Multilingual Learning

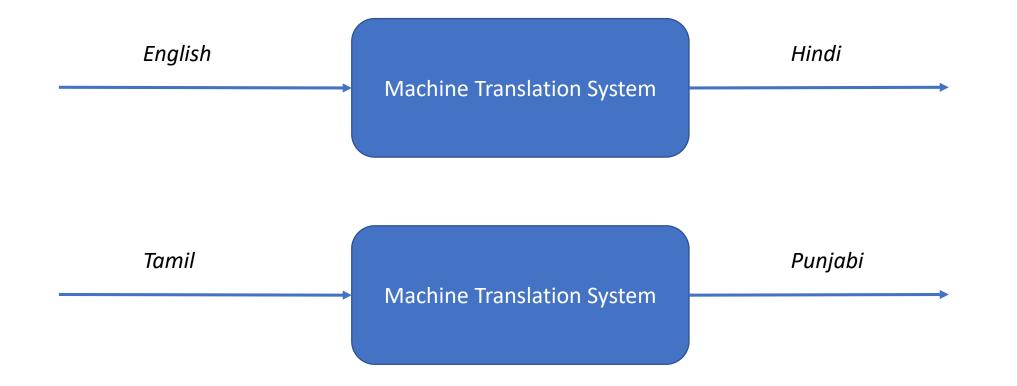
Anoop Kunchukuttan

Microsoft AI and Research

Center for Indian Language Technology Indian Institute of Technology Bombay

3rd Summer School on Machine Learning (Advances in Modern AI), 13th July 2018

Broad Goal: Build NLP Applications that can work on different languages



Monolingual Applications

Document Classification Sentiment Analysis Entity Extraction Relation Extraction Information Retrieval Question Answering Conversational Systems

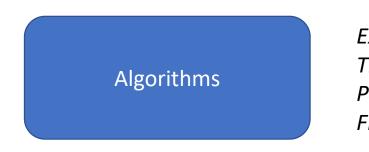
Code-Mixing Creole/Pidgin languages Language Evolution Comparative Linguistics

Mixed Language Applications

Cross-lingual Applications

Translation Transliteration Cross-lingual Applications Information Retrieval Question Answering Conversation Systems

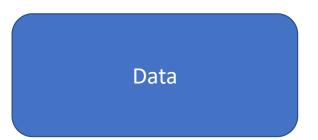
RULE-BASED SYSTEMS



Expert Systems Theorem Provers Largely language independent Parsers Finite State Transducers

Knowledge

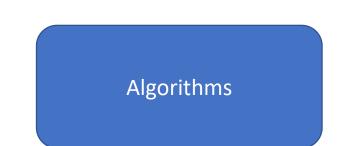
Rules for morphological analyzers, Production rules, etc. Lot of linguistic knowledge encoded



Paradigm Tables, dictionaries, etc. Lot of linguistic knowledge encoded

Some degree of language independence through good software engineering and knowledge of linguistic regularities

STATISTICAL ML SYSTEMS (Pre-Deep Learning)



Largely language independent, could solve non-trivial problems efficiently Supervised Classifiers Sequence Learning Algorithms Probabilistic Parsers Weighted Finite State Transducers

Knowledge

Feature Engineering

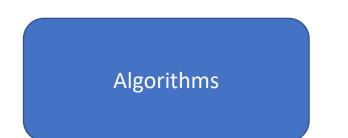
Lot of linguistic knowledge encoded Feature engineering is easier than maintain rules and knowledge-bases

Annotated Data, Paradigm Tables, dictionaries, etc.

Lot of linguistic knowledge encoded

General language-independent ML algorithms and easy feature learning

DEEP LEARNING SYSTEMS



Largely language independent

Fully Connected Networks Recurrent Networks Convolutional Neural Networks Sequence-to-Sequence Learning

Knowledge

Representation Learning, Architecture Engineering, AutoML

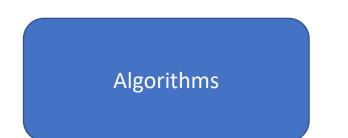
Annotated Data, Paradigm Tables, dictionaries, etc.

Very little knowledge; annotated data is still required

Feature engineering is unsupervised, largely language independent

Neural Networks provide a convenient language for expressing problems, representation learning automated feature engineering

DEEP LEARNING SYSTEMS



Largely language independent

Fully Connected Networks Recurrent Networks Convolutional Neural Networks Sequence-to-Sequence Learning

Knowledge

Representation Learning, Architecture Engineering, AutoML

Annotated Data, Paradigm Tables, dictionaries, etc.

Very little knowledge; annotated data is still required

Feature engineering is unsupervised, largely language independent

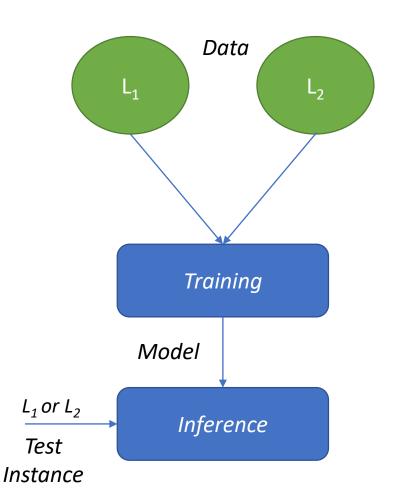
Neural Networks provide a convenient language for expressing problems, representation learning automated feature engineering

Focus of today's session

How to leverage data for one language to build NLP applications for another language?

Multilingual Learning Scenarios

Joint Learning



- Analogy to Multi-task learning → Task = Language
- Related Tasks can share representations
- Representation Bias: Learn the task to generalize over multiple

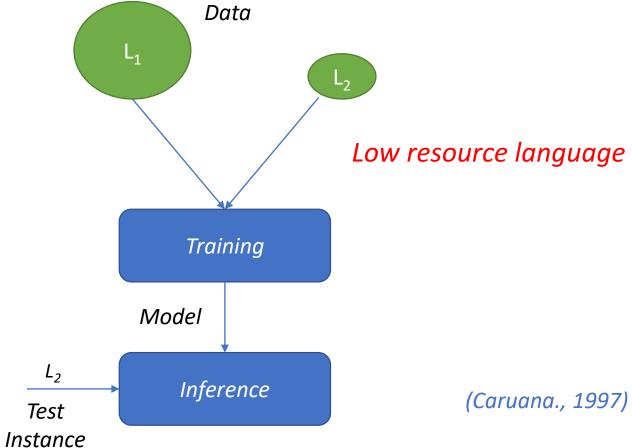
languages

- Eavsdropping
- Data Augmentation

(Caruana., 1997)

Multilingual Learning Scenarios

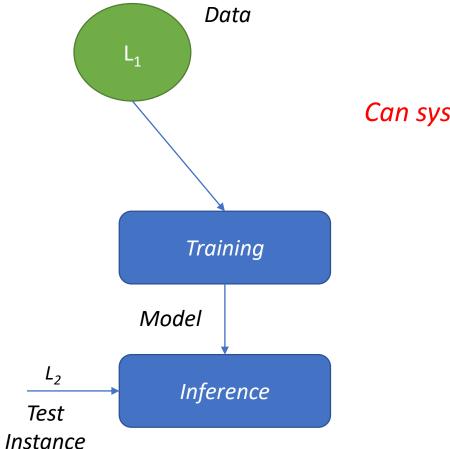
Transfer Learning



Low resource language can benefit from data for high resource language

Multilingual Learning Scenarios

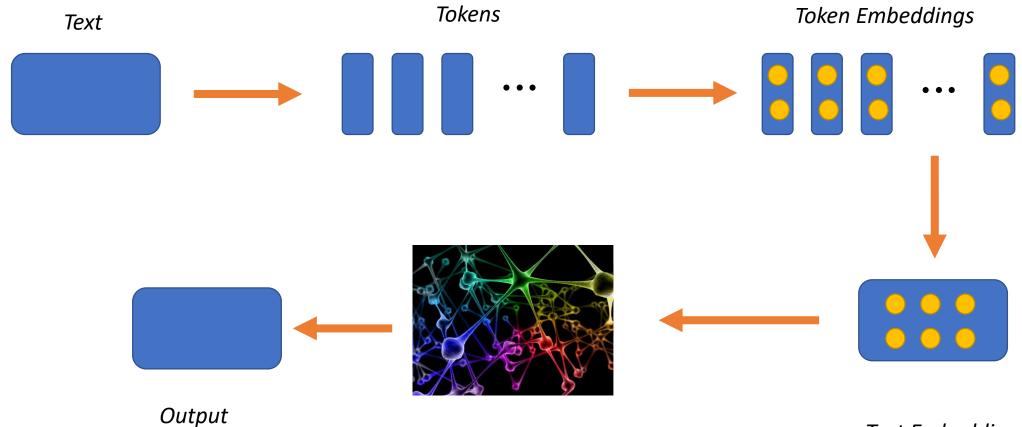
Zeroshot Learning



Can system be trained for one language so that they work out of the box for another language?

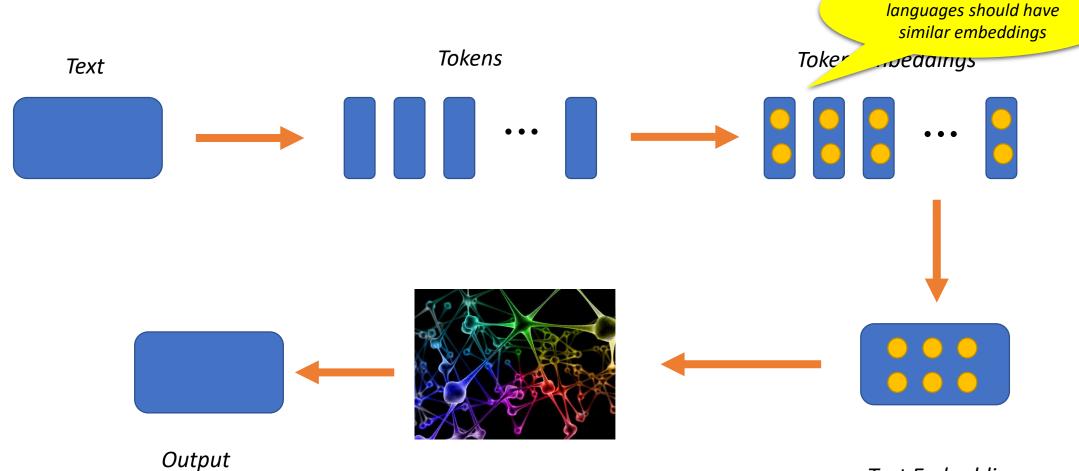
What does Deep Learning bring to the table?

- Neural Networks provide a powerful framework for Multilingual learning
 - Caruana's seminal work on Multi-task learning in 1997 used Neural Networks
- Word embeddings: Powerful feature representation mechanism to capture syntactic and semantic similarities
 - Distributed representation
 - Unsupervised learning
- Algebraic reasoning as opposed to Mathematical Logic
- Numerical optimization as opposed to combinatorial optimization



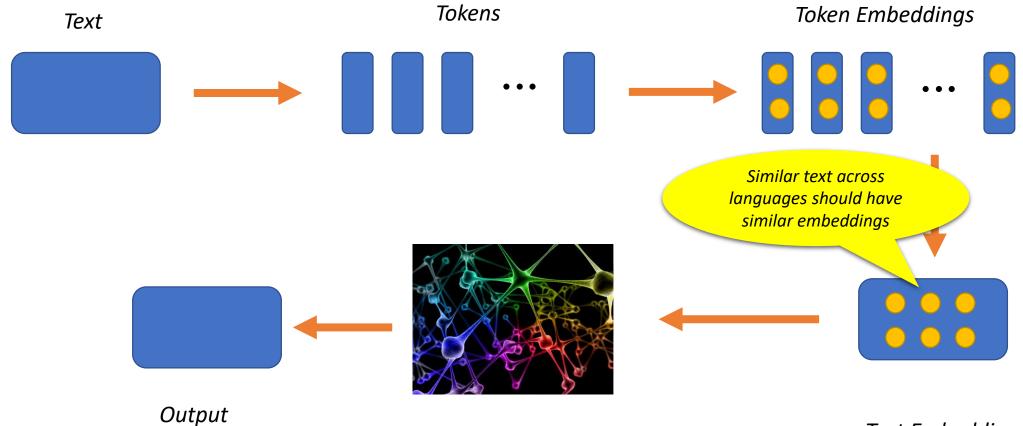
Output (text or otherwise)

Application specific Deep Neural Network layers



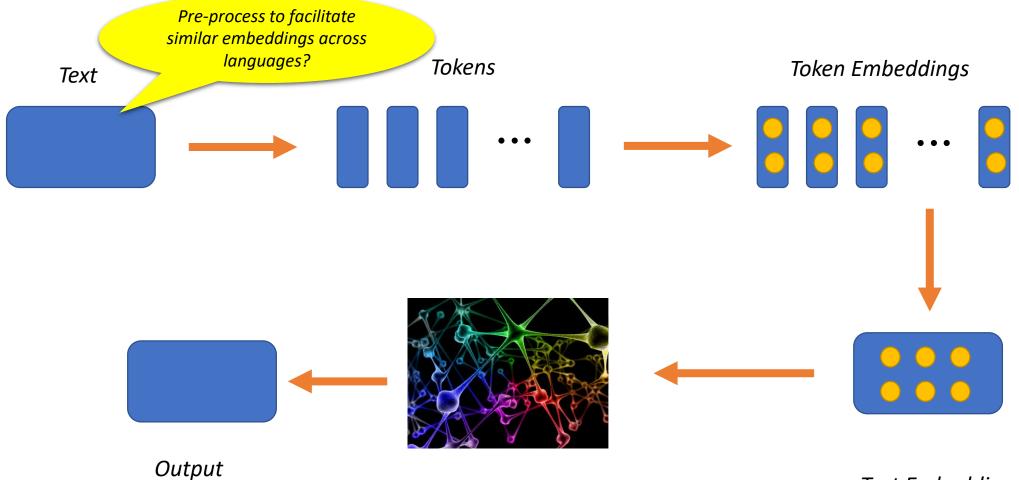
Output (text or otherwise)

