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Abstract

We propose an unsupervised approach for
substring-based transliteration which in-
corporates two new sources of knowledge
in the learning process: (i) context by
learning substring mappings, as opposed
to single character mappings, and (ii) pho-
netic features which capture cross-lingual
character similarity via prior distributions.

Our approach is a two-stage iterative,
boot-strapping solution, which vastly
outperforms Ravi and Knight (2009)’s
state-of-the-art unsupervised translitera-
tion method and outperforms a rule-based
baseline by up to 50% for top-1 accuracy
on multiple language pairs. We show that
substring-based models are superior to
character-based models, and observe that
their top-10 accuracy is comparable to the
top-1 accuracy of supervised systems.

Our method only requires a phonemic rep-
resentation of the words. This is possi-
ble for many language-script combinations
which have a high grapheme-to-phoneme
correspondence e.g. scripts of Indian lan-
guages derived from the Brahmi script.
Hence, Indian languages were the focus of
our experiments. For other languages, a
grapheme-to-phoneme converter would be
required.

1 Introduction

Transliteration is a key building block for multi-
lingual and cross-lingual NLP since it is useful for
user-friendly input methods and applications like
machine translation and cross-lingual information
retrieval. The best performing solutions are su-
pervised, discriminative learning methods which

learn transliteration models from parallel translit-
eration corpora. However, such corpora are avail-
able only for some language pairs. It is also expen-
sive and time-consuming to build a parallel corpus.
This limitation can be addressed in three ways:

(i) train a transliteration model on mined parallel
transliterations. The transliterations can be mined
from monolingual comparable corpora (Jagarla-
mudi and Daumé III, 2012) or parallel translation
corpora (Sajjad et al., 2012). However, it may
not be possible to mine enough transliteration pairs
to train a system for most languages (Irvine et
al., 2010). (ii) transliterate via a bridge language
(Khapra et al., 2010) when transliteration corpora
involving bridge languages is available. (iii) learn
transliteration models in an unsupervised setting
using only monolingual word lists. Unsupervised
transliteration can be defined as: Learn a translit-
eration model (T X ) from the source language (F)
to the target (E) language given their respective
monolingual word lists,WF andWE respectively.
We explore this direction in the present work, ad-
dressing shortcomings in the previous work (Ravi
and Knight, 2009; Chinnakotla et al., 2010).
Our work addresses two major limitations in

existing unsupervised transliteration approaches:
(i) lack of linguistic signals to drive the learning,
and (ii) limited use of context since their model is
character-based. Due to this knowledge-lite ap-
proach, these model performs poorly. Our pri-
mary contributions are novel methods to incor-
porate two knowledge sources, phonetic and con-
textual, in the training process. These knowledge
sources are critical since statistical co-occurrence
signals used in supervised learning are not avail-
able for unsupervised learning. Unlike transliter-
ation mining, our approach can learn effectively
even if the source and target corpus do not have
any transliteration pairs in common.
We propose a two-stage iterative, bootstrapping



approach for learning unsupervised transliteration
models. In the first stage, a character-based model
is learnt which is used to bootstrap and learn a
series of improved substring-based models in the
second stage.
The first stage incorporates two linguistic sig-

nals to drive the learning process: phonemic
correspondence and phonetic similarity. This
means we make the model aware that two charac-
ters represent either the same phoneme (क in Hindi
and ক in Bengali [IPA: k] ) or similar phonemes (क
[IPA: k] inHindi and খ [IPA: kh] in Bengali - which
differ only in aspiration). We achieve this by in-
corporating phonetic information as prior distri-
butions in our EM-MAP approach to character-
based unsupervised learning. We show that these
linguistic signals can improve top-1 accuracy by
20%-100% over a baseline rule-based system. It
is also vastly superior to knowledge-lite unsuper-
vised methods.
The second stage incorporates contextual

