

6.2.3 Ball Scale Feature

We implemented the b-scale algorithm as per [49], and computed the radius around the POI en-

capsulating their described homogeneity constraint. This radius was used as the b-scale feature,

and was used in its naive Bayesian supervised classifier. The feature ”vector” then, in this case,

was a scalar value.

6.3 Experiment 1: Examination of 10 Set Results

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z1 n/a 1.0±4e-8 1.0±8e-7 1.0±5e-7 0.99±3e-6 0.95±3e-5 0.96±2e-5 0.78±1e-4 0.86±7e-5 0.97±2e-5

Z2 1.0±5e-8 n/a 1.0±1e-6 1.0±6e-7 1.0±3e-9 1.0±7e-7 1.0±4e-6 1.0±2e-7 1.0±2e-6 1.0±1e-6

Z3 1.0±6e-7 1.0±1e-6 n/a 0.50±2e-4 1.0±5e-8 1.0±2e-7 0.96±2e-5 1.0±4e-7 1.0±2e-7 0.63±2e-4

Z4 1.0±5e-7 1.0±8e-7 0.49±2e-4 n/a 1.0±1e-7 1.0±9e-7 0.93±4e-5 1.0±3e-7 1.0±1e-7 0.61±2e-4

Z5 0.99±4e-6 1.0±3e-9 1.0±5e-8 1.0±1e-7 n/a 1.0±1e-6 1.0±2e-7 0.99±5e-6 1.0±2e-6 1.0±9e-7

Z6 0.95±3e-5 1.0±7e-7 1.0±2e-7 1.0±7e-7 1.0±1e-6 n/a 0.99±8e-6 0.99±3e-6 0.99±7e-6 1.0±3e-6

Z7 0.96±3e-5 1.0±5e-6 0.96±3e-5 0.93±4e-5 1.0±2e-7 0.99±9e-6 n/a 0.95±3e-5 0.90±5e-5 0.82±1e-4

Z8 0.78±9e-5 1.0±1e-7 1.0±3e-7 1.0±2e-7 0.99±7e-6 0.99±3e-6 0.95±3e-5 n/a 0.76±1e-4 0.97±2e-5

Z9 0.86±6e-5 1.0±1e-6 1.0±2e-7 1.0±1e-7 1.0±1e-6 0.99±5e-6 0.90±6e-5 0.76±1e-4 n/a 0.96±3e-5

Z10 0.97±2e-5 1.0±1e-6 0.63±1e-4 0.61±2e-4 1.0±9e-7 0.99±4e-6 0.81±1e-4 0.97±2e-5 0.96±3e-5 n/a

Table 6.2: Local Morphologic Scale AUC results using ε = 5, across 50 runs with variance, indicating

the success in differentiating pair-wise classes. For ease of viewing, scores less than or equaled to .90

are highlighted in bold.

There are many interesting things to note regarding the comparison of texture features

results (see Table 6.3) versus local morphological scale results (see Table 6.2). Mainly we fo-

cus on the ability for LMS to differentiate between classes which are morphologically different

without specifically coding features for them. We present the results from b-scale for com-

pleteness (see Table 6.4), though it is evident that the algorithm doesn’t form a strong classifier

for separating these classes in a robust fashion. This is unsurprising as the basis for the ap-

proach was to define local homogeneity for use in denoising applications, as such we focus on
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Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z1 n/a 1.0±0e+0 0.90±5e-5 0.90±3e-5 0.96±2e-5 0.62±2e-4 1.0±3e-8 1.0±4e-7 1.0±1e-9 0.99±5e-6

Z2 1.0±0e+0 n/a 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±0e+0

Z3 0.90±6e-5 1.0±0e+0 n/a 0.49±3e-4 0.70±1e-4 0.86±8e-5 1.0±3e-10 1.0±6e-13 1.0±4e-11 1.0±2e-7

Z4 0.90±4e-5 1.0±0e+0 0.49±2e-4 n/a 0.71±2e-4 0.85±5e-5 1.0±3e-11 1.0±2e-10 1.0±6e-11 1.0±2e-7

