Translation &	Transliteration
between Rela	ted Languages
Anoop Kunchukuttan Research Scholar, CFILT, IIT Bombay anoopk@cse.iitb.ac.in	Mitesh Khapra Researcher, IBM India Research La mikhapra@in.ibm.com
The Twelfth International Conference Thiruvana	on Natural Language Processing (ICON-2015) Inthapuram, India
11 th D	ecember 2015
Under the guidance of	Prof. Pushpak Bhattacharyya

ज्ञानम्	परमम्	ध्येयम्
gyanam	paramam	dhyeyam

an you	guess the me	eaning?	The synonym <i>uddeshya</i> covers more languages
	ज्ञानम्	परमम्	ध्येयम्
	gyanam	paramam	dhyeyam
	knowledge	supreme	goal
Sanskrit			
Gujarati			
Konkani			
Malayalam			
Bengali			
Kannada			
Nepali			
Punjabi			
Marathi			
Hindi			
Telugu			
Odia			
Assamese			
Tamil			
Manipuri			

Can you read this?

અમદાવાદ રેલ્વે સ્ટેશન

अमदावाद रेल्वे स्टेशन

amadAvAda relve sTeshana

- Indic scripts are very similar
- If you learn one, learning others is easy
 Pronunciation of the same word may vary

Tutorial Part 1

- Motivation
- Notions of Language Relatedness
 - Language Families (Genetic)
 - Linguistic Area
 - Language Universals
 - Script
- A Primer to SMT

Tutorial Part 2

- · Leveraging Orthographic similarity for transliteration Rule-based transliteration for Indic scripts
 - Akshar-based statistical transliteration for Indic scripts
- Leveraging Lexical Similarity
 - Reduce out-of-vocabulary words & parallel corpus requirements
 - String/Phonetic Similarity
 - Cognate/Transliteration Mining
 - Improve word alignment Transliterating OOV words
 - Character-oriented SMT

Tutorial Part 3

- Leveraging Morphological Similarity
 - · Word Segmentation to improve translation
- Leveraging Syntactic Similarity
 - Sharing source reordering rules for translation between two groups of related languages
- Synergy among Multiple Languages
 - Pivot/Bridge languages
 - Multi-source translation
- Summary & Conclusion
- Tools & Resources
- O&A

Where are we?

- **Motivation**
- Language Relatedness
- A Primer to SMT •
- Leveraging Orthographic Similarity for transliteration •
- Leveraging linguistic similarities for translation •
 - Leveraging Lexical Similarity
 - Leveraging Morphological Similarity Leveraging Syntactic Similarity
- Synergy among multiple languages
 - Pivot-based SMT
- Multi-source translation
- Summary & Conclusion
- Tools & Resources

How can relatedness help for translation & transliteration?

Motivation

- Universal translation has proved to be very challenging
- The world is going "glocal" trends in politics, economics & technology
- Huge translation requirements are between related languages . • Within a set of related languages
 - o Between a lingua franca (English, Hindi, Spanish, French, Arabic) and a set of related languages
 - e.g. Indian subcontinent, European Union, South-East Asia
- "Potential" availability of resources between related languages: bilingual • speakers, parallel corpora, literature, movies, media
- The unique cultural situation in India widespread multilingualism

The unique cultural situation in India

• 5+1 language families

- Indo-Aryan (74% population) Dravidian (24%)
- Austro-Asiatic (1.2%)
- Tibeto-Burman (0.6%)
- Andaman languages (2 families?) + English (West-Germanic)
- 22 scheduled languages
- 11 languages with more than 25 million speakers 29 languages with more than 1
 - million speakers Only India has 2 languages (+English) in the world's 10 most
 - spoken languages 7-8 Indian languages in the top 20 most spoken languages

- Greenberg's Linguistic Diversity Index: 0.93 Ranked 9th
- Highest ranked country outside Pacific Islands and Africa countries • The distribution is skewed:
- The top 29 languages (>1 million speakers) account for 98.6% of the population
- 125 million English speakers, highest after the United states

Questions for Discussion

- What does it mean to say languages are related?
- Can translation between related languages be made more accurate?
- Can multiple languages help each other in translation?
- Can we reduce resource requirements?
- Universal translation seems difficult. Can we find the right level of linguistic generalization?
- Can we scale to a group of related languages?
- What concepts and tools are required for solving the above questions?

Where are we?