knowledge by unsupervised learning of a
substring-based transliteration model viz. learning
mappings from substring in one language to
another, as opposed to learning single character
mappings. In other words, along with learning
mappings of the form (khindi → kbengali),
we also try to learn mappings of the form
(kaahindi → kaabengali). It is known that
substring-based transliteration outperforms
character-based transliteration in a supervised
setting due to the additional context information
(Sherif and Kondrak, 2007). To the best of
our knowledge, ours is the first unsupervised
approach for substring-based transliteration.
It outperforms a character-based model by up to
11% in terms of top-1 accuracy and 27% in terms
of top-10 accuracy.
The top-10 accuracy of our unsupervised sys-

tem is comparable to the top-1 accuracy of a su-
pervised system. Hence, the unsupervised system
may be a reasonable substitute for supervised sys-
tems in applications which require transliteration
(e.g. handling untranslated words in MT) and can
disambiguate from the top-k transliterations with
information available to the application (e.g. LM
in MT systems).
The focus of our work was Indian languages

using scripts descended from the ancient Brahmi
script. We show that our methods can be applied to
these languages without requiring phoneme dic-

tionaries or grapheme-to-phoneme converters.
We achieve this by using scriptural properties
and similarity across scripts to capture phonemic
correspondence and phonetic similarity, and show
results on 4 languages using 4 different scripts. At
least 19 of the Indian subcontinent’s top 30 and 9
of the top 10 most spoken languages use Brahmi-
derived scripts. Each of these languages havemore
than a million speakers with an aggregate speaker
population of about 900 million, so our method is
widely applicable.

2 Related Work

Unsupervised transliteration has not been widely
explored. Chinnakotla et al. (2010) generate
transliteration candidates using manually devel-
oped charactermapping rules and rerank themwith
a character language model. The major limita-
tions are: (i) character transliteration probability
is not learnt, so there is undue reliance on the lan-
guage model to handle ambiguity, and (ii) signifi-
cant manual effort for good coverage of mapping
rules.
Ravi and Knight (2009) propose a decipherment

framework based approach (Knight et al., 2006) to
learn phoneme mappings for transliteration with-
out parallel data. In theory, it should be able to
learn transliteration probabilities and is a gener-
alization of Chinnakotla et al. (2010)’s approach.
But its performance is very poor due to lack of
linguistic knowledge and has a reasonable perfor-
mance only when a unigram word-level LM is
used. This signal essentially reduces the approach
to a lookup for the generated transliterations in a
target language word list; the method resembles
transliteration mining. It will perform well only if
the unigram LM has a good coverage of all named
entities in the source word list. For morphologi-
cally rich target languages, it may be difficult to
find the exact surface words in the unigram LM.
Our character level model approach is a further

generalization of Ravi and Knight (2009)’s work
since it also allows modelling of prior linguistic
knowledge in the learning process. This over-
comes the most significant gap in their work.
Some approaches to transliteration mining are

also relevant to the present work. Tao et al.
(2006) show improvement in transliteration min-
ing performance using phonetic feature vectors re-
sembling the ones we have used. Jagarlamudi
and Daumé III (2012) use phonemic representa-



Figure 1: Overview of Proposed Approach

tion based interlingual projection for multilingual
transliteration mining. To the best of our knowl-
edge, ours is the first work to use phonetic feature
vectors for transliteration as opposed to transliter-
ation mining.
We use a substring-based log-linear model in

our second stage. There are some parallels to this
approach in the transliteration mining litereature.
Some transliteration mining approaches have used
a log-linear classifier to incorporate features to dis-
tinguish transliterations from non-transliterations
(Klementiev and Roth, 2006; Chang et al., 2009).
Sajjad et al. (2011) use a substring-based log-linear
model trained on a noisy, intermediate translit-
eration corpus to iteratively remove bad (low-
scoring) transliteration pairs found in the discov-
ery process.