Z5 0.96±1e-5 1.0±0e+0 0.70±1e-4 0.70±1e-4 n/a 0.94±3e-5 1.0±0e+0 1.0±0e+0 1.0±0e+0 1.0±1e-7

Z6 0.61±1e-4 1.0±0e+0 0.86±7e-5 0.86±8e-5 0.94±3e-5 n/a 1.0±6e-9 1.0±2e-7 1.0±1e-8 0.99±3e-6

Z7 1.0±2e-8 1.0±0e+0 1.0±1e-11 1.0±7e-11 1.0±3e-12 1.0±2e-8 n/a 0.64±2e-4 0.87±7e-5 0.87±6e-5

Z8 1.0±4e-7 1.0±0e+0 1.0±3e-12 1.0±9e-11 1.0±3e-13 1.0±2e-7 0.64±2e-4 n/a 0.92±4e-5 0.92±4e-5

Z9 1.0±1e-9 1.0±0e+0 1.0±6e-11 1.0±4e-11 1.0±0e+0 1.0±1e-8 0.87±8e-5 0.92±4e-5 n/a 0.90±4e-5

Z10 0.99±5e-6 1.0±0e+0 1.0±2e-7 1.0±3e-7 1.0±7e-8 0.99±3e-6 0.87±6e-5 0.92±3e-5 0.89±3e-5 n/a

Table 6.3: Texture features confusion matrix of AUC, across 50 runs with variance, indicating the

success in differentiating pair-wise classes. For ease of viewing, scores less than or equaled to .90 are

highlighted in bold.

comparing LMS to texture features.

• In all cases, Z2 is differentiable from the other classes by both algorithms. This leads

us to believe that in the clear cut cases, both algorithms are able to identify a non-TIL

with ease. This further motivated us to create the other 8 sets as to delve further into the

specific edge cases where the algorithms don’t perform comparatively.

• Comparing Z1 and Z6 we can see that the LMS is able to differentiate the two classes

quite well, with an AUC of .95 as compared to texture features obtaining only a .61. This

is similar to: Z4 versus Z5 (1 LMS vs .7 texture), Z4 versus Z6 (1.0 LMS vs .86 texture)

and Z3 versus Z6 (1.0 LMS vs .86 texture). In all cases, texture features is only concerned

with the information content represented by the pixels, in these cases a non-discriminating

feature, while LMS specifically models the location and size of the objects with respect

to the pixel of interest allowing it to perform significantly better in those cases.

• Comparing Z7 to Z8 (.95 LMS versus .64 texture features) is valuable as it specifically

aims at modeling the boundary of regions. Specifically for our TILs, it is important to

identify if they are embedded in the tumor as opposed to simply next to it. By creating

a scenario which has the pixel of interest on either side of the boundary, we can see that

LMS is more successful at identifying the correct class as opposed to texture features.

• Comparing Z9 to Z10 we see that LMS is obtaining a .96 AUC versus .89 from texture

features. This is relatively unsurprising as both classes contain the same number and size
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Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z1 n/a 0.87±1e-4 0.77±1e-4 0.62±2e-4 0.62±2e-4 0.49±4e-4 0.60±2e-4 0.69±1e-4 0.59±1e-4 0.59±2e-4

Z2 0.87±1e-4 n/a 0.72±1e-4 0.89±9e-5 0.81±9e-5 0.85±8e-5 0.88±7e-5 0.90±6e-5 0.89±8e-5 0.89±7e-5

Z3 0.77±2e-4 0.72±1e-4 n/a 0.80±1e-4 0.70±2e-4 0.73±1e-4 0.80±2e-4 0.82±1e-4 0.79±1e-4 0.80±1e-4

Z4 0.62±1e-4 0.89±5e-5 0.80±1e-4 n/a 0.69±2e-4 0.59±1e-4 0.47±9e-4 0.57±2e-4 0.53±4e-4 0.53±2e-4

Z5 0.62±2e-4 0.81±8e-5 0.70±2e-4 0.69±2e-4 n/a 0.59±2e-4 0.72±2e-4 0.73±2e-4 0.68±2e-4 0.67±2e-4