- Motivation
- Language Relatedness
- A Primer to SMT
- Leveraging Orthographic Similarity for transliteration
- Leveraging linguistic similarities for translation
 - Leveraging Lexical Similarity
 - Leveraging Morphological Similarity
 Leveraging Syntactic Similarity
- Synergy among multiple languages
- Pivot-based SMT
 Multi-source translation
- Summary & Conclusion
- Tools & Resources

Various Notions of Language Relatedness

- Genetic relation \rightarrow Language Families
- Contact relation → Sprachbund (Linguistic Area)
- Linguistic typology \rightarrow Linguistic Universal
- Orthography \rightarrow Sharing a script

Examples of Cognates

English	Vedic Sanskrit	Hindi	Punjabi	Gujarati	Marathi	Odia	Bengal
					chapăti, poli,		
bread	rotika	chapătī, roțī	roți	paū, roțiă	bhākarī	pauruți	(pau-)ruți
fish	matsya	machhli	machhī	māchhli	māsa	mācha	machh
	bubuksha,						
hunger	kshudhā	bhūkh	pukh	bhukh	bhūkh	bhoka	khide
			boli, zabān,				
language	bhāshā, vāNī	bhāshā, zabān	pasha	bhāshā	bhāshā	bhāsā	bhasha
ten	dasha	das	das daha	das	dahā	dasa	dősh

Dravidian Languages

- Spoken in South India, Sri Lanka ٠
- SOV languages Agglutinative • Inflecting Retroflex sounds DRAVIDIAN

pazha.n . phala.n		
	haNNu , phala	pa.nDu , phala.n
matsya.n , min, mina. n	mlnu , matsya , jalavAsi, mlna	cepalu , matsyalu , jalaba.ndhu
vishapp , udarArtti , kShutt , pashi	hasivu, hasiv.e,	Akali
bhASha , m.ozhi	bhASh.e	bhAShA , paluku
patt,dasha.m, dashaka.m	hattu	padi
-	n n v vishap, udarArtis, kShut, pashi bhASha, m.ozhi pati.dasha.m. dashaka.m	Instigut, min, mine. Inst. stars, s

Austro-Asiatic Languages

- Austro is south in Latin; nothing to to do with languages of Australia
- Munda branch of this family is found in India Ho, Mundari, Santhali, Khasi
- Related to Mon-Khmer branch of S-E Asia: Khmer, Mon, Vietnamese .
- Spoken primarily in some parts of Central India (Jharkhand, Chattisgarh, Orissa, WB, Maharashtra)
- From Wikipedia: FTOITI WIKIPEOId: 'Inguisits stratitionally recognize two primary divisions of Austroasiatic: the Mon-Khmer languages of Southeast Asia, Northeast India and the Nicobar Islands, and the Munda languages of East and Central India and parts of Bangladesh. However, <u>no evidence for this classification has ever been published</u>;
- SOV languages
 - exceptions: Khasi They are believed to have been SVO languages in the past (Subbarao, 2012)
- Polysynthetic and Incorporating

What does genetic relatedness imply? • Cognates (words of the same origin) • Similar phoneme set, makes transliteration easier Similar grammatical properties morphological and word order symmetry makes MT easier Cultural similarity leading to shared idioms and multiwords hi: दाल में कुछ काला होना (dAla me.n kuCha kAlA honA) (something fishy) gu: दाळ मा काईक काळु होवु (dALa mA kAlka kALu hovu) mr: बापाचा माल (bApAcA mAla) hi: बाप का माल (bApa kA mAla) hi: वाट लग गई (vATa laga gal) mr: वाट लागली (vATa lAgall) gu: वाट लागी गई (vATa lAgi gal) (in trouble) 0 Less language divergence leading to easier MT Does not necessarily make MT easier e.g. English & Hindi are divergent in all aspects important to MT viz. lexical, morphological and structural

Tibeto-Burman language family

- Most spoken in the North-East and the Himalayan areas
- Major languages: Mizo, Meitei, Bodo, Naga, etc.
- Related to Myanmarese, Tibetan and languages of S-E Asia
- SOV word order
- Agglutinative/Isolating depending on the language

Linguistic Area (Sprachbund)

- To the layperson, Dravidian & Indo-Aryan languages would seem closer to each other than English & Indo-Aryan
- Linguistic Area: A group of languages (at least 3) that have common <u>structural</u> features due to geographical proximity and language contact (Thomason 2000)
- Not all features may be shared by all languages in the linguistic area

Examples of linguistic areas:

- Indian Subcontinent (Emeneau, 1956; Subbarao, 2012)
- Balkans South East Asia
- Standard Average European
- Ethiopian highlands
- Sepik River Basin (Papua New Guinea)
 Pacific Northwest