3 Unsupervised Substring-based
Transliteration

In this section, we give a high-level overview
of our approach for learning a substring-based
transliteration model in an unsupervised setting
(depicted in Figure 1). The inputs are monolingual
lists of words,WF andWE , for the source (F) and
target (E) languages respectively. Note that these
are neither parallel nor comparable lists. We need
a phonemic representation of the words.
For Indic scripts, which are used in our ex-

periments, we use the orthographic representa-
tion itself as the phonemic representation since
there is high grapheme to phoneme correspon-
dence. Hence, we use the terms character and
phoneme interchangeably.
The training is a two-stage process as described

below. First, character mappings are learnt fol-
lowed by learning of substring mappings by boot-
strapping the character-based model. This process

is analogous to phrase-based statistical machine
translation, where phrase pairs are extracted from
word aligned sentence pairs.
Stage One: In the first stage, character transliter-
ation probabilities are learnt from the monolingual
word lists.
In a supervised setting, an EM algorithm us-

ing maximum likelihood estimation (EM-MLE)
(Knight and Graehl, 1998) exploits co-occurrence
of characters to learn model parameters. But, prior
linguistic knowledge has to be incorporated for ef-
fective learning in an unsupervised setting. Hence,
we propose an unsupervised Expectation Maxi-
mization with Maximum Aposteriori estimation
framework (EM-MAP) for learning the character-
level transliteration model. Linguistic knowledge
is incorporated in the form of prior distributions on
the model parameters in this framework. The de-
tails of the model and choice of prior distributions
are described in Section 4.
We considered two linguistic signals for design-

ing the prior distributions. The first is phonemic
correspondence i.e. characters in the two lan-
guages representing the same phoneme. e.g. The
characters क (ka) in Hindi and ক (ka) Bengali rep-
resent the same phoneme (IPA: k). But phone-
mic correspondence cannot account for phonemes
which differ only by some phonetic features. e.g.
vowel length (short इ [i] in Hindi, long ঈ [I] in Ben-
gali), aspiration (unaspirated क in Hindi [IPA: k],
aspirated খ in Bengali [IPA: kh]). Such transfor-
mations are common during transliteration, so we
use phonetic similarity as our second linguistic
signal.
Stage Two: In the second stage, we learn a dis-
criminative, log-linear model with arbitrary sub-
strings as the unit of transliteration. For learn-
ing the substring based model, a pseudo-parallel
transliteration corpus is first synthesized using the
character-level model. We discuss Stage 2 in de-
tail in Section 5.
We illustrate the need for substring level mod-

els with an example. In Indic scripts, the anus-
vaara (nasalization diacritic) can map to any of
the 5 nasal consonants depending on the consonant
following the ansuvaara in the source word. So,
in the hi-bn pair (चंबल [ca.mbala], চমব্ল [cambala]),
the anusvaara (.m) maps to the nasal consonant
(m) since the next character is the labial consonant
ba. This shows the need for contextual information
to resolve transliteration ambiguities. Substring-



Algorithm 1 Train character-level model
1: procedure UNSUP-CHAR(WF , LME)

▷ LME : char-level language model for E
2: Θ← initialize-params()
3: i← 0
4: while i ≤ N do ▷ N: Number of iterations
5: WE′ ← c-decode(WF ,Θ, LME)
6: A←gen-alignments(WF ,WE′)
7: Θ← argmaxΘQ

′
WF

(Θ) ▷ m-step
8: if converged(Θ) then
9: break
10: σ ← e-step(A,Θ)
11: return Θ

basedmodels, which learn substringmappings like
.mba→ mba, are one way to incorporate contex-
tual information and have been shown to perform
better in a supervised setting (Sherif and Kondrak,
2007). Contextual information is especially im-
portant in an unsupervised setting.

4 Character-based Unsupervised
Transliteration

In the first stage, we learn character transliter-
ation probabilities from monolingual word lists.
The generative story for the training data (the
source language corpus, WF ) is explained below
using a noisy channel model.
An unknown target language word e is selected

using a language model P (e). The target word
is transformed to a source language word f by a
channel whose properties are represented by the
transliteration probability distribution (Θ). The
target language word e is a latent variable in the
unsupervised setting, so we need to compute the
expectation over all possible values of e.