Z6 0.49±4e-4 0.85±8e-5 0.73±2e-4 0.58±2e-4 0.59±2e-4 n/a 0.55±2e-4 0.65±2e-4 0.55±2e-4 0.56±2e-4

Z7 0.60±2e-4 0.88±1e-4 0.80±2e-4 0.47±1e-3 0.71±2e-4 0.55±2e-4 n/a 0.62±2e-4 0.50±2e-4 0.50±2e-4

Z8 0.69±1e-4 0.90±5e-5 0.82±1e-4 0.57±1e-4 0.73±2e-4 0.65±1e-4 0.62±2e-4 n/a 0.62±1e-4 0.60±2e-4

Z9 0.59±1e-4 0.89±9e-5 0.80±1e-4 0.53±9e-4 0.69±2e-4 0.55±1e-4 0.50±1e-4 0.62±1e-4 n/a 0.49±1e-4

Z10 0.59±1e-4 0.89±6e-5 0.80±2e-4 0.53±1e-4 0.67±2e-4 0.56±1e-4 0.50±2e-4 0.60±2e-4 0.49±2e-4 n/a

Table 6.4: Ball Scale feature confusion matrix of AUC, across 50 runs with variance, indicating the

success in differentiating pair-wise classes. For ease of viewing, only scores greater than or equaled to

.90 are highlighted in bold.

of objects, except that the topology is different as a result of the quadrants which the

circles are confined. Interestingly though Z8 to Z10 (.97 LMS versus .92 texture features)

seem to do better in both algorithms, though their structure isn’t greatly different from

Z9.

• Comparing Z1 to Z8 we notice that LMS tends to struggle to differentiate them very well

(.78 AUC). On deeper examination, this is as a result of the larger objects overpowering

the signal from the small ellipses. While they appear in the LMS signature, the Fourier

descriptor based representation struggles to isolate the frequencies specific to those pieces

as they are a subset of the frequencies of the larger objects. This is especially notable in

comparison of Z10 to Z3 and Z4.

• Comparing Z1 to Z9, this overpowering characteristic is less prevalent (.86 AUC), we

believe this is because the ellipses are isolated and not shadowed by larger objects. This

is to say they have their own LMS rays associated solely for them, instead of a single

LMS ray encountering both circles and ellipses.

6.4 Experiment 2: Rotational Invariance

As we can see from the comparison of set Z3 and set Z4, LMS is unable to differentiate them

obtaining 0.5 AUC. This is notable as these two sets are actually 90◦ rotations of one another.
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We can thus infer, that since LMS cannot distinguish between them, that the approach does

indeed have the property of rotation invariance.

6.5 Experiment 3: Efficiency

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Z1 n/a 1.0±3e-7 0.99±1e-6 1.0±2e-6 0.99±5e-6 0.96±3e-5 0.93±5e-5 0.77±1e-4 0.81±1e-4 0.96±2e-5

Z2 1.0±2e-7 n/a 1.0±2e-6 1.0±1e-6 1.0±4e-9 0.99±5e-6 0.99±5e-6 1.0±6e-9 0.99±3e-6 1.0±2e-6

Z3 0.99±1e-6 1.0±3e-6 n/a 0.48±2e-4 1.0±7e-8 1.0±1e-6 0.95±2e-5 1.0±9e-7 1.0±7e-7 0.63±2e-4

Z4 1.0±1e-6 1.0±1e-6 0.48±2e-4 n/a 1.0±1e-7 1.0±2e-6 0.95±3e-5 1.0±6e-7 1.0±8e-7 0.64±1e-4

Z5 0.99±5e-6 1.0±5e-9 1.0±6e-8 1.0±1e-7 n/a 1.0±1e-6 1.0±1e-6 0.99±8e-6 0.99±2e-6 1.0±9e-7

Z6 0.96±3e-5 0.99±5e-6 1.0±1e-6 1.0±2e-6 1.0±2e-6 n/a 0.97±2e-5 0.99±3e-6 0.98±1e-5 0.99±8e-6