Application specific Deep Neural Network layers



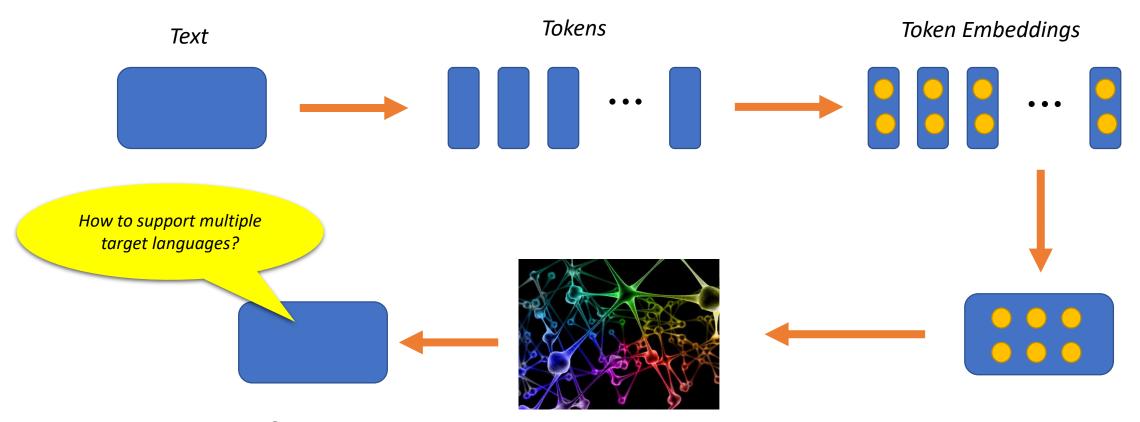
Output (text or otherwise)

Application specific Deep Neural Network layers



Output (text or otherwise)

Application specific Deep Neural Network layers



Output (text or otherwise)

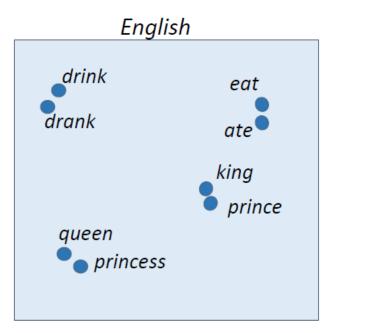
Application specific Deep Neural Network layers

Outline

- Learning Cross-lingual Embeddings
- Training a Multilingual NLP Application
- Related Languages and Multilingual Learning
- Summary and Research Directions

Cross-Lingual Embeddings

Offline Methods Online Methods Some observations Evaluation Unsupervised Learning

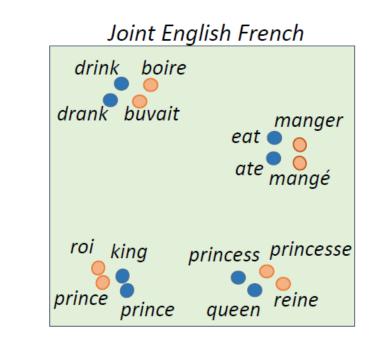


French boire buvait manger roi prince reine princesse

Monolingual Word Representations (capture syntactic and semantic similarities between words)

$$embed(y) = f(embed(x))$$

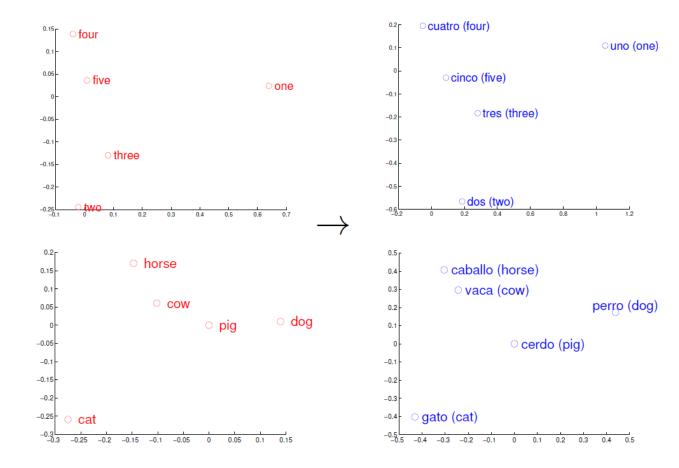
x, y are source and target words embed(w): embedding for word w



<u>Multilingual Word Representations</u> (capture syntactic and semantic similarities between words both <u>within and across languages</u>)

(Source: Khapra and Chandar, 2016)

Is it possible to learn mapping functions?



• Languages share concepts ground in the real world

- Some evidence of universal semantic structure (*Youn et al., 2016*)
- Isomorphism between embedding spaces (*Mikolov et al., 2013*)
- Isomorphism can be captured via a linear transformation

(Source: Mikolov et al., 2013)

Offline Methods

Online Methods

Learn monolingual and crosslingual embeddings separately

General require weaker parallel signals

e.g., bilingual dictionaries

Learn monolingual and crosslingual embeddings jointly

Generally require stronger parallel signals

e.g., parallel corpus

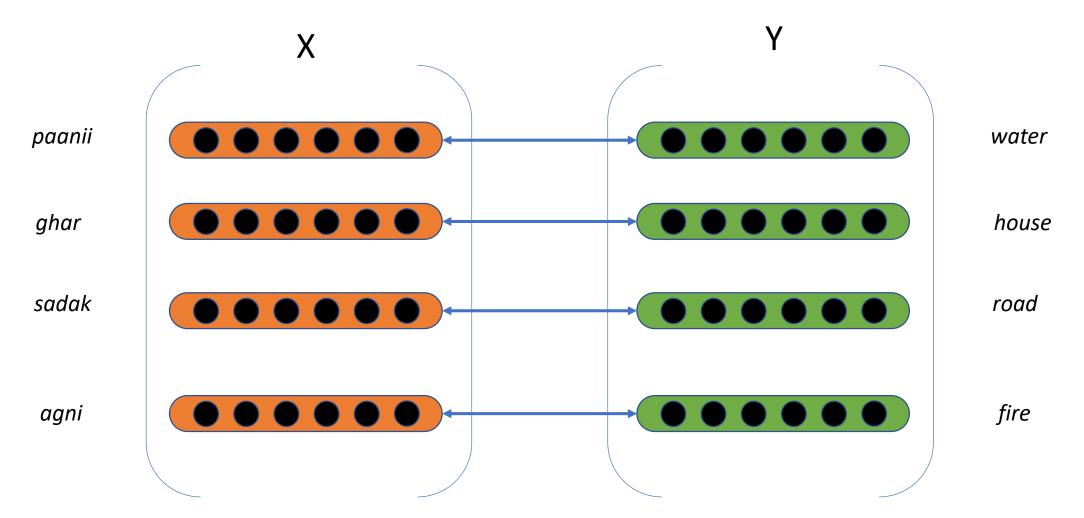
Cross-Lingual Embeddings

Offline Methods

Online Methods Some observations Evaluation

Unsupervised Learning

Supervised Learning



Least Squares Solution

$$W^* = \underset{W \in \mathbb{R}^d}{\operatorname{argmin}} \|XW - Y\|_2^2$$

We can have a closed form solution:

$$X^+ = (X^T X)^{-1} X^T$$
$$W^* = X^+ Y$$

Solutions can be regularized using L_1 or L_2 norms to prevent overfitting

Orthogonality Constraint on W

 $W^T W = I$

• Preserves similarity in the target space (Artetxe et al., 2016)

$$(Wx)^T(Wy) = x^T W^T Wy = x^T y$$

• Mapping Function is reversible (Smith et al., 2017)

$$W^T W x = x$$

• If source embeddings are unit vectors, orthogonality ensures target is also a unit vector (Xing et al., 2015)

$$y^T y = (Wx)^T (Wx) = x^T W^T Wx = x^T x = 1$$

Why length normalize? → dot product equivalent to cosine similarity

Orthogonal Procrustes Problem

(Xing et al., 2015; Artetxe et al., 2016; Smith et al., 2017)

$$W^* = \underset{W \in O^d}{\operatorname{argmin}} \|XW - Y\|_2^2$$

We can have a closed form solution to this problem too (Schönemann, 1966)

$$Y^T X = U \Sigma V^T$$

$$W^* = VU^T$$

If embeddings are length-normalized, the above objective is equivalent to maximizing cosine similarity

$$W^* = \underset{W \in O^d}{\operatorname{argmax}} \sum_{i} \cos(X_{i*}W, Y_{i*})$$

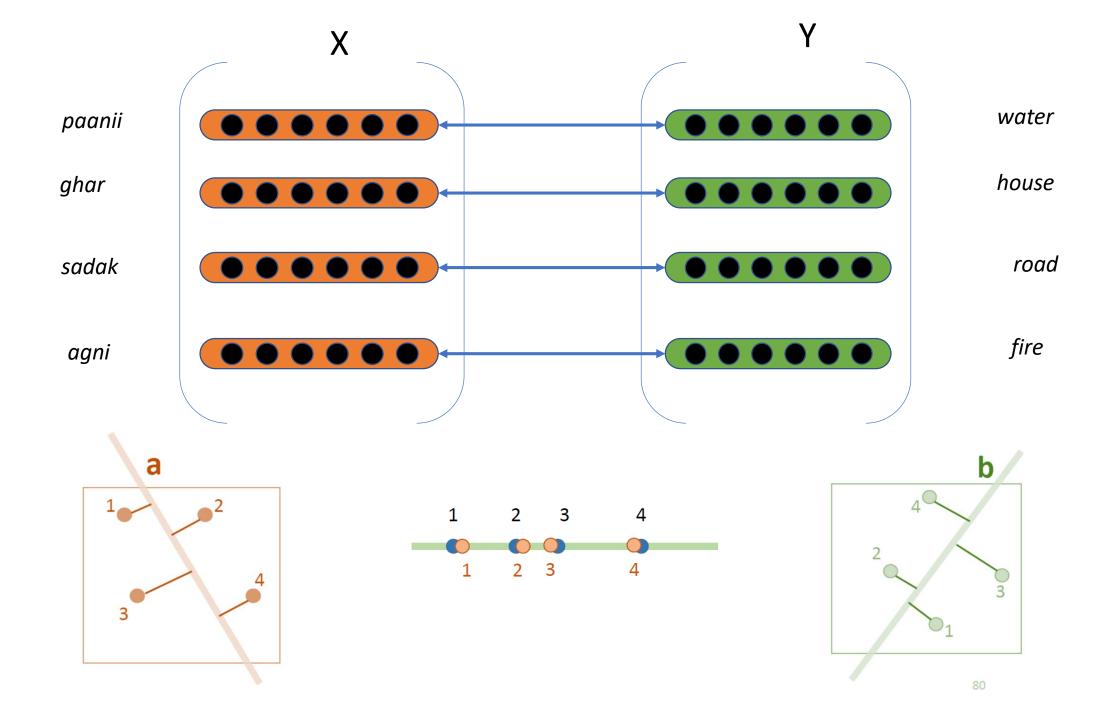
Canonical Correlation Analysis (CCA)

(Faruqui and Dyer, 2014; Ammar et al. 2015)

Regression methods *→* maximize similarity between target & mapped source embeddings

An alternative way to compare:

Is there a latent space where the dimensions of the embeddings are correlated?

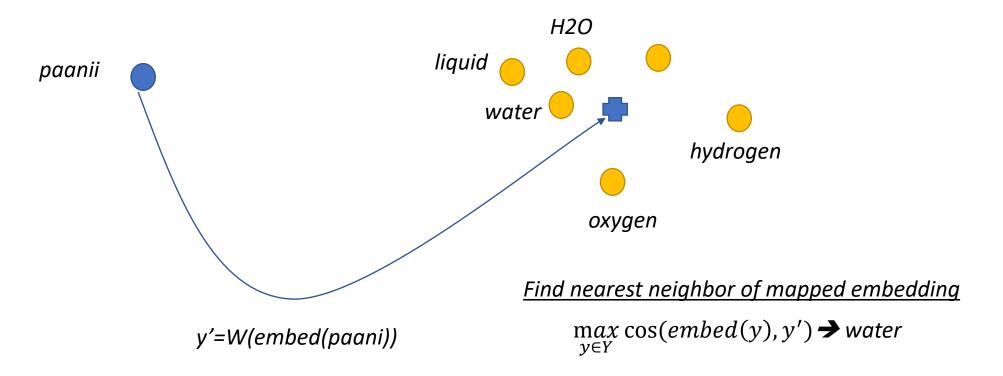


maximize $trace((XA)^T(YB))$

This term capture the correlation between the dimensions in the latent space defined by A and B

Bilingual Lexicon Induction

Given a mapping function and source/target words and embeddings: Can we extract a bilingual dictionary?

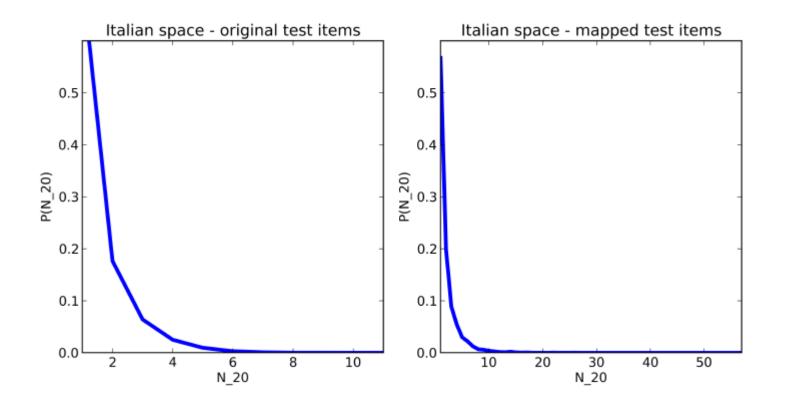


A standard intrinsic evaluation task for judging quality of cross-lingual embedding quality

The Hubness Problem with Nearest Neighbour

In high dimensional spaces, some points are neighbours of many points **→** hubs

Adversely impacts Nearest Neigbour search \rightarrow especially in mapped spaces



Why does hubness occur?