P (f) =
∑
e

P (f|e)P (e) (1)

We use Knight and Graehl (1998)’s transliteration
model where, the word pair (f, e) is generated by
successively selecting one or more source charac-
ters f for each target character e as per a latent
alignment a with probability P (f |e) = θf,e. We
restrict our model to 1-1 and 1-2 character map-
pings from target to source characters. The likeli-
hood of a single training instance is given by:

L(Θ) =
∑
e

P (e)
∑
a

|e|∏
i=1

θfai ,ei (2)

In the supervised framework of Knight and Graehl
(1998), parameters are learnt using the EM al-
gorithm where the alignment structure a is the
latent variable. The discovery of hidden align-
ments helps compute the transliteration probabili-
ties based on co-occurrence of characters. In the
absence of parallel corpora, co-occurrence is no
longer a learning signal and it is not possible to
learn the character transliteration probabilities re-
liably. To compensate for this, we define Dirich-
let priors (De) over each character transliteration
probability distributions (Θe), which can be used
to encode linguistic knowledge. This leads to our
proposed EM-MAP training objective for the M-
step over the entire training set (WF ).

QWF
(Θ) =

∑
f∈WF

{∑
e

{
δe,f

∑
a

[
σa,f,e

∑
f,e

nf,e,a log θf,e
]
+ logP (e)

}}
+

∑
e∈CE

logDe(αf1,e...αf|CF |,e) (3)

s.t

∀e ∈ CE ,

j=|CF |∑
j=1

θfj ,e = 1

where,
δe,f = P (e|f), σa,f,e = P (a|e, f) are conditional
probabilities of the latent variables computed in the
E-step. These are computed using the previous it-
eration’s parameter values, whose values are fixed
in the current iteration.
nf,e,a is the number of times characters e and f are
aligned in the alignment structure a.
CF andCE are the character sets of the source and
target languages respectively.
In the unsupervised setting, the target word (e)

is also an latent variable. As seen in Equation 3,
theM-step requires computing an expectation over
all latent variables (target word and alignments).
Given the target word, it is possible to enumerate
all alignments of the word pairs, but it is not pos-
sible to enumerate all possible strings (e). Hence,
we approximate the expectation over e by a max
operation (the so-called Viterbi approximation).
The modified objective (Q′

WF
) for the M-step

effectively means: With the current set of param-
eter values, we decode the source words to gener-
ate the target words, creating a synthetic parallel
transliteration corpus. Then, the M-step updates



can be done using Knight and Graehl (1998)’s su-
pervised framework. The resulting update equa-
tion for the transliteration probabilities in the M-
step is:

θf,e =
1

λe

{
αf,e−1+

∑
f∈WF

∑
a

σa,f,enf,e,a

}
(4)

where, λe is a normalizing factor and e is the
best transliteration of f as per the previous itera-
tion’s parameters. Note that δe,f plays no role in
(Q′

WF
).

The E-step update to compute the conditional
probabilities of the latent alignment variables is
given by:

σa,f,e =
1

Z
×

|e|∏
i=1

θfai ,ei (5)

where, Z is a normalizing factor.
The training procedure can thus be understood

to follow a decode-train-iterate paradigm. Algo-
rithm 1 shows the procedure for character level
training. In each iteration, a pseudo-parallel cor-
pus by decoding WF using the current set of
parameters (Line 5, Viterbi approximation) from
which updated parameters are learnt (Line 7) and
alignment probabilities recomputed (Line 10).

4.1 Linguistically Informed Priors:
In this section, the different prior distributions
we designed to encode phonetic knowledge about
characters is described. These are instantiations of
Dirichlet priors (De), which serve as a conjugate
prior to the multinomial distribution (θf,e). The
hyperparameters (αf,e) ofDe determine the nature
of the prior distribution. They can be interpreted as
additional, virtual alignment counts of the charac-
ter pair (f, e) for maximum likelihood estimation
of θf,e.

Phoneme Correspondence (PC) Prior: This
simply establishes a one-one correspondence (de-
noted by =̂) between the same phonemes (or char-
acters representing the same phonemes). It does
not capture the notion of similarity between char-
acters.