Mechanisms for borrowing words (Eifring & Theil, 2005)

	form	content	example
direct loan	yes	yes	sushi < Jap. sushi
loanshift	no	yes	write (orig. 'draw') < Lat. scribere
loan translation	no	yes	paper tiger < Ch. zhĭ lǎohǔ
loan creation	no	yes	Ch. diàn-năo, lit. 'electric brain' < computer
loanblend	partly	yes	Hindi/Urdu dabal kamrā < double room

- Borrowing phonetic form vs semantic content
- Open class words are more easily borrowed than closed class words
- Nouns are more easily borrowed than verbs
- Peripheral vocabulary is more easily borrowed than basic vocabulary
- Derivational Affixes are easily borrowed

Borrowing of Vocabulary (1)

Sanskrit, Indo-Aryan words in Dravidian languages

 Most classical languages borrow heavily from Sanskrit
 Anecdotal wisdom: Malayalam has the highest percentage of Sanskrit origin words, Tamil the lowest

Examples

Sanskrit word	Dravidian Language	Loanword in Dravidian Language	English
cakram	Tamil	cakkaram	wheel
matsyah	Telugu	matsyalu	fish
ashvah	Kannada	ashva	horse
jalam	Malayalam	jala.m	water

Source: IndoWordNet

Borrowing of Vocabulary (2)

Dravidian words in Indo-Aryan languages

- A matter of great debate
- Could probably be of Munda origin also
- See writings of Kuiper, Witzel, Zvelebil, Burrow, etc.
- Proposal of Dravidian borrowing even in early Rg Vedic texts

Borrowing of Vocabulary (3)

- English words in Indian languages
- Indian language words in English • Through colonial & modern exchanges as well as ancient trade relations

Examples

- yoga
- guru
- mango • sugar ٠
- ٠ thug
- juggernaut ٠
- cash

Borrowing of Vocabulary (4)

• Words of Persio-Arabic origin

Examples

- khushi
- dlwara • darvAjA
- dAsTana
- shahara

Vocabulary borrowing - the view from traditional Indian grammar (Abbi, 2012)

- Tatsam words: Words from Sanskrit which are used as it is e.g. hasta
- Tadbhav words: Words from Sanskrit which undergo phonological changes e.g. haatha
- Deshaj words: Words of non-Sanskrit origin in local languages
- Videshaj words: Words of foreign origin e.g English, French, Persian, Arabic

Adoption of features in other languages

- Retroflex sounds in Indo-Aryan languages (Emeneau, 1956; Abbi, 2012) Sounds: टठडढण
 - Found in Indo-Aryan, Dravidian and Munda language families
 - Not found in Indo-European languages outside the Indo-Aryan branch But present in the Earliest Vedic literature
 - 0
 - Probably borrowed from one language family into others a long time ago

Echo words (Emeneau, 1956; Subbarao, 2012) ٠

- Standard feature in all Dravidian languages Not found in Indo-European languages outside the Indo-Aryan branch
- Generally means etcetera or things like this
 - Examples:

0

- hi: cAya-vAya
- te: pull-gull
- ta v.elai-k.elai

Adoption of features in other languages

Grammar with wide scope is more easily borrowed than grammar with a narrow scope

- SOV word order in Munda languages (Subbarao, 2012)
 - Exception: Khasi
 - Their Mon-Khmer cousins have SVO word order
 - Munda language were originally SVO, but have become SOV over time
- Dative subjects (Abbi, 2012) .
 - Non-agentive subject (generally experiencer) Subject is marked with dative case, and direct object with nominative case
 - hi: rAm ko nInda Ayl
 - ml: rAm-inna urakkam vannu

Adoption of features in other languages

- Conjunctive participles (Abbi, 2012; Subbargo, 2012)
 - used to conjoin two verb phrases in a manner similar to conjunction
 - Two sequential actions; first action expressed with a conjunctive participle hi: wah khAnA khAke jAyegA

 - kn: mazhA <u>band-u</u> kere tumbitu rain come tank fill The tank filled as a result of rain
 - ml: mazhA <u>vann-u</u> kuLa.n niranju rain come pond fill The pond filled as a result of rain
- Quotative (Abbi, 2012; Subbarao, 2012)
- Reports some one else's quoted speech
- o Present in Dravidian, Munda, Tibeto-Burman and some Indo-Aryan languages (like Marathi, Bengali, Oriya) iti (Sanskrit), asa (Marathi), enna (Malayalam)
- mr: mi udyA yeto asa to mhNal
 - I tomorrow come +quotative he said