Z7 0.93±5e-5 1.0±6e-6 0.95±3e-5 0.95±3e-5 1.0±8e-7 0.97±2e-5 n/a 0.93±5e-5 0.86±1e-4 0.80±2e-4

Z8 0.77±1e-4 1.0±4e-9 1.0±9e-7 1.0±6e-7 0.99±1e-5 0.99±3e-6 0.93±3e-5 n/a 0.74±1e-4 0.96±2e-5

Z9 0.81±1e-4 0.99±3e-6 1.0±7e-7 1.0±8e-7 0.99±2e-6 0.98±1e-5 0.87±8e-5 0.74±1e-4 n/a 0.94±4e-5

Z10 0.96±2e-5 1.0±1e-6 0.63±1e-4 0.64±2e-4 1.0±8e-7 0.99±6e-6 0.79±1e-4 0.96±2e-5 0.94±3e-5 n/a

Table 6.5: Local Morphologic Scale AUC results Using ε = 10, across 50 runs with variance, indicating

the success in differentiating pair-wise classes. For ease of viewing, scores less than or equaled to .90

are highlighted in bold.

Using a Matlab implementation on a laptop with a 2.50GHz processor, we were able to

generate 1,000 LMS signatures in 17 seconds or 0.017 sec/sample. We note that the time for

creation of the LMS indicator function f(q) is 0.008 seconds, and the generation of the LMS

signature from it is 0.005 seconds. When using all 4 cores of the same machine, computation

time dropped to 8.398 seconds per 1,000 or .00839 sec/sample. We note that the speed up is only

2x faster as opposed to the theoretical 4x due to various other system bottlenecks such as disk

reading of the images, setting up and distributing the work across the Matlab pool. If additional

efficiency is needed, it is possible to reduce ε. For example, when ε = 10, the time to generate

1,000 LMS signatures drops to 10.38 seconds (40% improvement in speed) in the serial format,

and 7.81 seconds using 4 cores. Of course, this comes with some slight degradation of results as

shown in Table 6.5. We present a more complete discussion on the effects of ε using real-world

data in the next chapter.
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Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Z10

Figure 6.1: We present 10 different synthetic datasets, each of 1000 250×250 images, all containing the

same object density of 10 or 20 objects per image. These images are a suitable test ground to display the

properties associated with the LMS approach. For a full description see Table 6.179
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Chapter 7

Detection of Tumor Infiltrating

Lymphocytes

7.1 Introduction to Real World Applications

We apply the framework which was presented in the previous chapters to the real world appli-

cation of detecting tumor infiltrating lymphocytes. Due to the expensive nature of acquiring

annotated information from pathologists, we only have lymphocyte information for the ovarian

cancer (OCa) domain; as such we perform extensive vetting of the system solely in this do-

main in Section 7.2.1. For comparison in 3 other domains, we investigate a parallel experiment

in Section 7.3: if a randomly selected pixel were a lymphocyte, would it have been correctly

identified as a TIL or non-TIL?

7.2 Experiments In TIL Identification

7.2.1 Training and Testing Methodology

The training and testing methodology were performed exactly the same as in Chapter 6.2. Please

refer to this section for all necessary details.

7.2.2 Data Set Description

The data set consisted of 60 slide mount ovarian cancer images of size 1400 x 1050. Each

slide was stained with hematoxylin, which makes the tumor and endothelial cells appear blue
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(a) (b)

(c) (d)

Figure 7.1: Four sample images from the OCa data set. Each image is 1400 x 1050, and the blue en-

dothelial and tumor cells are visible and contrasted with the red stained lymphocytes. The homogeneous

white regions are areas without cells as a byproduct of the biopsy and mounting procedures.

and a CD3 positive T stain which caused the lymphocytes to appear in red. The images were

then scanned using a 40x magnification. We display some of the example images in Figure

7.1. In total, 4320 lymphocytes were identified using HNCuts. Although the segmentation was

straight forward due to the strong contrast between the red CD3 stained lymphocytes and the

blue hematoxylin counter-stain, each lymphocyte was still reviewed by an expert to ensure it

was correctly delineated. Typically, it is a lot easier to review automatically annotated data for

correctness than it is to perform the segmentation manually. As a result, we can ease the burden

on the expert while still ensuring a high quality data set. As part of the review, the lymphocytes

were divided into 1402 TILs and 2918 non-TILs, forming the ground truth.
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7.2.3 Experiment 1: Ovarian Cancer TIL Identification

We aim to train our classifier to differentiate between TILs and non-TILs in the OCa data set.