αf,e = β iff=̂e (6)
= 0.01 elsewhere (7)

Phonemic correspondence is also used to initial-
ize the transliteration probabilities for the EM al-
gorithm (PC Init):

Basic Character Type:
vowel, consonant, anusvaara, nukta, halanta, others

Vowel Features
Length: short, long
Strength: weak, medium, strong
Status: Independent, Dependent
Horizontal position: Front, Back
Vertical position: Close, Close-Mid, Open-Mid, Open
Lip roundedness: Close, Open

Consonant Features
Place of Articulation:
velar, palatal, retroflex, dental, labial
Manner of Articulation:
plosive, fricative, flap, approximant (central or lateral)
Aspiration, Voicing, Nasal: True, False

Table 1: Phonetic features for Indic scripts

θinitf,e =
αf,e∑

x∈CF

αx,e
(8)

Phonetic Similarity Priors This prior captures
similarity between two phonemes based on their
phonetic properties. The phonetic properties of a
phoneme can be encoded as a bit vector (v) as ex-
plained in Section 4.2. We experimented with two
priors based on phonetic properties.

• Cosine Prior: It is based on the cosine similarity
between the two bit vectors.

αf,e = γc cos(vf , ve) (9)

• Sim1 Prior: Cosine similarity tends to produce
very diffused transliteration probability distribu-
tions. We propose a modified prior (called sim1)
which tries to alleviate this problem by making
the phonemic differences sharper.

αf,e = γs
5vf .ve∑

x∈CF

5vx.ve
(10)

β, γc and γs are scale factors for the Dirichlet
distribution.

4.2 Extracting Phonetic Features for Indic
scripts

We now describe a method for deriving phonetic
correspondences and constructing phonetic fea-
tures vectors for Indic scripts. Indic scripts gener-
ally have a one-one correspondence from charac-
ters to phonemes in the scripts. Hence, each char-
acter is represented by a feature vector represent-
ing its phonetic properties as described in Table



1. The feature vector is represented as a bit vector
with a bit for each value of every property.
The logical character set is roughly the same

across all Indic scripts, though the visual glyph
varies to a great extent. So phonemic correspon-
dence can be easily determined for Unicode text
since the first 85 characters of all Indic scripts
are aligned to each other by virtue of having the
same offset from the start of the script’s code-
page. These cover all commonly used characters.
There are a few exceptions to this simple mapping
scheme, most of which can be handled using sim-
ple rules.
Notable among these is the Tamil script, which

does not have characters for aspirated as well as
voiced plosives, so the corresponding unvoiced,
unaspirated plosive characters are used to repre-
sent these sounds too. In the phonetic feature
representation of such characters for Tamil, both
the voiced as well as unvoiced bits and aspi-
rated/unaspirated bits are set on, reflecting the am-
biguity in the grapheme-to-phoneme mapping.

5 Bootstrapping substring-based models

In the second stage, we train a discriminative, log-
linear transliteration model which learns sub-
string mappings. We use the log-linear model
proposed byOch andNey (2002) for statistical ma-
chine translation and analogous transliteration fea-
tures. The features are: substring transliteration
probabilities, weighted average character translit-
eration probabilities and character language model
score. The conditional probability of the target
word e given the source word f is:

P (e|f) =
NP∏
i=1

P (ēi|f̄i) =
NP∏
i=1

exp
NF∑
j=0

λjgj(f̄i, ēi)

(11)
where, f̄i and ēi are source and target substrings re-
spectively, λj and gj are feature weight and feature
function respectively for feature j,NP number of
substrings and NF is number of features.
We synthesize a pseudo-parallel translitera-

tion corpus (WF , WE′) for training the discrimi-
nativemodel by transliterating the source language
words (WF ) using the character level model from
the first stage. Since the top-1 transliteration may
be incorrect, we consider the top-k transliterations
to improve the odds that the pseudo-parallel cor-
pus contains the correct transliteration. For train-

ing, the pseudo-parallel corpus contains k translit-
eration pairs for every source language word. For
tuning the feature weights, we use a small held-out
set of top-1 transliteration pairs from the pseudo-
parallel corpus, since it likely to be the most accu-
rate one.
We run multiple iterations of the discrimina-

tive training process, with each being trained on
the pseudo-parallel corpus synthesized using the
previous iteration’s models. The models in subse-
quent iterations are bootstrapped from the earlier
models. The training continues for a fixed num-
ber of iterations although other convergence meth-
ods can also be explored. Like the MAP-EM solu-
tion for the first stage, the second stage also uses
a decode - train - iterate paradigm for learning a
substring-based model.