- Points are closer in mapped space with least-squares?
- Pairwise similarities tend to converge to constant as dimensionality increases

Solutions to Hubness

Modify the search algorithm

- Inverted Rank (IR)
- Inverted Softmax (ISF)
- Cross-domain Similarity Local Scaling (CSLS)

Modify the learning objective to address hubness

- Max Margin Training
- Optimizing CSLS

Inverted Rank

(Dinu et al., 2015)

 $Rank_{a,Z}(z)$: Rank of z in neighbourhood of a w.r.t candidate nodes Z

In nearest neighbor we pick the target of rank 1

$$NN(x) = \underset{y \in Y}{\operatorname{argmin}} \operatorname{Rank}_{x,Y}(y)$$

In nearest neighbor we pick the target for which x has the lowest rank

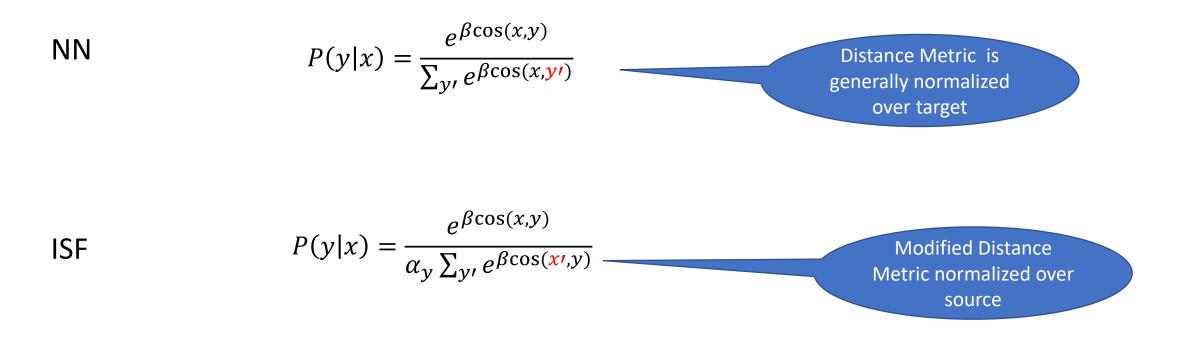
$$IR(x) = \underset{y \in Y}{\operatorname{argmin}} \operatorname{Rank}_{y,X}(x)$$

Kind of collective classification, hubs will be assigned to the x to which they are closest

Inverted Softmax

(Smith et al., 2017)

Another way of inverse information lookup like IR



Will penalize hubs since they have a large denominator

Local scaling of the distance metric

Cross-domain Similarity Local Scaling (CSLS)

(Conneau et al., 2018)

Another Local scaling of the distance metric

Define mean similarity of a mapped source word to its target neighbourhood and vice versa

$$r_T(x) = \frac{1}{K} \sum_{y \in N_T(x)} \cos(x, y) \qquad \qquad r_S(y) = \frac{1}{K} \sum_{x \in N_S(y)} \cos(x, y)$$

$$CSLS(x, y) = 2\cos(x, y) - r_T(x) - r_S(y)$$

Will penalize hubs since they have large mean similarity

Symmetric metric No parameter tuning

Optimizing CSLS

(Joulin et al., 2018)

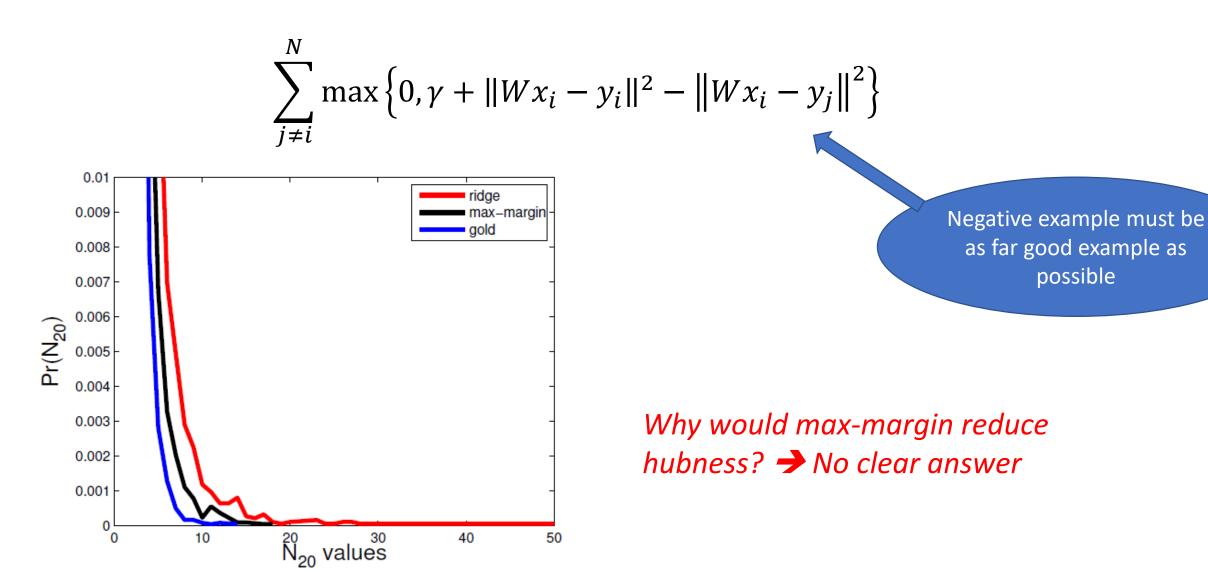
For CSLS retrieval, <u>Training Metric</u>: Cosine similarity

Test Metric: CSLS

Mismatch between train and test metric

A good principle is to optimize for the objective we are interested in *>* optimize CSLS loss directly

$$CSLS_{loss}(x, y) = -2\cos(x, y) + r_T(x) + r_S(y)$$



Cross-Lingual Embeddings

Offline Methods

Online Methods (Slides adapted from Khapra and Chandar, 2016)

Some observations

Evaluation

Unsupervised Learning

Using Parallel Corpus Only

(Hermann and Blunsom, 2014)

Training data: Parallel sentences

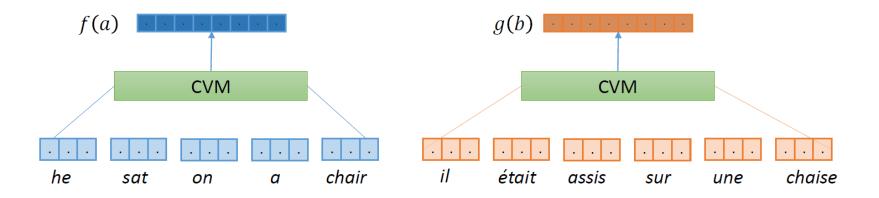
a = English sentence b = parallel French sentence n = random French sentence

$$E(a,b) = ||f(a) - g(b)||^{2}$$

 $\begin{array}{l} minimize \\ max(0,m+\ E(a,b)\ -\ E(a,n)) \end{array}$

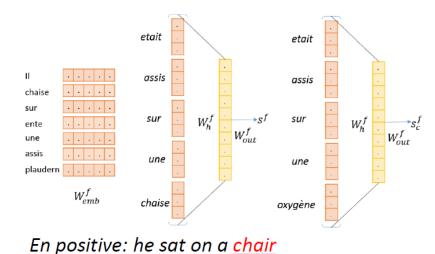
Backpropagate & update w_i 's in both languages

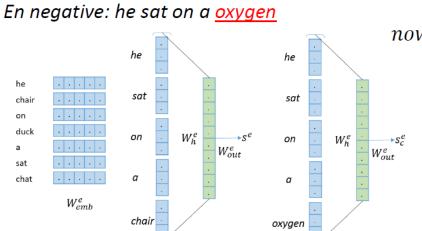
To reduce the distance between f(a) & g(b) the model will eventually learn to reduce the distance between (chair, chaise), (sit, assis), (he, il) etc.



Using Parallel Corpus and Monolingual Corpus

Fr positive: Il était assis sur une <u>chaise</u> Fr negative: Il était assis sur une <u>oxygène</u>





Independently update θ^e and θ^f

 $\begin{array}{l} maximize \ max(0,1-s^f+s^f_c) \\ w.r.t.\theta^e \end{array}$

+ Parallel data

En: he sat on a chair $[s_e = w_1^e, w_2^e, w_3^e, w_4^e, w_5^e]$ Fr : Il était assis sur une chaise $[s_f = w_1^f, w_2^f, w_3^f, w_4^f, w_5^f]$

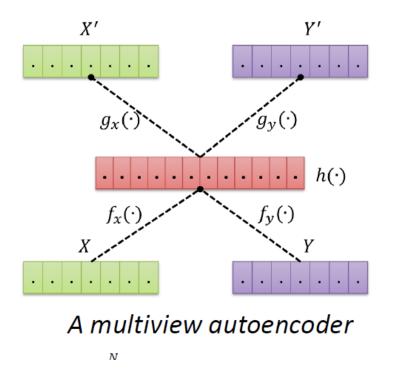
now, also minimize
$$\Omega\left(W_{emb}^{e}, W_{emb}^{f}\right) = \left\|\frac{1}{m}\sum_{w_{i}\in s^{e}}^{w_{m}}W_{emb_{i}}^{e} - \frac{1}{n}\sum_{w_{j}\in s^{e}}^{w_{n}}W_{emb_{i}}^{f}\right\|^{2}$$

$$w.r.t W_{emb}^{e}, W_{emb}^{f}$$

$$\frac{maximize max(0, 1 - s^{e} + s_{c}^{e})}{w.r.t.\theta^{f}}$$

(Gouws et. al., 2015)

Using Parallel Corpus and Monolingual Corpus (Chandar et al., 2014)



encoder $h_x(X) = f_x(X) = f_x(W_xX + b)$

 $h_{y}(Y) = f_{y}(Y) = f_{y}(\boldsymbol{W}_{y}Y + b)$

decoder

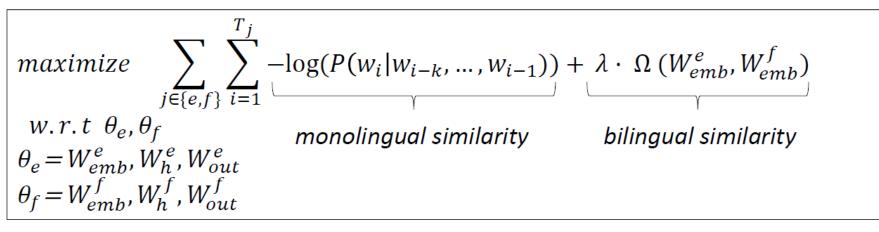
 $X' = g_x(h(X)) = g_x(W'_x h_x(X) + b')$

$$Y' = g_y(h(Y)) = g_y(W'_y h_y(Y) + b')$$

minimize
$$\sum_{i=1}^{N} (g_x(f_x(X_i)) - X_i)^2 + \sum_{i=1}^{N} (g_y(f_y(Y_i)) - Y_i)^2 + \sum_{i=1}^{N} (g_x(f_y(Y_i)) - X_i)^2 + \sum_{i=1}^{N} (g_y(f_x(X_i)) - Y_i)^2 - corr(h(\overline{X}), h(\overline{Y}))$$

- Autoencoder approach
- Correlation term is important to ensure common representation
- Combines:
 - word similarity (recall Procrustes!)
 - dimension correlation (recall CCA!)

A general framework for cross-lingual embeddings



$$\Omega\left(W_{emb}^{e}, W_{emb}^{f}\right) = \sum_{w_i \in V^e} \sum_{w_j \in V^f} sim(w_i, w_j) * distance(W_{emb_i}^{e}, W_{emb_j}^{f})$$

This weighted sum will be low only when similar words across languages are embedded close to each other

Offline embeddings also follow this framework, but they optimize the monolingual and bilingual objectives sequentially

Cross-Lingual Embeddings

Offline Methods Online Methods Some observations Evaluation

Unsupervised Learning

Intrinsic Evaluation

- Bilingual Lexicon Induction
- Cross-language word similarity task

Mostly offline methods

Bilingual Lexicon Induction

		English to I	talian	Italian to English			
	P@1	P@5	P@10	P@1	P@5	P@10	
Ordinary Least Squares	33.8	48.3	53.9	24.9	41.0	47.4	
OP + NN	36.9	52.7	57.9	32.2	49.6	55.7	
OP + IR	38.5	56.4	63.9	24.6	45.4	54.1	
OP + ISF	43.1	60.7	66.4	38.0	58.5	63.6	
OP + CSLS	44.9	61.8	66.6	38.5	57.2	63.0	
OP + CSLS (optimize)	45.3	NA	NA	37.9	NA	NA	
CCA	36.1	52.7	58.1	31.0	49.9	57.0	

Orthogonality constraint helps

Bilingual Lexicon Induction

		English to I	talian	Italian to English			
	P@1	P@5	P@10	P@1	P@5	P@10	
Ordinary Least Squares	33.8	48.3	53.9	24.9	41.0	47.4	
OP + NN	36.9	52.7	57.9	32.2	49.6	55.7	
OP + IR	38.5	56.4	63.9	24.6	45.4	54.1	
OP + ISF	43.1	60.7	66.4	38.0	58.5	63.6	
OP + CSLS	44.9	61.8	66.6	38.5	57.2	63.0	
OP + CSLS (optimize)	45.3	NA	NA	37.9	NA	NA	
CCA	36.1	52.7	58.1	31.0	49.9	57.0	

Modified retrieval significantly improve performance over vanilla Nearest Neighbour Search

CSLS is best performing

Optimizing CSLS loss also gives some improvements

Bilingual Lexicon Induction

		English to I	talian	Italian to English			
	P@1	P@5	P@10	P@1	P@5	P@10	
Ordinary Least Squares	33.8	48.3	53.9	24.9	41.0	47.4	
OP + NN	36.9	52.7	57.9	32.2	49.6	55.7	
OP + IR	38.5	56.4	63.9	24.6	45.4	54.1	
OP + ISF	43.1	60.7	66.4	38.0	58.5	63.6	
OP + CSLS	44.9	61.8	66.6	38.5	57.2	63.0	
OP + CSLS (optimize)	45.3	NA	NA	37.9	NA	NA	
CCA	36.1	52.7	58.1	31.0	49.9	57.0	

Orthogonal Procrustes solution and CCA give roughly the same results

Extrinsic Evaluation

- Cross-lingual Document Classification
- Cross-lingual Dependency Parsing

Mostly online methods

Cross-lingual Document Classification

Approach	en→ de	de \rightarrow en
Hermann & Blunson, 2014	83.7	71.4
Chandar et al., 2014	91.8	72.8
Gouws et al., 2015	86.5	75.0

Leveraging monolingual and parallel corpora yields better results

Cross-Lingual Embeddings

Offline Methods

Online Methods

Some observations

Evaluation

Unsupervised Learning

More observations on different aspects of the problem

Take them with a pinch of salt, since comprehensive experimentation is lacking

More like rule of thumb to make decisions

Effect of bilingual dictionary size

(Dinu et al., 2015)

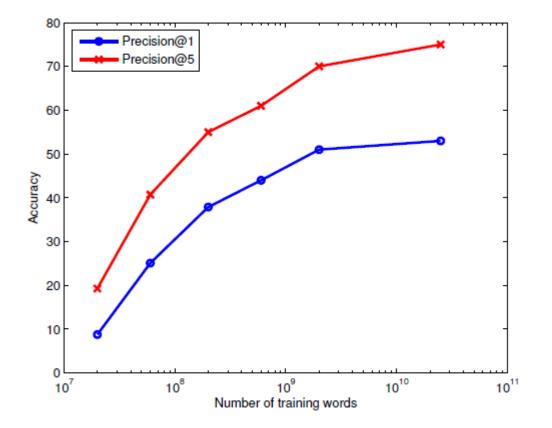
Dictionary Size	Precision@1
1K	20.09
5К	37.3
10K	37.5
20К	37.9

Beyond a certain size, the size of bilingual dictionary does not seem useful

What if the bilingual dictionaries are really large?