We compare the results from LMS to texture features and ball scale, which as discussed in

1.1.2 and Chapter 2.2 are potential approaches to solving this problem as well. We ensured that

training samples were never pulled from images which appeared in the test set.

Algorithm Setup

• Local Morphologic Scale: The algorithm proceeds as per the flowchart presented in Fig-

ure 5.7. The only additional processing performed was to use a watershed algorithm [75]

to quickly separate large regions. This was necessary as the cell clumping tended to inter-

fere with the LMS signature generation and watersheds quickly breaks large monolithic

areas into over-segmented patches. We mention, though, that these over-segmentation

patches ideally would be individual cells, but that was often not the case. To determine

the optimal operating parameters, a grid search was conducted seeking the best settings

for the algorithm. We present the searched domain in Table 7.1.

Variable Searched Values

Degree sampling (ε) 1, 5, 10, 15, 30

Number of FFT coefficients 28, 29, 210, 211, 212

Smoothing Neighbors 1, 5, 10

Singular Value Dimension (t) 2, 5, 10, 25

Window Size (w) 25, 50, 100, 125, 200

Table 7.1: Description of all grid-searched variables and their associated attempted values.

The optimal values were found to be: ε = 1, t = 5, w = 50, number of coefficients for

the Fourier transform = 29, number of points used for smoothing = 10, mask size = 10.

This means that each signature vector starts off as 512 and then is reduced down to 5 via

SVD.

• Texture Features: Through a grid search of the variables presented in Table 7.2, we were

able to identify the optimal parameters for the texture features as window size set to 50

and the number of gray levels as 16 and the singular value space as 25.
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Variable Searched Values

Number of Gray Levels 8, 16, 32, 64

Singular Value Dimension (t) 2, 5, 10, 25, 50

Window Size 25, 50, 100, 125, 200

Table 7.2: Description of all grid-searched variables and their associated attempted values.

• Ball Scale: For this we used the same implementation as in [49], and did not enforce a

window size. This had little effect on the output as the radius of the ball of homogeneity

never grew large enough for concern.

Results

Figure 7.2: Box plots for the AUC across 50 runs from all 3 algorithms. The red line identifies the mean,

the blue box encompasses 25th percentile, with the black whiskers extending to the 75th percentile. Red

dots are indicative of outliers. We can see that the LMS provides a higher mean AUC than texture features

with a smaller variance. On the other hand, ball scale seems to produce a poor classifier.

We present the box plots for the 3 approaches in Figure 7.2, with the associated true

positive average in Figure 7.3 and true negatives in Figure 7.4. We can see that with a mean
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Figure 7.3: Box plots for the true positives across 50 runs from all 3 algorithms. The red line identifies

the mean, the blue box encompasses 25th percentile, with the black whiskers extending to the 75th per-

centile. Red dots are indicative of outliers. We can see that b-scale is struggling to identify TILs with a

rate of just 30% correct. While texture features appears to be performing better than LMS here, we note

that this is only the case when the most optimal parameters (found via an expensive search procedure)

are used. Experiment 2, shows LMS’s resilience to a wide range of parameter settings.

AUC of .866 LMS provides a slightly better classifier than texture features with .842. These are

comparable to the current state of the art approach [53] with their self-stated .88 accuracy. We

draw attention to the significantly lower dimension of our approach as compared to their 6,000

features. Lastly, we can see that homogeneity is not an ideal separating characteristic as b-scale

fares rather poorly in this classification task.