6 Experiments

Data: We experimented on the following In-
dian language pairs representing two language
families: Bengali→Hindi, Kannada→Hindi,
Hindi→Kannada and Tamil→Kannada. Bengali
(bn) and Hindi (hi) are Indo-Aryan languages,
while Kannada (kn) and Tamil (ta) are Dravidian
languages. We used 10k source language names
as training corpus, which were collected from
various sources.
We evaluated our systems on the NEWS 2015

Indic dataset. We created this set from the English
to Indian language training corpora of the NEWS
2015 shared task (Banchs et al., 2015) by mining
name pairs which have English names in common.
1500 words were selected at random to create the
testset. The remaining pairs are used to train and
tune a skyline supervised transliteration system for
comparison. The training sets are small, the num-
ber of name pairs being: 2556 (bn-hi), 4022 (kn-
hi), 3586 (hi-kn) and 3230 (ta-kn).

Experimental Setup: We trained the charac-
ter level unsupervised transliteration systems with
source language word lists using a custom imple-
mentation 1. We set the the value of the scaling
factors (β, γc, γs) to 100. Viterbi decoding was
done with a bigram character language model, fol-
lowed by re-ranking with a 5-gram character lan-
guage model.
We trained the substring level discriminative

transliteration models as well as a skyline su-
1https://github.com/anoopkunchukuttan/

transliterator



Method bn-hi hi-kn kn-hi ta-kn
A1 F1 A10 A1 F1 A10 A1 F1 A10 A1 F1 A10

PC_Init 12.72 68.95 18.94 0.00 44.76 0.07 0.20 48.84 0.54 0.00 44.46 0.27
Rule 16.13 74.60 16.13 13.75 79.67 13.75 12.90 79.29 12.90 10.25 68.49 10.25
Initialization: PC_Init+
PC_Prior 18.27 75.50 27.04 12.53 77.32 17.89 27.69 81.06 43.55 13.49 69.85 29.06
Cosine Prior 17.74 75.09 26.57 11.38 75.08 18.09 17.54 77.69 32.86 13.21 69.44 26.64
Sim1 Prior 18.07 75.25 29.05 11.72 75.61 20.26 19.69 78.18 37.84 13.55 69.74 28.19
Supervised 32.06 83.03 63.32 30.01 85.93 69.37 54.23 90.05 80.04 30.74 81.62 64.33

Table 2: Results for character-based model (% scores)

pervised transliteration system using the Moses
(Koehn et al., 2007) machine translation system
with default parameters. BatchMIRA (Cherry and
Foster, 2012) was used to tune the Stage 2 systems
with 1000 name pairs and supervised systems with
500 name pairs. The tuning set for the Stage 2 sys-
temswere drawn from the the top-1 transliterations
in the synthesized, pseudo-parallel corpus; no true
parallel corpus is used. Monotone decoding was
performed. We used a 5-gram character language
model trained with Witten-Bell smoothing on 40k
names for all target languages. We ran Stage 2 for
5 iterations.
For a rule-based baseline, we used the script

conversion method implemented in the Indic NLP
Library2 (Kunchukuttan et al., 2015) which is
based on phonemic correspondences.

Evaluation: We used top-1 accuracy based on
exact match (A1) and Mean F-score (F1) at the
character level as defined in the NEWS shared
tasks as our evaluation metrics (Banchs et al.,
2015). We also used top-10 accuracy as an evalu-
ation metric (A10), since applications like MT and
IR can further disambiguate with context informa-
tion available to these applications.

7 Results and Discussion

Table 2 shows the results for the rule-based system
and various character-based unsupervised models.
Table 3 shows results for substring-level models
bootstrapped from different character-based mod-
els. Results of supervised transliteration on a small
training set are also shown in both tables.