Effect of monolingual corpora size

(Mikolov et al., 2013)



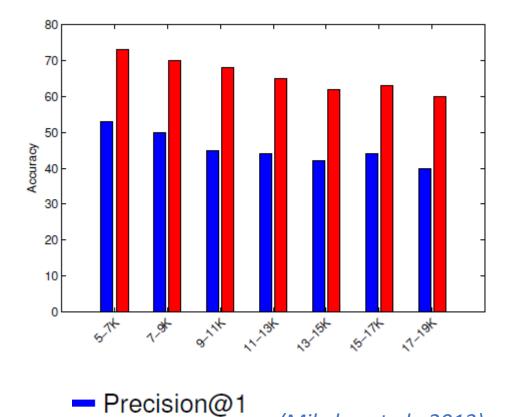
Large monolingual corpora substantially increases the quality of embeddings

Having large monolingual corpora may be more useful than having large bilingual dictionary?

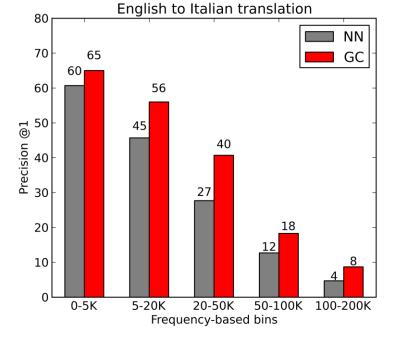
How difficult is to translate less frequent words?

- Performance does not drop very sharply for intermediate frequency words
- Performance drops sharply for very rare words

(*Mikolov et al., 2013*)



Precision@5



(Dinu et al., 2015)

Note: GC is same as Inverse Rank retrieval

Do these approaches work for all languages?

https://github.com/Babylonpartners/fastText_multilingual#right-now-prove-that-this-procedure-actually-worked

- Study on 78 languages
- Trained on 10k words (Dictionary created using Google Translate)
- Tested on 2500 words
- Method described by Smith et al., 2017 (Procrustes with inverted softmax)

Best Languages	Worst Languages
French	Urdu
Portuguese	Marathi
Spanish	Japanese
Norwegian	Punjabi
Dutch	Burmese
Czech	Luxembourgish
Hungarian	Malagasy

No patterns, seems to be a function of dictionary quality in each language

Facebook has recently provided high quality bilingual dictionaries → a testbed to do better testing https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries

Do these approaches work for all languages?

Results on more languages from Conneau et al., 2018

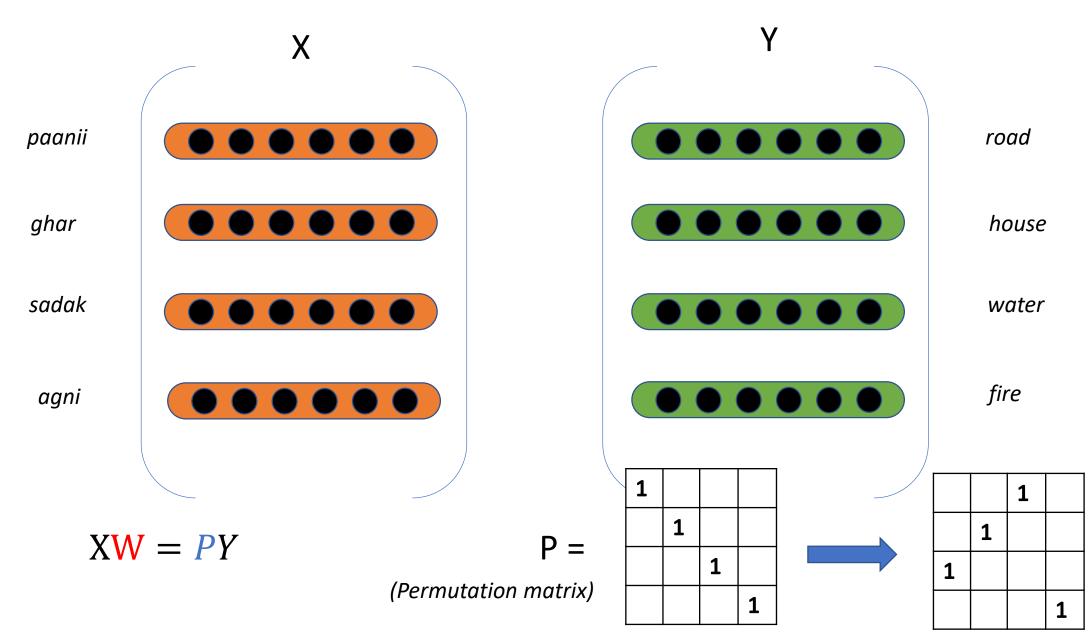
	en-es es-en	en-fr fr-en	en-de de-en	en-ru ru-en	en-zh zh-en	en-eo eo-en
Methods with cross-li	ngual supervis	tion and fastTe	ext embeddings			
Procrustes - NN	77.4 77.3	74.9 76.1	68.4 67.7	47.0 58.2	40.6 30.2	22.1 20.4
Procrustes - ISF	81.1 82.6	81.1 81.3	71.1 71.5	49.5 63.8	35.7 37.5	29.0 27.9
Procrustes - CSLS	81.4 82.9	81.1 82.4	73.5 72.4	51.7 63.7	42.7 36.7	29.3 25.3

Seems to work well on mainland European languages compared to Russian, Chinese and Esperanto

Cross-Lingual Embeddings

Offline Methods Online Methods Some observations Evaluation Unsupervised Learning

Unsupervised Learning



Many language pairs may not have an available bilingual dictionary

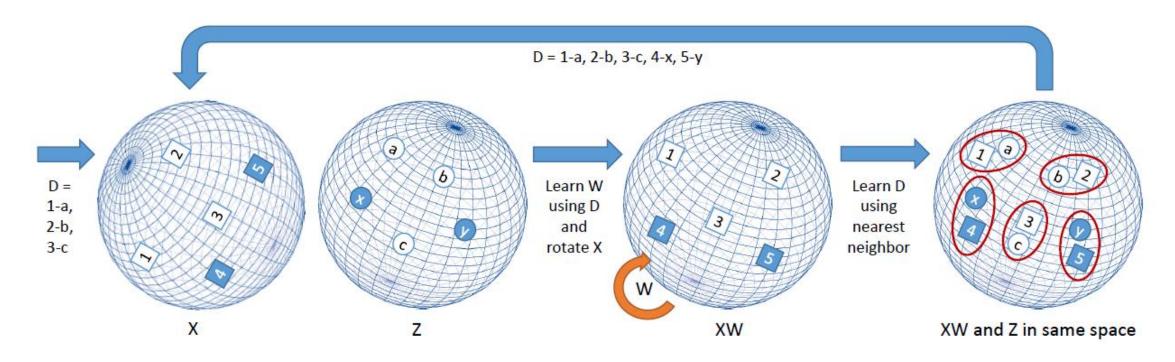
Mostly offline methods – by definition

Exciting developments on this task this year

Starting with a small seed dictionary

(Artetxe et al., 2017)

- As small as 50-100
- Dictionary can just be aligned digits and numbers
 - $? \rightarrow 1$
 - २८९ → 289
 - ଓ → 5
- Identical strings
 - Requires both languages to have similar scripts and share vocabulary
- Bootstrapping solution



$$W^* = \arg \max_{W} \sum_{i} \max_{j} (X_{i*}W) \cdot Z_{j*}$$

Enhancements by Hoshen and Wolf (2018)

- do away with the need for seed dictionary by matching principal components for initialization
- consider a objective in other direction and circular objective too

s.t. $WW^T = W^TW = I$

Enhancements by Artetxe et al., (2018b)

- do away with the need for seed dictionary by using word similarity distribution for initialization

	English-Italian			English-German			English-Finnish		
	5,000	25	num.	5,000	25	num.	5,000	25	num.
Mikolov et al. (2013a)	34.93	0.00	0.00	35.00	0.00	0.07	25.91	0.00	0.00
Xing et al. (2015)	36.87	0.00	0.13	41.27	0.07	0.53	28.23	0.07	0.56
Zhang et al. (2016)	36.73	0.07	0.27	40.80	0.13	0.87	28.16	0.14	0.42
Artetxe et al. (2016)	39.27	0.07	0.40	41.87	0.13	0.73	30.62	0.21	0.77
Artetxe et al. (2017)	39.67	37.27	39.40	40.87	39.60	40.27	28.72	28.16	26.47

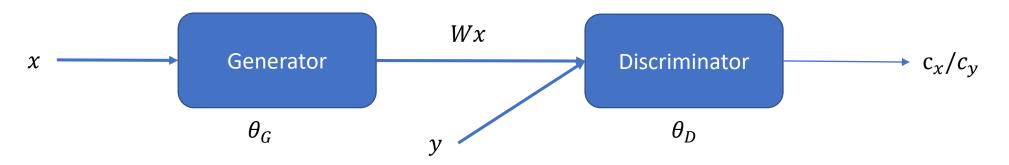
Source: Artetxe et al., (2017)

Aligned numbers are sufficient to bootstrap

Bootstrapping works well with small dictionaries

Adversarial Training

(Barone, 2016; Zhang et al., 2017a,b; Conneau et al., 2018)



We want to make Wx and y indistinguishable

Step 1: Make a good discriminator that can distinguish between Wx and y (optimize θ_D)

Step 2: Try to fool this discriminator by generating Wx which are indistinguishable (optimize $heta_G$)

Iterate with improved generator

Conneau et al., 2018 suggested multiple runs, rebuilding & refining dictionary after each run

Tips for training

- Training adversarial networks is not easy have to balance two objectives
- There may be a mismatch between discriminator and task classifier quality
- *e.g* If the discriminator is weaker
 - Design training schedule s.t. early epochs focus on improving the classifier
- Stabilizing GAN training is an active area of work

Wasserstein Procrustes

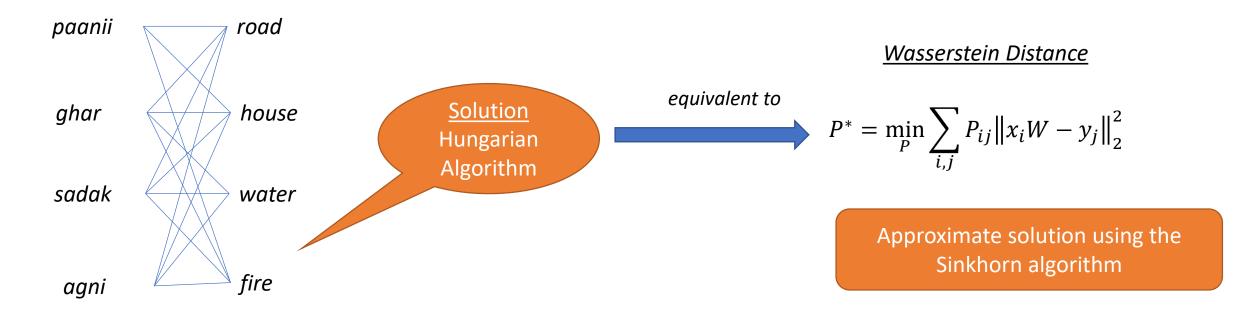
(Zhang et al., 2017b; Grave et al., 2018)



If P is known, we can find W using the orthogonal Procrustes solution

$$W^* = \underset{W \in O_d}{\operatorname{argmin}} \|XW - PY\|_2^2$$

If W is known, finding P is equivalent to finding maximum weight matching in a bipartite graph



Edge-weight(a,b) = - distance(a,b)

The dataset as a whole is aligned, considering constraints from all examples

Overall, problem is

$$\min_{W \in O_d} \min_P \|XW - PY\|_2^2$$

We can solve each minimization problem alternately, keep the other parameter constant

Good initialization of the problem is important

Grave et al., 2018 suggest a convex relaxation of the above problem

The solution to the convex relaxation is a good initializer to the problem

Comparing unsupervised methods

	EN-ES	ES-EN	EN-FR	FR-EN	EN-DE	DE-EN	EN-RU	RU-EN
Procrustes	82.7	84.2	82.7	83.4	74.8	73.2	51.3	63.7
Adversarial*	81.7	83.3	82.3	82.1	74.0	72.2	44.0	59.1
ICP*	82.1	84.1	82.3	82.9	74.7	73.0	47.5	61.8
lasserstein Procrustes	82.8	84.1	82.6	82.9	75.4	73.3	43.7	59.1

Source: Grave et al., (2018)