7.2.4 Experiment 2: Impact of Window Size

The question of how window size impacts the quality of the results is important. To test this,

we perform the identical grid search as Experiment 1 except report the mean AUC across each

tested window sizes (25, 50, 100, 125, 200) for both LMS and texture features.
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Figure 7.4: Box plots for the true negatives across 50 runs from all 3 algorithms. The red line identifies

the mean, the blue box encompasses 25th percentile, with the black whiskers extending to the 75th per-

centile. Red dots are indicative of outliers. We can see that LMS notably provides the best identification

of non-TILs from the 3 algorithms. Texture features seems to produce a very wide variance in its ability

to correctly identify true negatives.

Results

We present in Figure 7.5 the mean AUC across 50 runs using the optimal parameters for each

window size. From this experiment, we can clearly see that as the window size varies, the

LMS approach keeps a consistent AUC while texture features degrade as additional information

becomes available. This is a critical point. Since a grid search was used to find optimal operating

variables for both LMS and texture features, which was extremely computationally expensive,

an algorithm which has resilience to a very wide range of settings is preferred over one which

has a much smaller range and is thus susceptible to constant ”tweaking”. LMS meets this

criteria by producing consistently good results within a wide range of operating parameters,

while texture features notably degrades outside of its optimal parameters. So while Figure 7.3

shows texture features outperforming LMS, it will only do so after an extensive computational

investment to find its optimal settings.
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Figure 7.5: Average AUC using optimal parameters across a set of 5 varying window sizes. The LMS

(the upper blue line) maintains a consistent AUC even as the window size grows very large. This is

contrasted with the texture features (lower green line) graph which shows a degradation of results along

with the expanding window size.

7.2.5 Experiment 3: Impact of Interval Size

The question of how the interval ε impacts the quality of the results is important. As a result

of the Monte-Carlo sampling of the local region, we can trade some accuracy for speed, but

the exact degradation of quality is important to identify. To observe the response of a reduced

sampling, we perform the identical grid search as Experiment 1 except report the mean AUC

across each tested ε tested (1, 5, 10, 15, 30) for both LMS.

Results

We present in Figure 7.6(a) the mean AUC across 50 runs using the optimal parameters for each

ε interval and the associated time (b). From this experiment, we can see the expected behavior:

as the rate of sampling is reduced the accuracy falls, as well as the time required per sample.

The positive point to consider is that even as the sampling rate drops to 1/30th of the original

(from 1◦ to 30◦ interval), the accuracy only falls about 3%, a favorable cost vs time ratio when

we see that the time required drops 75%.
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(a) (b)

Figure 7.6: Average AUC (a) using optimal parameters across a set of 5 varying ε intervals contrasted

with the speed per sample in (b). As expected we see that as the sampling goes down, so does the time.

The total degradation due to smaller sampling is only 3% in exchange for a 75% speed up.

7.2.6 Experiment 4: Combined Classifier

Given the results from Experiment 1, we decided to investigate how well a classifier would

perform if it used the optimal configurations for LMS and texture features in a joint feature

space. As such, we concatenate feature vectors produced by the two algorithms and use them

in the same classifier, and report results across 50 runs.

Results

Figure 7.7: The three box plots associated with the joint classifier created by concatenating the LMS

features with the texture features. We can see the combination of two of the feature sets produces better

results, even using an unsophisticated classifier.
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We present the AUC, true positive percent and the true negative percents across 50 runs in

Figure 7.7. The true negative and average AUC approach .90, indicating a stronger classifier.

When looking at this figure in comparison with Figure 7.2, Figure 7.3, and Figure 7.4, we can

infer that the classifiers encapsulate different information, as their combination provides notable

improvement with a decrease in variance. This result is a good indicator that LMS could be

used in conjunction with other chromatic or texture based features for a more complete view of

features of the query point leading to better classification performance.