Baseline models: Parameter initialization with
phoneme correspondence mappings and add-one
smoothing prior (PC_Init) is comparable to Ravi
and Knight (2009)’s method and performs very

2http://anoopkunchukuttan.github.io/indic_
nlp_library

poorly as reported in their work too. We also ex-
perimented with re-ranking the results using a uni-
gram word based LM - our approximation to Ravi
and Knight (2009)’s use of a word based LM - and
its accuracy is comparable to PC_Init. The uni-
gram LM was trained on a corpus of 185 million
and 42 million tokens for hi and kn respectively.
Thus, this knowledge-lite approach cannot learn a
transliteration model effectively.
Rule-based transliteration (Rule) performs sig-

nificantly better than PC_Init. The phonetic na-
ture of Indic scripts makes the rule-based system
a stronger baseline, yet this simple approach does
not ensure high accuracy transliteration. Phonetic
changes like changes in manner/place of articula-
tion, voicing, etc. make transliteration non-trivial
and phonetic correspondence is not sufficient to
ensure good transliteration.

Effect of linguistic priors: The addition of
linguistically motivated priors (PC_Prior, Co-
sine_Prior, Sim1_Prior) significantly improves
the transliteration accuracy over the PC_Init ap-
proach. There is a significant improvement in top-
1 accuracy over the Rule approach too for 2 lan-
guage pairs (12%, 31% and 133% increase for bn-
hi, ta-kn and kn-hi pairs respectively), but a drop
of 9% for the hi-kn pair. A major reason for lower
accuracy of hi→kn pair is an important difference
between Kannada and Hindi writing conventions.
Unlike Hindi, Kannada assumes an implicit vowel
‘A’ at the end of a word unless another vowel or
nasal character terminates theword. Therefore, the
vowel suppressor character (halanta) must be gen-
erated during hi→kn transliteration. Ourmethod is
poor at this generation, but conversely it does bet-
ter at deletion of halanta for kn→hi transliteration.
There is substantial improvement for the ta-kn pair
also, even though there are some grapheme-to-
phoneme ambiguities in the Tamil script.
In general, the phonemic correspondence prior

results in better top-1 accuracy, whereas priors us-



Stage1 Model Iterations bn-hi hi-kn kn-hi ta-kn
A1 A10 A1 A10 A1 A10 A1 A10

PC_Init 1 14.12 22.89 0.00 0.06 0.53 4.50 0.07 1.35
5 15.26 25.43 0.00 0.47 1.01 8.53 0.40 2.76

PC_Init+PC_Prior 1 18.74 29.38 13.21 19.31 28.43 44.96 15.31 32.23
5 19.34 32.73 13.21 20.39 21.10 45.03 19.29 37.15

PC_Init+Cosine prior 1 18.86 29.65 12.40 20.94 17.94 39.92 15.71 32.91
5 18.94 31.33 12.94 23.92 16.73 44.76 18.88 36.08

PC_Init+Sim1 prior 1 19.28 34.34 12.6 23.85 19.62 47.98 16.99 34.86
5 20.54 37.61 13.82 25.88 18.55 50.27 18.95 38.50

Supervised 32.06 63.32 30.01 69.37 54.23 80.04 30.74 64.33
Mined Pairs 26.97 51.34 - - - - - -

Bridge Languages 25.97 58.23 18.22 52.85 33.60 67.88 13.01 42.28

Table 3: Results for substring-based model (% scores)

ing phonetic similarity give better top-10 accuracy.
The phonetic similarity based priors are smoother
compared to the sparse PC_Prior since they cap-
ture character similarity. This allows them to dis-
cover more character mappings, resulting in bet-
ter top-10 accuracy at the cost of a drop in top-1
accuracy. The sparse sim1 prior outperforms the
smoother cosine similarity prior.

Effect of learning substring mappings:
Substring-based transliteration improves the
top-1 as well as top-10 accuracy significantly over
the underlying character-based models. Across
languages, the best substring-based models im-
prove top-1 accuracy by upto 11% and top-10
accuracy by upto 25% over the best character-
based models. Therefore, it is clear that contextual
information can be harnessed in an unsupervised
setting to substantially improve transliteration
accuracy.
The iterative procedure is beneficial and translit-

eration accuracy increases as improved models are
built in successive iterations. Large gains are par-
ticularly observed in top-10 accuracy.
While PC_Prior gives best top-1 accuracy re-

sults at the character-level, substring-based mod-
els bootstrapped from the Sim1 prior give better
results for both top-1 and top-10 accuracy metrics.
Since the Sim1 prior based character model has
better top-10 accuracy, the pseudo-parallel corpus
created using this mode is likely to be better than
one created using PC_Prior. We also observe that
substring-based models built without using pho-
netic priors cannot improve over much over the
baseline transliteration.