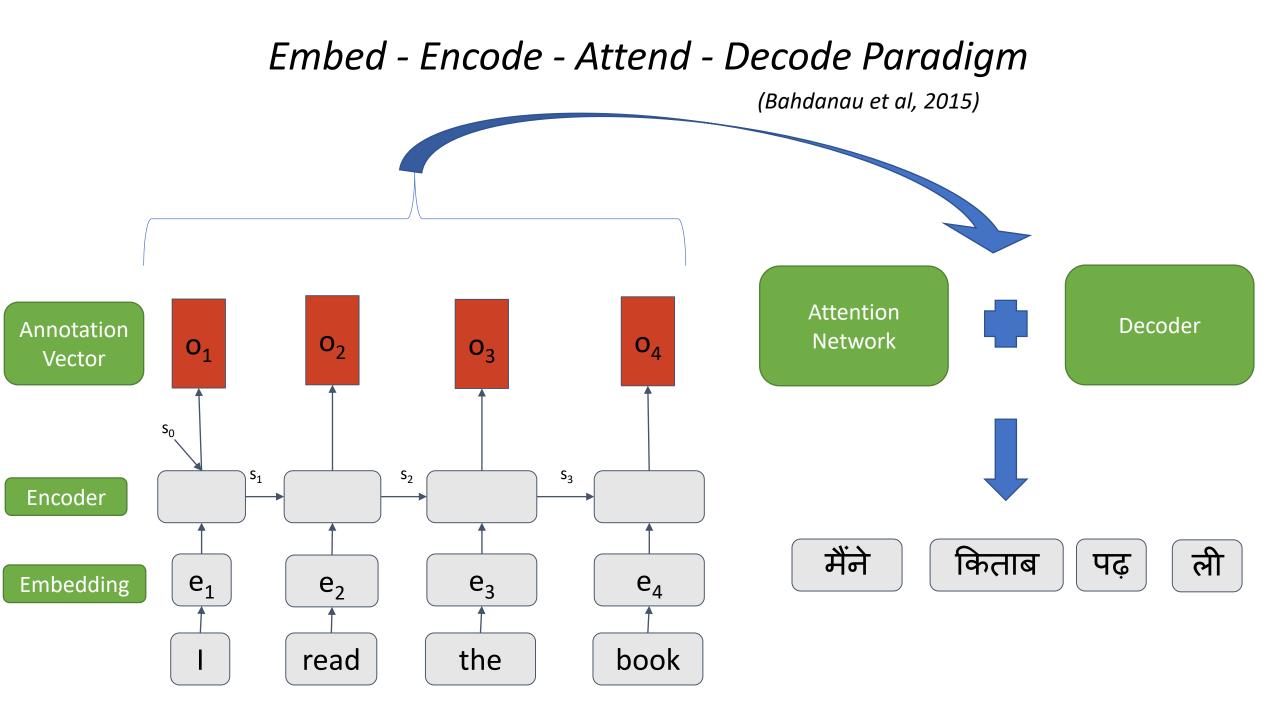
- Unsupervised methods can rival supervised approaches
- Even linear transformation based methods can perform well
- Shows the strong structural correspondence between embedding spaces across languages
- A launchpad for unsupervised sentence translation

Outline

- Learning Cross-lingual Embeddings
- Training a Multilingual NLP Application
- Related Languages and Multilingual Learning
- Summary and Research Directions

Multilingual Neural Machine Translation

A Case Study

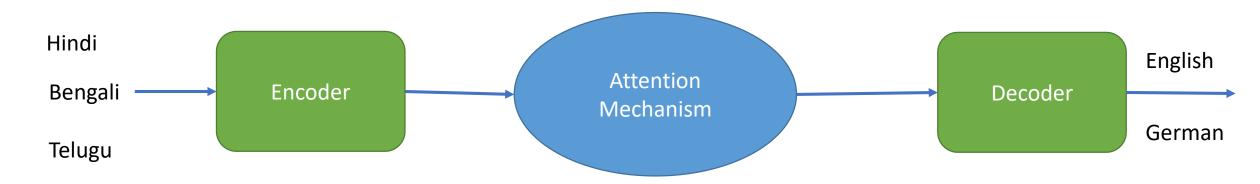


Joint Learning

Minimal Parameter Sharing (Firat et al., 2016) Encoder₁ Hindi English Decoder₁ **Shared Attention** Encoder₂ Bengali Mechanism German Decoder₂ Encoder₃ Telugu Separate vocabularies and embeddings Embeddings learnt during training Source Embeddings projected to a common space *Cycle through each language pair in minibatches*

All Shared Architecture

(Johnson et al., 2017)



Shared vocabularies and embeddings across languages Embeddings learnt during training Source Embeddings projected to a common space A minibatch contains data from all language pairs

How do we support multiple target languages with a single decoder?

A simple trick!

Append input with special token indicating the target language

For English-Hindi Translation

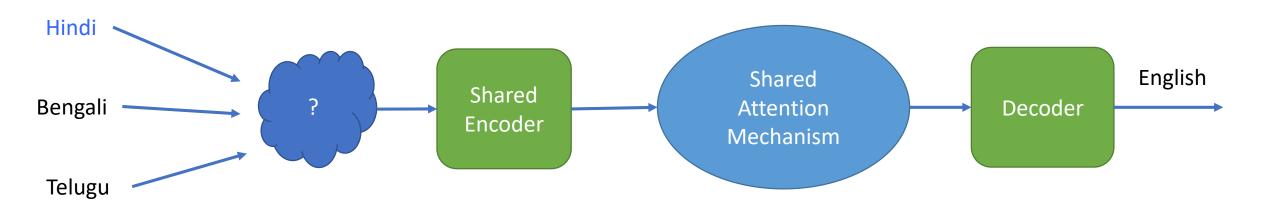
Original Input: France and Croatia will play the final on Sunday

<u>Modified Input</u>: France and Croatia will play the final on Sunday <hin>

Transfer Learning

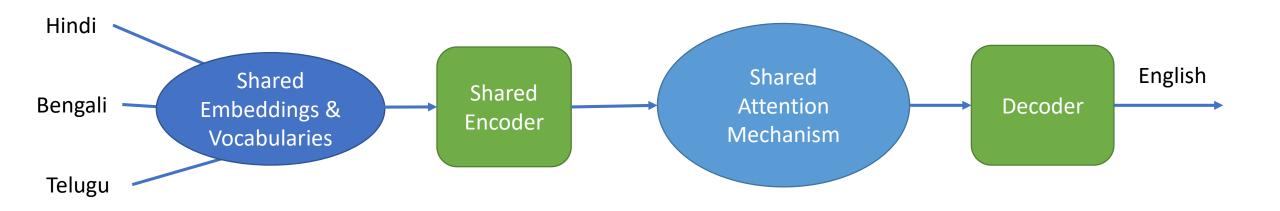
Shared Encoder

(Zoph et al., 2016; Nguyen et al., 2017; Lee et al., 2017)



Shared Encoder

(Zoph et al., 2016; Nguyen and Chang, 2017; Lee et al., 2017)



Zoph et al., 2016: Randomly map primary and assisting language word embeddings

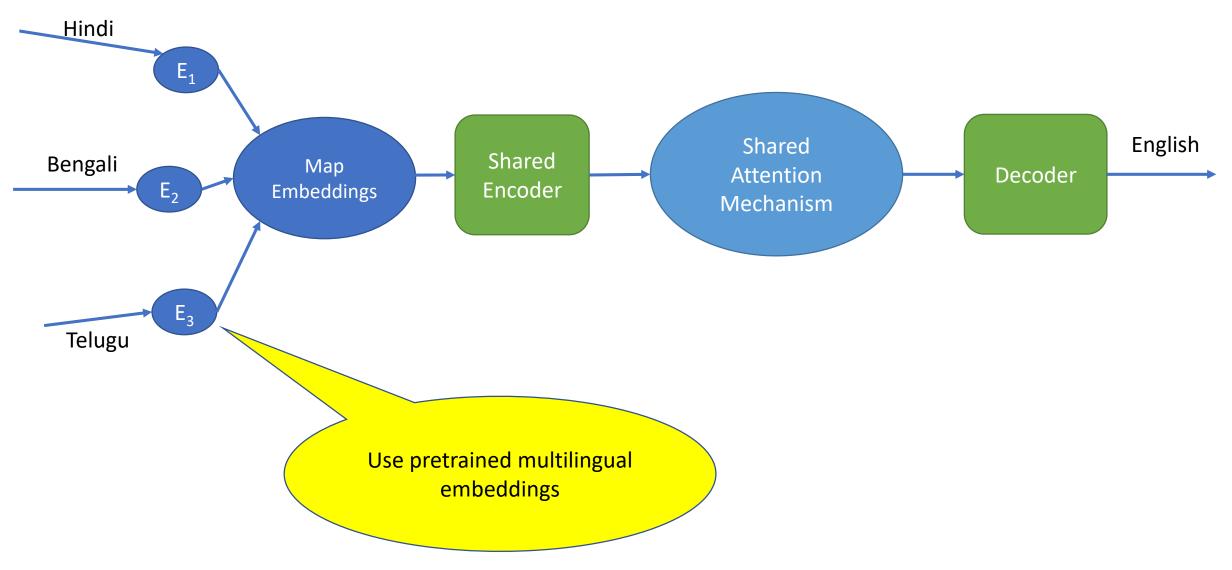
Lee et al., 2017: Character as basic unit

Single vocabulary as long as primary and assisting languages have compatible scripts

Nguyen et al., 2017: Use BPE to learn a common vocabulary across primary and assisting languages BPE identifies small substring patterns in text

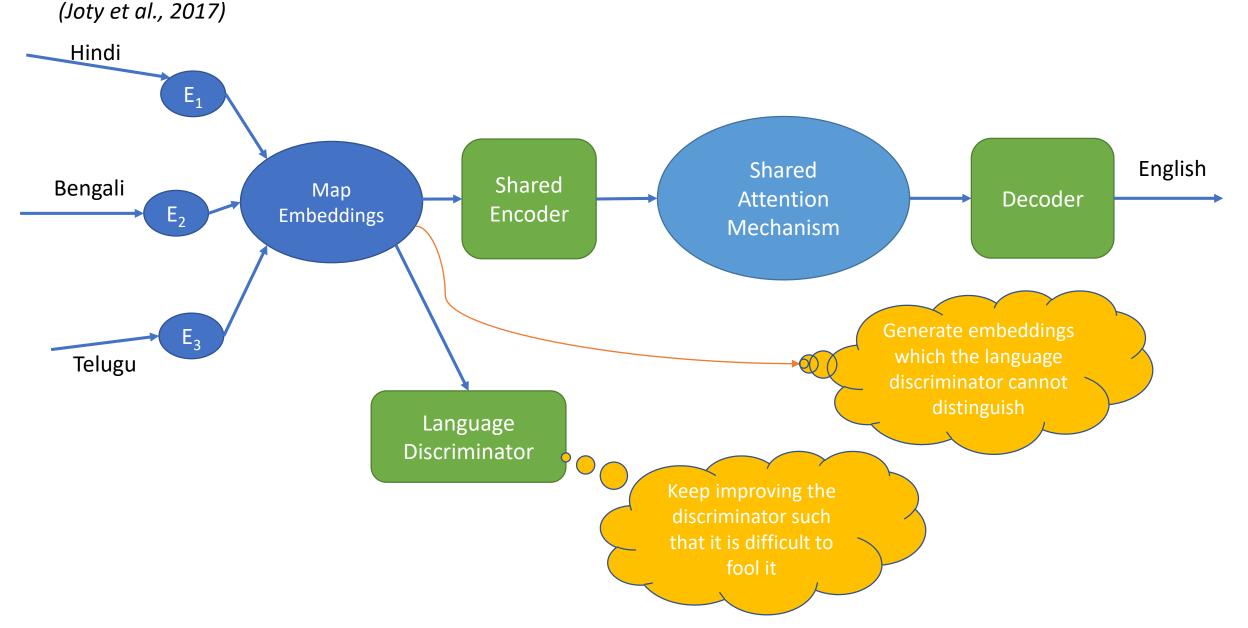
Shared Encoder

(Gu et al., 2018)

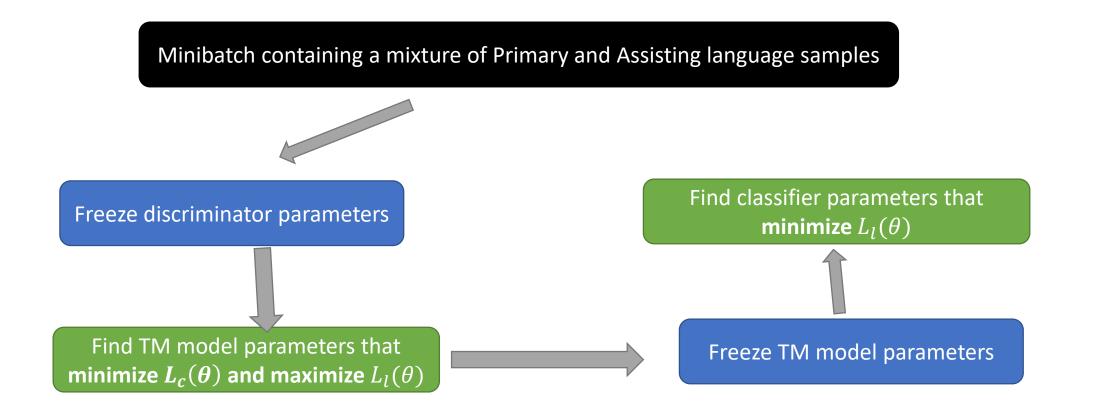


How do we ensure that encoder representations are similar across languages?