7.3 Experiments in Region Identification

In this section we apply LMS to 3 other data domains: prostate cancer images stained with

hematoxylin and eosin (H&E), prostate cancer images stained with eosin (E) and breast cancer

images stained with H&E. Unfortunately, when these data sets were created, they were not

cross-stained for identification of the lymphocytes. As a result, we slightly modify the previous

TIL versus non-TIL experiment to use the stained data sets, with the laboriously created ground

truth, we had available. Since we don’t have lymphocyte information, which provided the points

of interest in the previous experiment, we randomly pick locations in the image and ”suppose”

a lymphocyte was there. The classification process is still the same, if the pixel is inside of the

tumor (as defined by the annotation provided by the expert) we hope to identify it as a TIL or

tumor region versus not inside of the tumor being a non-TIL (i.e., stroma region).

7.3.1 Data Set Description

We can see the descriptions of the data sets used in this section in Table 7.3 with associated

samples in Figure 7.8. For each data set, we randomly selected 100 points per image and

followed the same procedure as Experiment 1.

7.3.2 Experiment 5: Breast and Prostate Pixel Classification

Setup

The operating parameters for LMS were identical to those in Experiment 1.
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Data Type Label Properties Number Specific Challenge

Prostate
S1

H&E stain 44 images Classification of nuclear centers

TMA HE Appears blue 1600 x 1600 as tumor or stromal region

Prostate
S2

Hematoxylin stain 44 images Classification of nuclear centers

TMA H Appears purple 1600 x 1600 as tumor or stromal region

Breast S3

Hematoxylin stain 51 images Classification of nuclear centers

Appears purple 1000 x 1000 as tumor or stromal region

Table 7.3: Description of non-lymphocyte data sets.

Data Type Prostate HE Prostate H Breast

AUC ± Range .88± .01 .87± .02 .80± .01

Table 7.4: Bayesian classifier AUC in distinguishing stromal from tumoral lymphocytes for S1 − S3.

Results

Although the parameters were not individually tuned for each data set, we can see from the

results in Table 7.4 that they are fairly consistent with the OCa results. For S1 and S2 we can see

that the mean AUC is about .88 indicating excellent separation between tumoral and stromal cell

nuclei. It is interesting to note that the H&E images did slightly better than the H alone images,

most likely due to the greater contrast afforded by the counter-staining which allowed for the

segmentation algorithm to more accurately create a binary mapping of the cellular information.

Across 51 images of S3 the breast images produced a mean AUC of .81. in spite of no domain

specific tuning, the LMS still proceeded extremely well.

7.3.3 Qualitative Evaluation

In Figure 7.9 we present LMS signatures in red/green overlaid on both tumor and non-tumor re-

gions for all domains. Consistently across tumor based regions (a-d), the heterogeneity created

by the cancer cells is evident by the strong fluctuations in the LMS signature (e-h). As espe-

cially evident in Figure 7.9(a), we can see for a very complex region the LMS paths becoming

increasingly tortuous as they adapt to the local heterogeneity. This is to say, we can see that as

the complexity of the local region increases a noted change in the LMS occurs. This change is
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as a result of rising entropy in the neighborhood structures resulting in the rays become more

chaotic. Comparatively, in the stroma images (Figure 7.9(i-l)) we can see how the homoge-

neous regions have fewer obstructions as a result of the smaller endothelial cells having less of

an impact on the signature and thus the LMS paths form straighter lines. Figure 7.9(l) illustrates

a LMS signature for the point of interest is located in a stroma region, but bounded on the left

and right sides by tumor. In this case, the LMS signature is able to extend unaltered in both

north and south directions, while being constrained in the west and east directions. This is an

example of when choosing a texture window size would be problematic as each orientation is

constrained differently. Since LMS is rotation invariant, having a few training samples of this

type easily extends to similar complex regions.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: 2 sample images from each of the data sets described in Table 7.3. First row is prostate

HE (S1), second row is prostate H (S2) and third row is Breast H (S3). We can see that each of these

images has its own unique characteristics which separate it from the OCa domain discussed earlier in

this chapter.
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Figure 7.9: The LMS signature overlaid on a tumor regions in red/green in an (a) ovarian,(b) prostate

H, (c) breast HE, and (d) prostate HE image, to be compared with the benign signatures in ((i)-(l)),

respectively. Three rays from each image ((e)-(h) & (m)-(p)) are extracted and presented beneath their

respective image. We can see that in the non-tumor regions ((i)-(l)) the LMS signature has fewer and

smaller objects to obstruct its path, and thus the rays are less tortuous, unlike in the tumoral regions