Illustrative Examples:

• Phonetic similarity based priors were able to
discover mappings between similar phonemes.

e.g. The Bengali word ওেয়স্ (keolAdeo) was
correctly transliterated to the Hindi word केवलादेव
(kevalAdeva), due to discovery of similarity be-
tween the labial sounds (v) and (o).

• Substring-based models made use of the con-
text to learn the correct transliteration. e.g.The
Bengali word Ƴকওলােদও (oyaesTa) was correctly
transliterated to the Hindi word वेस्ट (vesta), since
the model learnt the substring mapping oya→ve.

• Substring-based models could make the right
choice between short and long vowels (a major
source of errors in character-based models).

Comparison with supervised system and some
resource-constrained approaches: We com-
pared our best substring-based model (based on
sim1 prior) with a supervised system and the
following resource-constrained transliteration sys-
tems built using: (i) Mined pairs from a transla-
tion corpus: We experimented with bn-hi on the
Brahminet mined pairs corpus (Kunchukuttan et
al., 2015). Mined corpora involving kn were not
available. (ii) Bridge languages: We used the
NEWS 2015 corpus for our experiments with En-
glish as the bridge language. (Results in Table 3).
The accuracies of this substring-based system

are less than the accuracies of the other methods.
This is not unexpected since these methods use
more parallel resources than the substring-based
approach. But, note that the top-10 accuracy of
the substring-based model is comparable to the
top-1 accuracies of other approaches. Hence, the
substring-based model may be sufficient for an
application, like MT or cross-lingual IR, which
uses the output of a transliteration system. In
MT, untranslated words are replaced by their top-
k transliterations. A language model can choose
among the transliterations based on context while
re-ranking resulting candidate sentences.



Applicability to different languages and scripts:
Our experiments span 4 widely-spoken languages
from the two major language families in the In-
dian subcontinent (Indo-Aryan [IA] and Dravid-
ian [DR]). All languages use different Brahmi-
descended scripts. We show improvements in
IA→IA, DR→DR, DR→IA and IA→DR translit-
eration.
The first stage leverages the phonetic nature

of Indic scripts to obtain phonetic representations
from orthographic representations. There are at
least 19 languages in India where this condition
holds, so at least 171 language pairs can use
this approach without grapheme to phoneme con-
verters. Many other script/language pairs also
show high grapheme-phoneme correspondence3.
Our method, though, can also be applied to non-
phonetic scripts also by representing the training
data at the phonemic level using grapheme-to-
phoneme converters.
The second stage makes no assumptions about

language or script.

8 Conclusion and Future work

We show that unsupervised transliteration can
substantially benefit from contextual and rich pho-
netic knowledge. Phonetic knowledge is incorpo-
rated through a novel design of prior distributions
for character-level learning, while context is incor-
porated via substring-based learning. The top-10
accuracy of our systems is comparable with top-1
accuracy of supervised systems, but requires only
monolingual resources: word lists for Indic lan-
guages using Brahmi-derived scripts or phoneme
dictionaries for other languages.
In future, we plan to evaluate our method for

non-Indic languages and for languages that are less
related than the ones studied in this work. Pos-
sibilities for improvement include incorporation
of phonetic knowledge while learning substring
mappings (Stage 2) and better handling of noisy
transliterations in the bootstrapping process. It
would also be interesting to compare our method
with other unsupervised log-linear learning meth-
ods like contrastive estimation (Smith and Eisner,
2005).
We would like to note the potential for har-

nessing similarities among languages for statisti-
cal NLP, especially in an unsupervised setting, as

3http://www.omniglot.com lists grapheme-phoneme
correspondences for many language/script combinations

demonstrated by our use of similarity among Indic
scripts. Finally, the iterative, bootstrapping frame-
work may be useful for unsupervised translation.
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