Shared Encoder with Adversarial Training

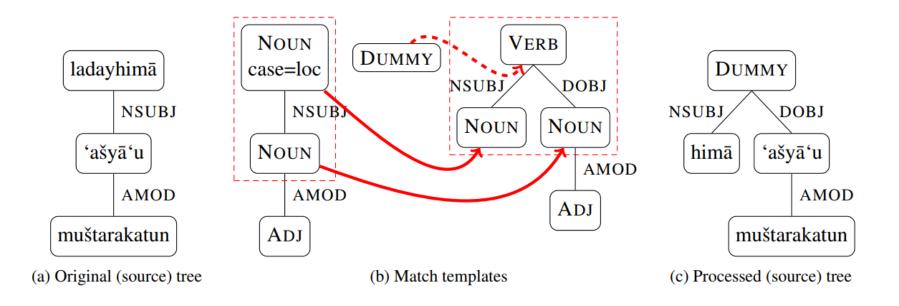


Training Process



Preprocess Sentences (P

(Ponti et al., 2018)

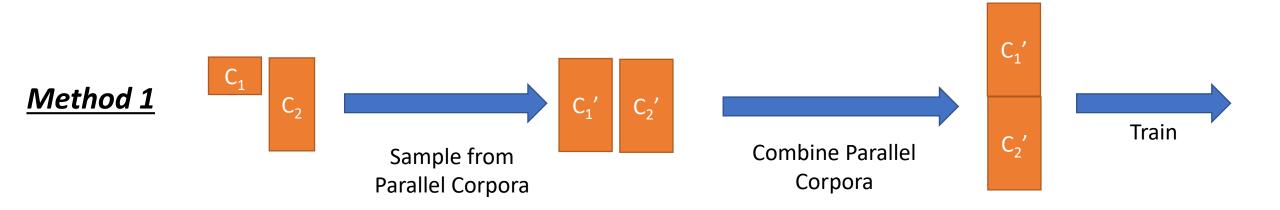


Data Selection

(Rudramurthy et al., 2018)

Is all the high-resource assisting language data useful? Maybe, sentences with a very different structure from primary language are harmful Let's take a simpler example \rightarrow Named Entity Recognition Filter out training examples with high tag distribution divergence Measure Symmetric **KL** Divergence to filter out instances Spanish English Per Misc Word Per Org Misc Word Loc Org Loc China 91 China 20 49 123 4 France France 10 --1 Reuters 40 18 Reuters 3

Training Transfer learning systems



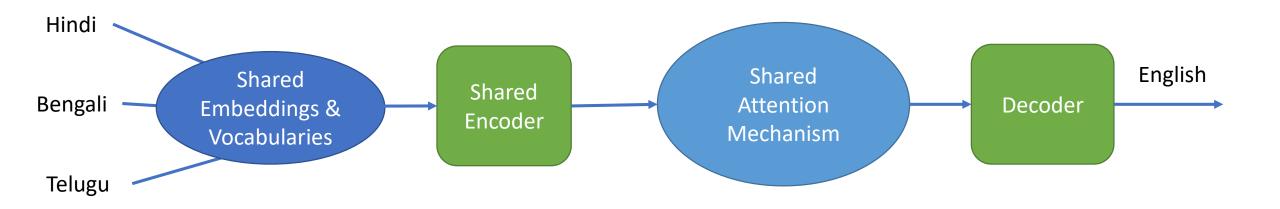
Method 2

Zeroshot translation

Can we translate language pairs we have not seen so far?

- Unseen language pair
- Unseen source language
- Unseen target language





With a shared encoder, unseen source languages can be supported

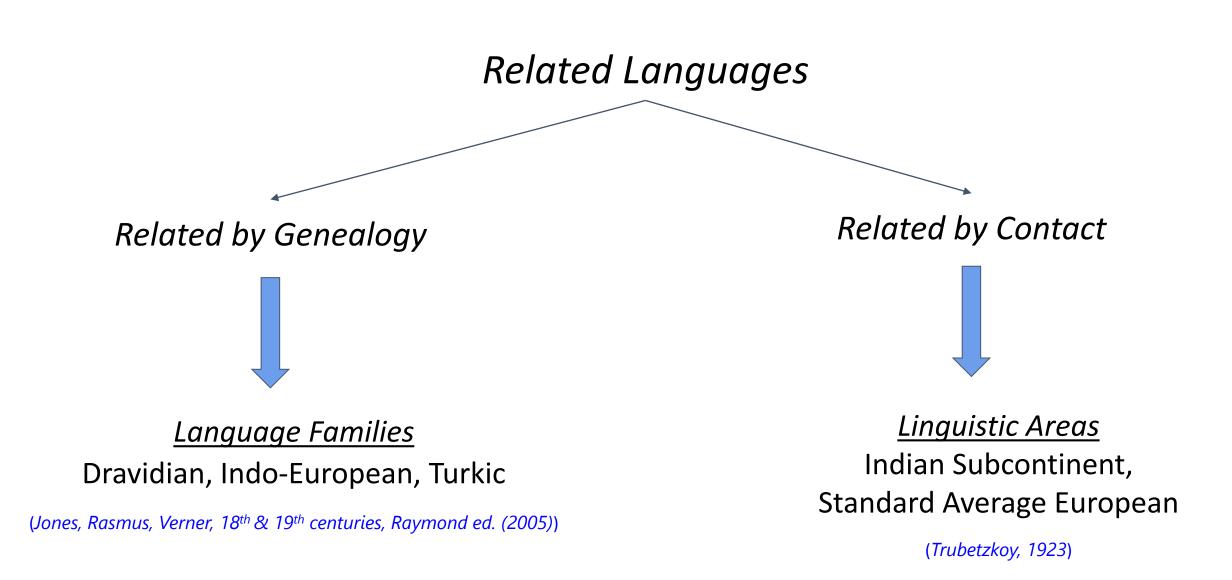
Supporting unseen target languages is a challenge

Outline

- Learning Cross-lingual Embeddings
- Training a Multilingual NLP Application
- Related Languages and Multilingual Learning
- Summary and Research Directions

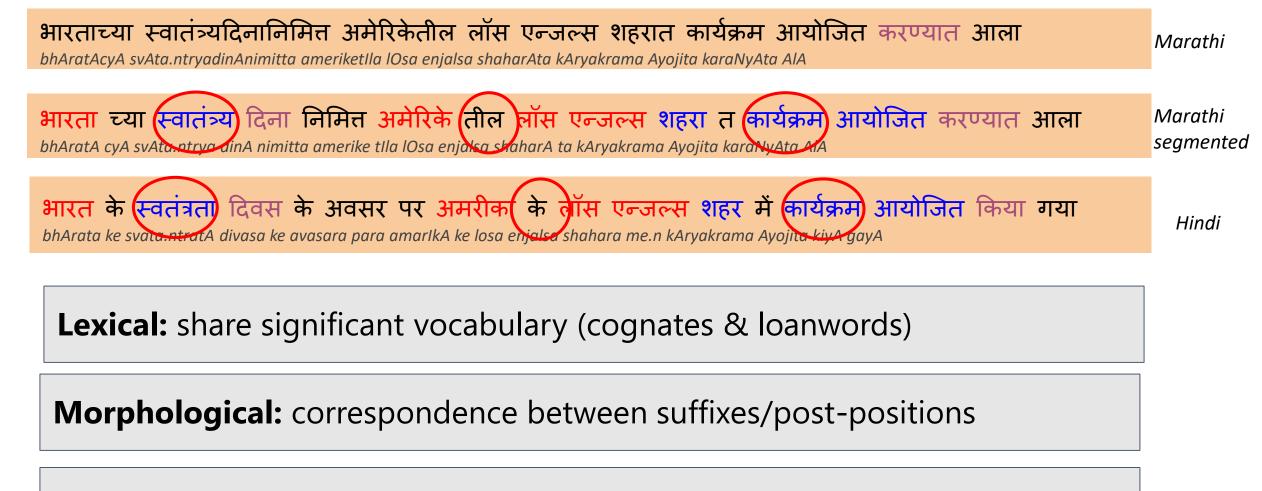
Related Languages (plus) Pre-processing Text

Multi-task learning is more beneficial when tasks are related to each other



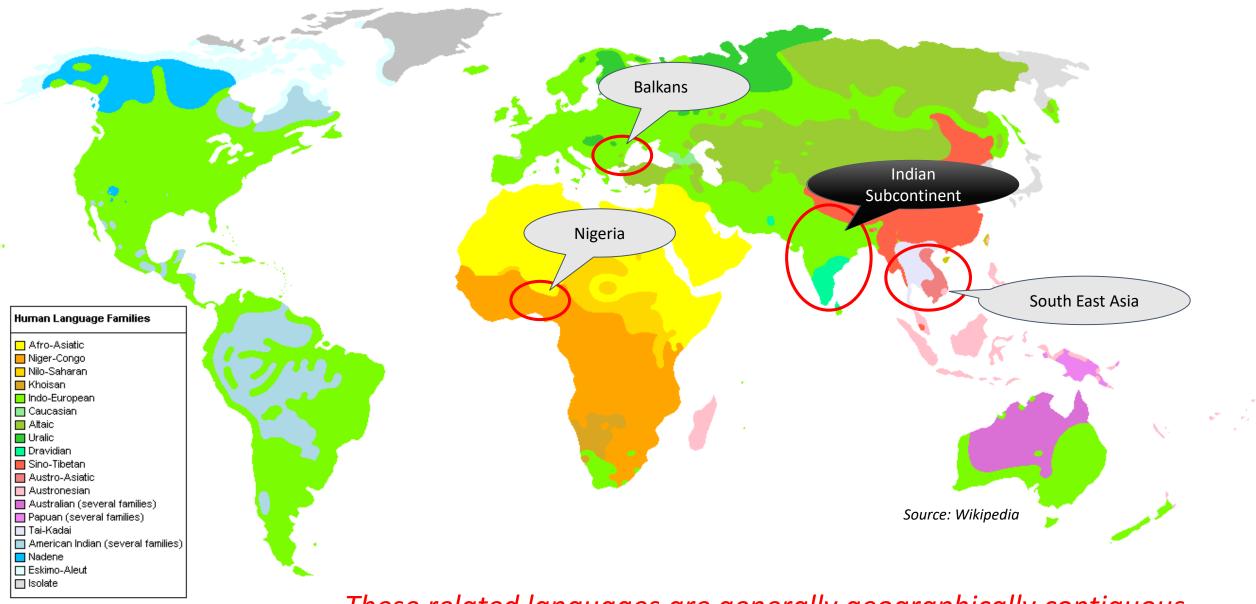
Related languages may not belong to the same language family!

Key Similarities between related languages

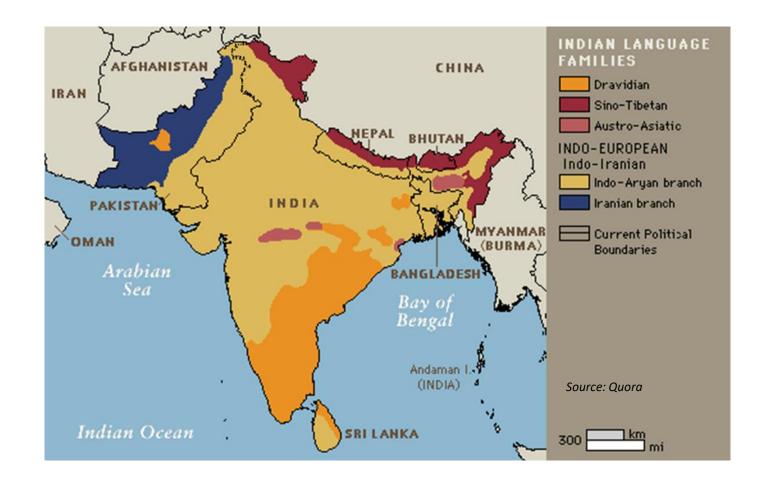


Syntactic: share the same basic word order

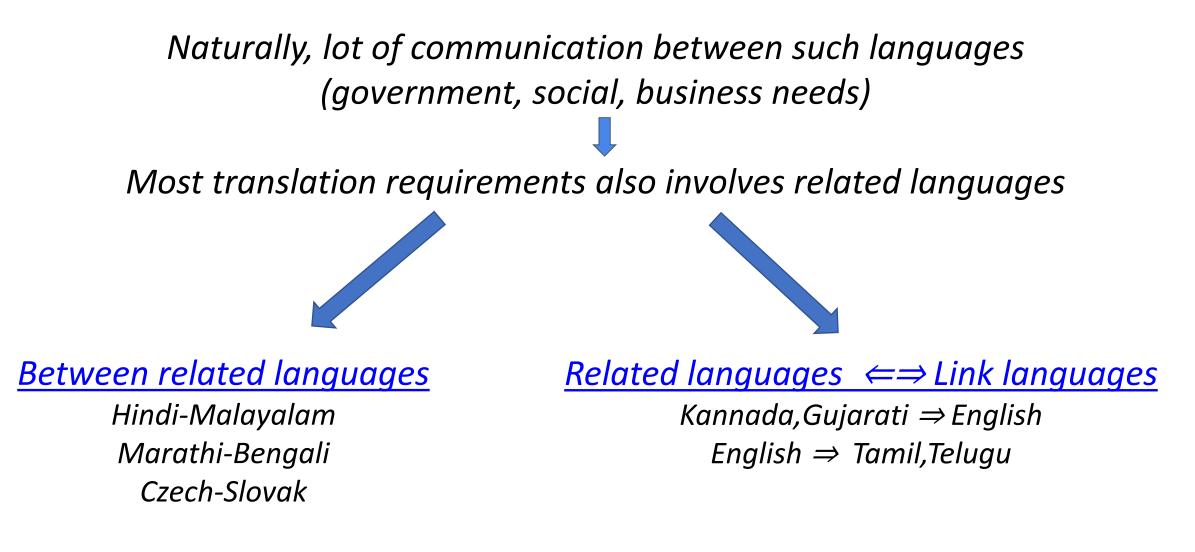
Why are we interested in such related languages?



These related languages are generally geographically contiguous



- 5 language families (+ 2 to 3 on the Andaman & Nicobar Islands)
- 22 scheduled languages
- 11 languages with more than 25 million speakers
- Highly multilingual country



We want to be able to handle a large number of such languages e.g. 30+ languages with a speaker population of 1 million + in the Indian subcontinent

Utilizing Lexical Similarity

Lexically Similar Languages (Many words having similar **form** and **meaning**)

Cognates

a common etymological origin

roTI (hi)	roTlA (pa)	bread
bhai (hi)	bhAU (mr)	brother

Loan Words

borrowed without translation

matsya (sa)	matsyalu (te)	fish
pazha.m (ta)	phala (hi)	fruit

Named Entities

do not change across languages

mu.mbal (hi)	mu.mbal (pa)	mu.mbal (pa)
keral (hi)	k.eraLA (ml)	keraL (mr)

Fixed Expressions/Idioms

MWE with non-compositional semantics

dAla me.n kuCha kAlA honA		Something fishy
dALa mA kAIka kALu hovu	(gu)	

We want to similar sentences to have similar embeddings

We will find more matches at the sub-word level

Can we use subwords as representation units?