((a)-(d)).
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Chapter 8

Discussion and Future Work

In the previous chapters we have presented novel theories which have applications in both seg-

mentation and classification. By instantiating a system which uses two derived algorithms,

Hierarchical Normalized Cuts and Local Morphologic Scale, we are able to classify tumor in-

filtrating lymphocytes. Our high-speed solutions provide results that are comparable to state

of the art approaches which are unable to surmount the huge data requirements necessary for

current and future clinical usage. By showing satisfactory results across four data domains,

without individual parameter tunings, our approaches await further work which will make them

only more suited to broader clinical challenges and applications. As such, in the following

sections we discuss possible improvements and additional applications, with the supporting

motivation and high-level potential solutions. Additionally, we mention some of the challenges

which will be faced during the implementation of each supplemental improvement.

Gradient Based Path Identifier

We can see that the LMS requires a binary map to compute its rays. This is a result of both a

desired level of efficiency and greater simplicity of algorithm design. A notable concept which

could be adopted in the future is the usage of an affinity computation function (µ) which operates

directly on pixel values instead of using a binary version of the scene. The rays would then be

computed via some gradient measure as they iteratively reach their destination. While this

would remove the complexity of the HNCut step, it presents with it a novel set of challenges.

From our brief experiments in the domain, our experience shows us that the problem is not

trivial as it can be viewed as a subset of active contours. The problem, of course, is that even

with a gradient measure, another constraint must be explicitly defined to determine exactly how
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the curve should function, i.e., at what point should gradient affinity be scarified as a result of

too steep of a slope derivative defined by the curve.

Descriptor Enhancement

From the comparison of Z1 to Z8 in Figure 6.1, we notice that large bodies which appear

frequently can overpower the signal of the smaller bodies resulting in occasional occlusion

of the needed differentiating signal. While this doesn’t seem to have a large impact on the

classifier for this specific domain, there is the possibility that there exists a better approach of

quantifying the LMS signature. This isn’t to say that Fourier descriptors are not suitable in

many cases, but when examining the synthetic datasets, there does seem to be some indication

that an approach which also quantifies exact location as opposed to solely signal variance may

have added success. An approach such as wavelets meets this criteria, but the ability to compare

wavelets, while still maintaining the generalizability due to rotational invariance, and use them

as the features for a supervised classifier has yet to be seen.

Improvement of Input Data

As noted in the Experiment 1, the pre-processing step for the binary map was to use a watershed

algorithm to separate large bodies (which were too large to be a single cell) into smaller bodies.

Simply by adding this pre-processing step, the accuracy gained a consistent 3%. Looking at

some of the results from the pre-processing stage, the watershed often times over segments

regions which is likely negatively affecting the classifier. While there are whole bodies of

works, indeed a whole field of research, related to the identification and isolation of individual

cells, the application and development of an approach suited to the high throughput nature of

the LMS algorithm is outside the scope of this document.

Applications to Registration

Since LMS creates a unique signature, at each pixel, which encodes local morphological infor-

mation, we believe that the LMS could see applications in registration. As preliminary evidence

supporting this claim, we have taken a single image from each protocol (PD, T1, and T2) of a

phantom brain MRI image [76] and computed the LMS signature at each pixel. Afterwards, we

projected the high dimensional LMS signature into the 3 dimensional RGB space and display

the results. We can see from the images presented in Figured 8.1 that even though the chromatic
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values in the MRI phantom images are significantly different, when looking at the LMS repre-

sentation there does seem to be a consistency across the protocols. We believe that a registration

algorithm would gain performance by using this novel feature space.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.1: PD (a), T1 (c) and T2 (e) phantom brain MRI images. If we compute the LMS for each

point and project the signature into a 3 dimensional RGB space, we can see their respective visual

representations in (b), (d) and (f), respectively. We propose that since visually they appear similar, despite

being vastly different in their original space, the LMS signature could have applications in registration.
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