Which subword should we use?

Transliterate unknown words [Durrani, etal. (2010), Nakov & Tiedemann (2012)] (a) Primarily used to handle proper nouns (b) Limited use of lexical similarity

Translation of shared lexically similar words can be seen as kind of transliteration

Character[Vilar, etal. (2007), Tiedemann (2009)]Limited context of character level representationLimited benefit just for closely related languagesCharacter n-gram ⇒ increase in data sparsityMacedonian - Bulgarian, Hindi-Punjabi, etc.

Orthographic Syllable (Kunchukuttan & Bhattacharyya, 2016a)

(CONSONANT) + VOWEL

Examples: ca, cae, coo, cra, की (kl), प्रे (pre) अभिमान **→** अ भि मा न

Pseudo-Syllable

True Syllable \Rightarrow Onset, Nucleus and Coda Orthographic Syllable \Rightarrow Onset, Nucleus

- Generalization of *akshara*, the fundamental organizing principle of Indian scripts
- Linguistically motivated, variable length unit
- Number of syllables in a language is finite
- Used successfully in transliteration

Byte Pair Encoded (BPE) Unit

(Kunchukuttan & Bhattacharyya, 2017a; Nguyen and Chang, 2017)

- There may be frequent subsequences in text other than syllables
- Herdan-Heap Law \Rightarrow Syllables are not sufficient
- These subsequences may not be valid linguistic units
- But they represent statistically important patterns in text

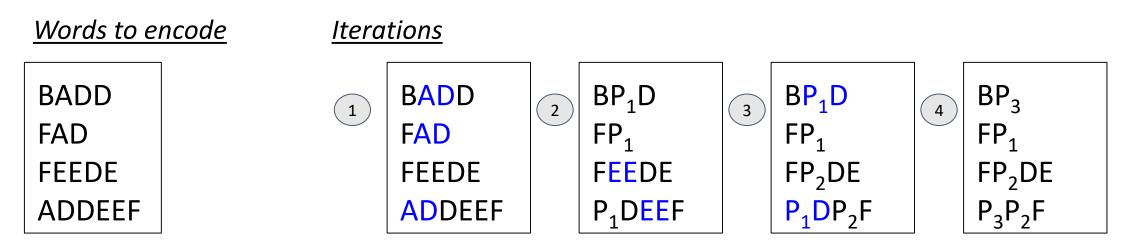
How do we identify such frequent patterns?

Byte Pair Encoding (Sennrich et al, 2016), Wordpieces (Wu et al, 2016), Huffman encoding based units (Chitnis & DeNero, 2015)

Byte Pair Encoded (BPE) Unit

Byte Pair Encoding is a compression technique (Gage, 1994)

Number of BPE merge operations=3 $P_1=AD$ $P_2=EE$ $P_3=P_1D$ Vocab: A B C D E F



Data-dependent segmentation

- Inspired from compression theory
- MDL Principle (*Rissansen, 1978*) ⇒ Select segmentation which maximizes data likelihood

Example of various translation units

Basic Unit	Symbol	Example	Transliteration
Word	W	घरासमोरचा	gharAsamoracA
Morph Segment	Μ	घरा समोर चा	gharA samora cA
Orthographic Syllable	0	घ रा स मो र चा	gha rA sa mo racA
Character unigram	С	घर ा स म ो र च ा	gha r A sa m o ra c A
<i>something that is in front of home:</i> ghara=home, samora=front, cA=of			
Various translation units for a Marathi word			

Instead of a sequence of words, the input to the network is a sequence of subword units

Neural Machine Translation

		baseline		transfer	
		BLEU	size	BLEU size	
Tur-Eng	word-based	8.1	30k	8.5* 30k	
	BPE	12.4	10k	13.2 [†] 20k	
Uyg-Eng	word-based	8.5	15k	10.6 [†] 15k	
	BPE	11.1	10k	15.4 [‡] 8k	

Uzbek as resource-rich assisting language; Turkish and Uyghur as primary languages Size: refers to vocabulary size

Statistical Machine Translation

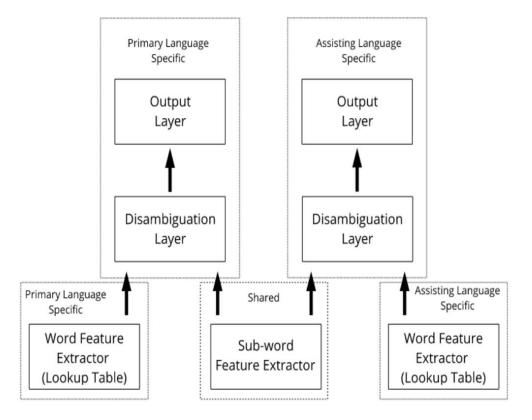
(Kunchukuttan & Bhattacharyya, 2016a; Kunchukuttan & Bhattacharyya, 2017a)

Src-Tgt	Char	Word	Morph	OS	BPE
ben-hin	27.95	32.47	32.17	33.54	33.22
pan-hin	71.26	70.07	71.29	72.41	72.22
kok-mar	19.83	21.30	22.81	23.43	23.63
mal-tam	4.50	6.38	7.61	7.84	8.67 †
tel-mal	6.00	6.78	7.86	8.50	8.79
hin-mal	6.28	8.55	9.23	10.46	10.73
mal-hin	12.33	15.18	17.08	18.44	20.54
bul-mae	20.61	21.20	-	21.95	21.73
dan-swe	35.36	35.13	-	35.46	35.77
may-ind	60.50	61.33	-	60.79	59.54†

- Substantial improvement over char-level model (27% & 32% for OS and BPE resp.)
- Significant improvement over word and morph level baselines (11-14% and 5-10% resp)
- Improvement even when languages don't belong to same family (contact exists)
- More beneficial when languages are morphologically rich

Named Entity Recognition

(Rudramurthy et al., 2018)



Approach	Tamil	Malayalam	Bengali	Marathi
CRF + POS	44.60	48.70	52.44	44.94
CNN Bi-LSTM	52.34	55.37	50.34	56.53
CNN Bi-LSTM + Sub-word	52.34	56.82	52.56	50.25
CNN Bi-LSTM All	53.47	56.75	53.90	57.37

Utilizing Syntactic Similarity

(Kunchukuttan et al., 2014)

Phrase based MT is not good at learning word ordering

Solution: Let's help PB-SMT with some preprocessing of the input

Change order of words in input sentence to match order of the words in the target language

Let's take an example

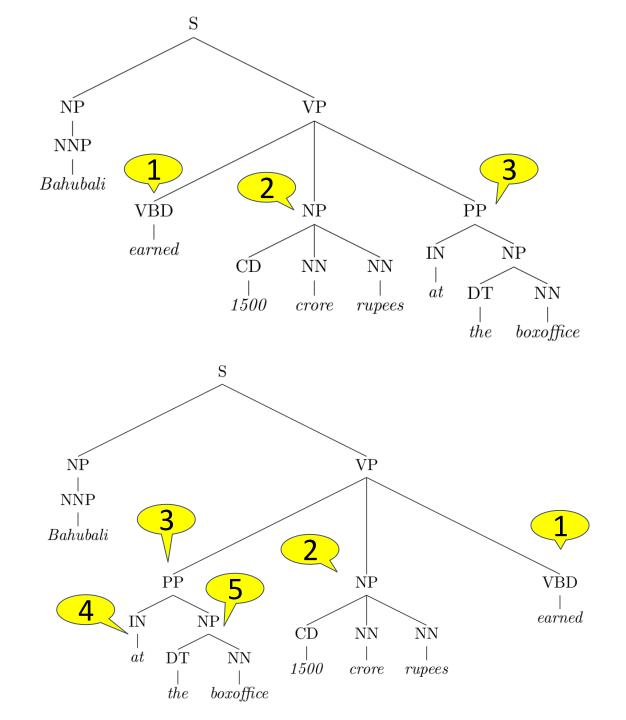
Bahubali earned more than 1500 crore rupee sat the boxoffice

Parse the sentence to understand its syntactic structure

Apply rules to transform the tree

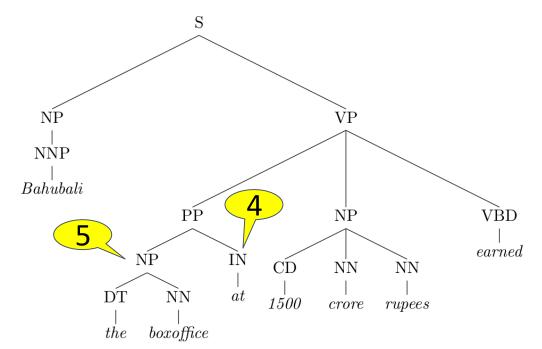
 $VP \rightarrow VBD NP PP \Rightarrow VP \rightarrow PP NP VBD$

This rule captures Subject-Verb-Object to Subject-Object-Verb divergence



Prepositions in English become postpositions in Hindi

 $PP \rightarrow IN NP \Rightarrow PP \rightarrow NP IN$



The new input to the machine translation system is

Bahubali the boxoffice at 1500 crore rupees earned

Now we can translate with little reordering बाहुबली ने बॉक्सओफिस पर 1500 करोड रुपए कमाए These rules can be written manually or learnt from parse trees Can we reuse English-Hindi rules for English-Indian languages?

All Indian languages have the same basic word order

		Indo-Aryan						ravidia	n
	pan	hin	guj	ben	mar	kok	tel	tam	mal
Baseline	15.83	21.98	15.80	12.95	10.59	11.07	7.70	6.53	3.91
Generic Hindi-tuned		23.70 24.45						6.82 7.08	

(Kunchukuttan et al., 2014)

<u>Generic reordering</u> (Ramanathan et al 2008)

Basic reordering transformation for English → Indian language translation

Hindi-tuned reordering (Patel et al 2013)

Improvement over the basic rules by analyzing English \rightarrow Hindi translation output

Utilizing Orthographic Similarity

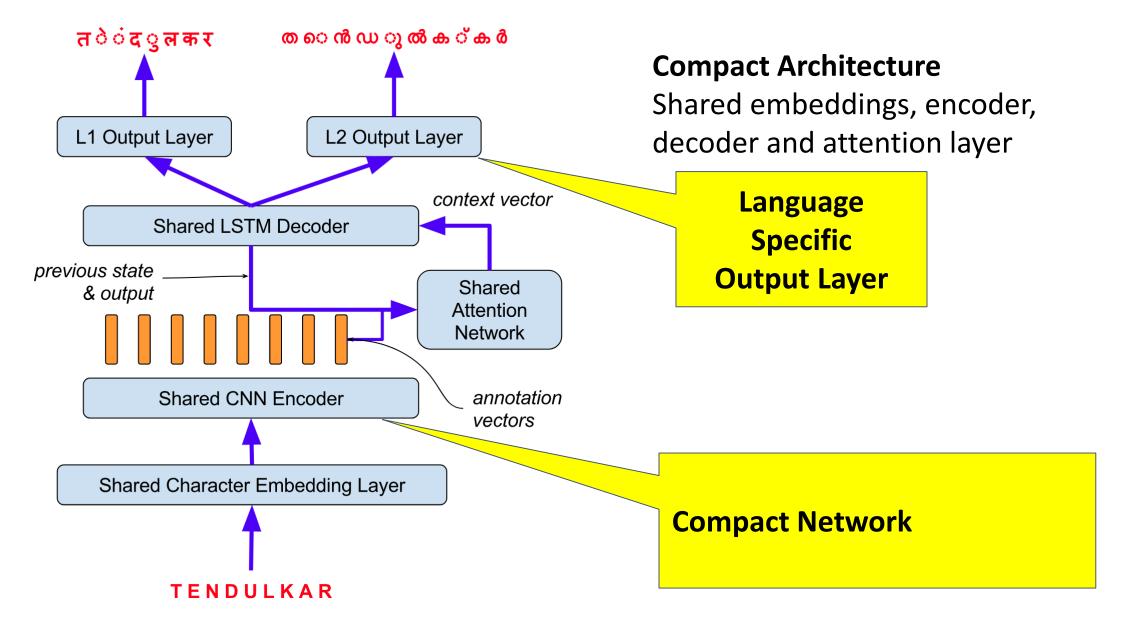
Orthographically Similar Languages

- (a) highly overlapping phoneme sets
- (b) mutually compatible orthographic systems
- (c) similar grapheme to phoneme mappings
 - e.g. Indic languages

Can be useful in multilingual settings like:

Transliteration, grapheme to phoneme, Speech recognition, TTS, short text translation for related languages (tweets, headlines),

Multilingual Neural Transliteration



Pair	Р	В	Μ	Pair	Р	В	Μ
	Simil	ar Sou	rce and	l Target L	anguag	ges	
Indic-Ind	<u>dic</u> (45.:	5%)					
ben-hin	29.74	19.08	27.69	kan-ben	28.59	24.04	37.47
ben-kan	17.62	18.14	27.74	kan-tam	34.89	30.85	38.30

hin-ben 29.92 25.46 39.15 tam-hin 29.07 19.24 28.97

hin-tam 25.15 28.62 38.70 tam-kan 26.99 19.86 29.06

Similar Target Languages

<u>Slavic-Arabic</u> (55.8%)				Indic-English (24.2%)				
ces-ara	38.91	37.10	59.17	ben-eng	55.23	48.93	54.01	
pol-ara	34.70	34.80	44.83	hin-eng	49.19	38.26	51.11	
slk-ara	43.26	37.49	62.21	kan-eng	42.79	33.77	47.70	
slv-ara	41.90	36.74	62.04	tam-eng	33.93	23.22	25.93	

Similar Source Languages

<u>Arabic-Slavic</u> (176.8%)				English-Indic (1.1%)				
ara-ces	15.41	12.08	36.76	eng-ben	42.90	41.70	46.10	
ara-pal	13.68	12.26	24.21	eng-hin	60.50	64.10	60.70	
ara-slk	15.24	13.82	38.72	eng-kan	48.70	52.00	53.90	
ara-slv	18.31	13.63	44.35	eng-tam	52.90	57.80	55.30	

Top-1 accuracy for Phrase-based (P), bilingual neural (B) and multilingual neural (P)

Qualitative Analysis

Major reduction in vowel related errors

Reduction in confusion between similar consonants e.g. (T,D), (P,B)

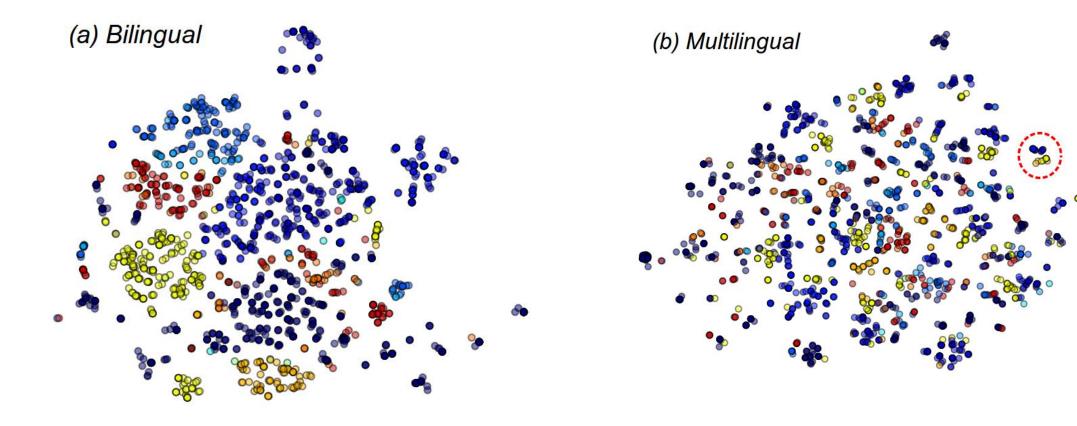
Generates more canonical outputs

For मोरिस, moris is a valid spelling but maurice is canonical

May explain less improvement in en-Indic

Why does Multilingual Training help?

Encoder learns specialized contextual representations



Outline

- Learning Cross-lingual Embeddings
- Training a Multilingual NLP Application
- Related Languages and Multilingual Learning
- Summary and Research Directions

Summary

- Cross-lingual word embeddings are the cornerstone for sharing training data across languages
- Tremendous advances in unsupervised learning of cross-lingual embeddings
- Ensuring word embeddings map to a common space is not sufficient
 - Encoder outputs have to be mapped too
- Related languages can make maximum utilization of task similarity and share data

Research Directions

- Do cross-lingual embeddings work equally well for all languages?
- Cross-lingual contextualized embedding *i.e.* encoder outputs
- Alternative architectures
 - Transformer architecture shown to work better for multilingual NMT
 - Adversarial learning looks promising
- Target side sharing of parameters is under-investigated

Other Reading Material

- Tutorial on *Multilingual Multimodal Language Processing Using Neural Networks.* Mitesh Khapra and Sarath Chandar. NAACL 2016.
- Tutorial on *Cross-Lingual Word Representations: Induction and Evaluation.* Ivan Vuli¢, Anders Søgaard, Manaal Faruqui. EMNLP 2017.
- Tutorial on Statistical Machine Translation for Related languages. Pushpak Bhattacharyya, Mitesh Khapra, Anoop Kunchukuttan. NAACL 2016.
- Tutorial on Statistical Machine Translation and Transliteration for Related languages. Mitesh Khapra, Anoop Kunchukuttan. ICON 2015.

Tools

- Multilingual Unsupervised and Supervised Embeddings (MUSE)
- <u>VecMap</u>

More pointers in slides from the tutorial Vuli¢, et al., (2017)

Slides: <u>https://www.cse.iitb.ac.in/~anoopk/publications/presentat</u> <u>ions/iiit-ml-multilingual-2018.pdf</u>

Thank you!

Multilingual data, code for Indian languages

http://www.cfilt.iitb.ac.in

https://www.cse.iitb.ac.in/~anoopk

Work with Prof. Pushpak Bhattacharyya, Prof. Mitesh Khapra, Abhijit Mishra, Ratish Puduppully, Rajen Chatterjee, Ritesh Shah, Maulik Shah, Pradyot Prakash, Gurneet Singh, Raj Dabre, Rohit More, Rudramurthy

- Abbi, A. (2012). Languages of india and india and as a linguistic area. http://www.andamanese.net/LanguagesofIndiaandIndiaasalinguisticarea.pdf. Retrieved November 15, 2015.
- 2. Ammar, W., Mulcaire, G., Tsvetkov, Y., Lample, G., Dyer, C., and Smith, N. A. (2016). Massively multilingual word embeddings. In ACL.
- 3. Artetxe, M., Labaka, G., and Agirre, E. (2016). Learning principled bilingual mappings of word embeddings while preserving monolingual invariance. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2289--2294, Austin, Texas. Association for Computational Linguistics.
- 4. Artetxe, M., Labaka, G., and Agirre, E. (2017). Learning bilingual word embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 451--462. Association for Computational Linguistics.
- 5. Artetxe, M., Labaka, G., and Agirre, E. (2018a). Generalizing and improving bilingual word embedding mappings with a multi-step framework of linear transformations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 5012--5019.
- 6. Artetxe, M., Labaka, G., and Agirre, E. (2018b). A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
- 7. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. ICLR 2015.
- 8. Caruana, R. (1997). Multitask learning. Machine learning.
- 9. Chandar, S., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V. C., and Saha, A. (2014). An autoencoder approach to learning bilingual word representations. In Advances in Neural Information Processing Systems, pages 1853--1861.
- 10. Conneau, A., Lample, G., Ranzato, M., Denoyer, L., and Jégou, H. (2018). Word translation without parallel data. In International Conference on Learning Representations.
- 11. De Saussure, F. (1916). Course in general linguistics. Columbia University Press.
- 12. Dinu, G., Lazaridou, A., and Baroni, M. (2015). Improving zero-shot learning by mitigating the hubness problem. In ICLR.
- 13. Dong, D., Wu, H., He, W., Yu, D., and Wang, H. (2015). Multi-task learning for multiple language translation. In Annual Meeting of the Association for Computational Linguistics.
- 14. Duong, L., Kanayama, H., Ma, T., Bird, S., and Cohn, T. (2017). Multilingual training of crosslingual word embeddings. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pages 894--904.

- 15. Durrani, N., Sajjad, H., Fraser, A., and Schmid, H. (2010). Hindi-to-urdu machine translation through transliteration. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.
- 16. Emeneau, M. B. (1956). India as a Lingustic area. Language.
- 17. Faruqui, M. and Dyer, C. (2014). Improving vector space word representations using multilingual correlation. In Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 462--471.
- 18. Finch, A., Liu, L., Wang, X., and Sumita, E. (2015). Neural network transduction models in transliteration generation. In Proceedings of the Fifth Named Entities Workshop (NEWS).
- 19. Firat, O., Cho, K., and Bengio, Y. (2016). Multi-way, multilingual neural machine translation with a shared attention mechanism. In Conference of the North American Chapter of the Association for Computational Linguistics.
- 20. Gillick, D., Brunk, C., Vinyals, O., and Subramanya, A. (2016). Multilingual language processing from bytes. NAACL.
- 21. Gispert, A. D. and Marino, J. B. (2006). Catalan-english statistical machine translation without parallel corpus: bridging through spanish. In In Proc. of 5th International Conference on Language Resources and Evaluation (LREC).
- 22. Gouws, S., Bengio, Y., and Corrado, G. (2015). Bilbowa: Fast bilingual distributed representations without word alignments. In International Conference on Machine Learning, pages 748--756.
- 23. Gordon, R. G., Grimes, B. F., et al. (2005). Ethnologue: Languages of the world, volume 15. SIL International Dallas, TX.
- Grave, E., Joulin, A., and Berthet, Q. (2018). Unsupervised alignment of embeddings with wasserstein procrustes. CoRR, abs/1805.11222.
- 25. Gu, J., Hassan, H., Devlin, J., & Li, V. O. (2018). Universal neural machine translation for extremely low resource languages. NAACL.
- 26. Hermann, K. M. and Blunsom, P. (2014). Multilingual models for compositional distributed semantics. In ACL.
- 27. Hoshen, Y. and Wolf, L. (2018). An iterative closest point method for unsupervised word translation. CoRR, abs/1801.06126.
- 28. Huang, K., Gardner, M., Papalexakis, E. E., Faloutsos, C., Sidiropoulos, N. D., Mitchell, T. M., Talukdar, P. P., and Fu, X. (2015). Translation invariant word embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 1084--1088.

- ^{29.} Jha, G. N. (2012). The TDIL program and the Indian Language Corpora Initiative. In Language Resources and Evaluation Conference.
- Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., Thorat, N., Viégas, F., Wattenberg, M., Corrado, G., et al. (2016). Google's multilingual neural machine translation system: Enabling zero-shot translation. arXiv preprint arXiv:1611.04558.
- Joulin, A., Bojanowski, P., Mikolov, T., and Grave, E. (2018). Improving supervised bilingual mapping of word embeddings. CoRR, abs/1804.07745.
- ^{32.} Joty, S., Nakov, P., Màrquez, L., & Jaradat, I. (2017). Cross-language Learning with Adversarial Neural Networks: Application to Community Question Answering. CoNLL.
- 33. Klementiev, A., Titov, I., and Bhattarai, B. (2012). Inducing crosslingual distributed representations of words. In Proceedings of COLING 2012, pages 1459--1474.
- 34. Kunchukuttan, A., Mishra, A., Chatterjee, R., Shah, R., & Bhattacharyya, P. (2014). Sata-anuvadak: Tackling multiway translation of indian languages. LREC.
- 35. Kunchukuttan, A., & Bhattacharyya, P. (2016a). Orthographic syllable as basic unit for smt between related languages. EMNLP.
- 36. Kunchukuttan, A., & Bhattacharyya, P. (2016b). Faster decoding for subword level Phrase-based SMT between related languages. VarDIAL.
- 37. Kunchukuttan, A., & Bhattacharyya, P. (2017a). Learning variable length units for SMT between related languages via Byte Pair Encoding. SCLeM.
- ^{38.} Kunchukuttan, A., Shah, M., Prakash, P., & Bhattacharyya, P. (2017b). Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based SMT. IJCNLP.
- 39. Kunchukuttan, A., Khapra, M., Singh, G., & Bhattacharyya, P. (2018). Leveraging Orthographic Similarity for Multilingual Neural Transliteration. Transactions Of The Association For Computational Linguistics, 6, 303-316.
- 40. Lample, G., Conneau, A., Denoyer, L., and Ranzato, M. (2018). Unsupervised machine translation using monolingual corpora only. In International Conference on Learning Representations.
- 41. Lazaridou, A., Dinu, G., and Baroni, M. (2015). Hubness and pollution: Delving into cross-space mapping for zero-shot learning. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), volume 1, pages 270--280.

- 42. Lee, J., Cho, K., and Hofmann, T. (2017). Fully Character-Level Neural Machine Translation without Explicit Segmentation. Transactions of the Association for Computational Linguistics.
- 43. Mikolov, T., Le, Q. V., and Sutskever, I. (2013). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.
- 44. Nakov, P. and Tiedemann, J. (2012). Combining word-level and character-level models for machine translation between closely-related languages. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2.
- 45. Nguyen, T. Q., & Chiang, D. (2017). Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation. IJCNLP.
- 46. Rudramurthy, V., Kunchukuttan, A., & Bhattacharyya, P. (2018). Judicious Selection of Training Data in Assisting Language for Multilingual Neural NER. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 401-406).
- 47. Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1--10.
- 48. Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with subword units. In ACL.
- 49. Smith, S. L., Turban, D. H. P., Hamblin, S., and Hammerla, N. Y. (2017). Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In ICLR.
- 50. Subbārāo, K. V. (2012). South Asian languages: A syntactic typology. Cambridge University Press.
- 51. Tiedemann, J. (2009a). Character-based PBSMT for closely related languages. In Proceedings of the 13th Conference of the European Association for Machine Translation (EAMT 2009).
- 52. Tiedemann, J. (2009b). News from OPUS-A collection of multilingual parallel corpora with tools and interfaces. In Recent Advances in Natural Language Processing.
- 53. Tiedemann, J. and Nakov, P. (2013). Analyzing the use of character-level translation with sparse and noisy datasets. In Recent Advances in Natural Language Processing.
- 54. Trubetzkoy, N. (1928). Proposition 16. In Actes du premier congres international des linguistes à La Haye.
- 55. Utiyama, M. and Isahara, H. (2007). A comparison of pivot methods for phrase-based statistical machine translation. In HLT-NAACL, pages 484–491.
- 56. Vilar, D., Peter, J.-T., and Ney, H. (2007). Can we translate letters? In Proceedings of the Second Workshop on Statistical Machine Translation.
- 57. Vrandečić, D. and Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase. Communications of the ACM.

- 58. Wu, H. and Wang, H. (2007). Pivot language approach for phrase-based statistical machine translation. Machine Translation, 21(3):165–181.
- 59. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., and Norouzi, M. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. ArXiv e-prints: abs/1609.08144.
- 60. Xing, C., Wang, D., Liu, C., and Lin, Y. (2015). Normalized word embedding and orthogonal transform for bilingual word translation. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages 1006--1011.
- ^{61.} Yang, Z., Salakhutdinov, R., and Cohen, W. (2016). Multi-task cross-lingual sequence tagging from scratch. arXiv preprint arXiv:1603.06270.
- 62. Zhang, M., Liu, Y., Luan, H., and Sun, M. (2017a). Adversarial training for unsupervised bilingual lexicon induction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1959--1970. Association for Computational Linguistics.
- 63. Zhang, M., Liu, Y., Luan, H., and Sun, M. (2017b). Earth mover's distance minimization for unsupervised bilingual lexicon induction. In EMNLP.
- ^{64.} Zoph, B., Yuret, D., May, J., & Knight, K. (2016). Transfer learning for low-resource neural machine translation. EMNLP.