Adoption of features in other languages

- Compound Verb (Abbi, 2012; Subbarao, 2012)
 - Verb (Primary) +Verb (vector) combinations Found in very few languages outside Indian subcontinent
 - Examples:
 - hi: गिर गया (gira gayA) (fell go)
 - ml: പിണു പോയി (viNNu poyl) (fell go)
 te: ാര ഗ്യഹംപം (padi poyAdu) (fell go)
- Conjunct Verb (Subbarao, 2012)
 - Light verb that carries tense, aspect, agreement markers, while the semantics is carried by the associated noun/adjective
 - hi: mai ne rAma kl madada <u>kl</u> kn: nanu ramAnige sahayavannu <u>mAdidene</u>
 - . gloss: I Ram help did

India as a linguistic area gives us robust reasons for writing a common or core grammar of many of the languages in contact

~ Anvita Abbi

What is linguistic typology?

- Study of variation in languages & their classification ٠
- Study on the limitations of the degree of variation found in languages

Some typological studies (Eifring & Theil, 2005)

- Word order typology
- Morphological typology
- Typology of motion verbs
- Phonological typology ٠

Writing Systems (Daniels & Bright, 1995)

- Logographic: symbols representing both sound and meaning • Chinese, Japanese Kanji
- Abjads: independent letters for consonants, vowels optional Arabic. Hebrew
- Alphabet: letters representing both consonants and vowels Roman, Cyrillic, Greek
- Syllabic: symbols representing syllables Korean Hangul, Japanese Hiragana & Katakana
- Abugida: consonant-vowel sequence as a unit, with vowel as secondary notation Indic Scripts

Indic scripts

- All major Indic scripts derived from the Brahmi script
 First seen in Ashoka's edicts
- Same script used for multiple languages o Devanagari used for Sanskrit, Hindi, Marathi, Konkani, Nepali, Sindhi, etc. Bangla script used for Assamese too
- Multiple scripts used for same language Sanskrit traditionally written in all
- Sanski it datutionally written in air regional scripts
 Punjabi: Gurumukhi & Shahmukhi
 Sindhi: Devanagari & Persio-Arabic
 Said to be derived from Aramaic script,
- but shows sufficient innovation to be considered a radically new alphabet design paradigm

Common characteristics

- स का इ हैं उठ का स पे ऐ ए ऐ सो सी सी सी का का म प क क खात्र जा सा इंग्ले के से का तो क के रूप म प क क खात का सिठेंक आ आ दिनी ऐ पि हो में कि में स्व या स प्र प्र प्र म का सह रह उड स्टर उस आ यही की कि स्व में से में स्व वे आ यो के रूप स र 1 एक रज मार स रा के का का कर के पी लो की का सा दा पा कर का रह रह र कर स
- Bengali Gurnski
- Gujana Oriye
- Tanil
- .ఆ ఇక్షమ్ గా ఓా జా గా భా ప్రాత్రణా గా జా కా మైత్రం అరా ఇక్ అ ఆ ఇళం ఉ ఊ బు ారిఎఏఐ ఒఓ ఔశధ గ ఫు జ చ ఛ జరుఖ ఆ ఆ ాళం లు లు య ా ఎఎఐ ఒఓ ఔశవిగ భా జ జరిజ దుఖ శా
- ഞ ആള ഈ ഉള്ള ഇത എ ഏഐ ഒടെ ഔകഖഗഘ
- Abugida scripts: primary consonants with secondary vowels diacritics (matras)
 - rarely found outside of the Brahmi family
- The character set is largely overlapping, but the visual rendering differs
- Dependent (maatras) and Independent vowels
- Consonant clusters (क्क,क्ष) ٠
- Special symbols like:
 - anusvaara (nasalization), visarga (aspiration)
 - halanta/pulli (vowel suppression), nukta(Persian sounds)
- Traditional ordering of characters is same across scripts (varnamala) .

Benetits t	or NLP		
Easy to cor	nvert one so	ript to another	
 Ensures co 	nsistency ir	n pronunciation across a wie	de range of scripts
 Easy to ren 	recent for	omputation:	0
• Lasy to rep	i esent ioi i	computation.	
 Coordin 	ated digital rep	presentations like Unicode	
 Phonetic 	c feature vecto	rs	
	Feature	Possible Values	
	Туре	Unused (0), Vowel modifier (1), Nukta (2),	
		Halant (3), Vowel (4), Consonant (5),	
		Number (6), Punctuation (7)	
	Height (vowels)	Front (1), Mid (2), Back (3)	
	Length	Short (1), Medium (2), Long (3)	
	Svar1	Low (1), Lower Middle (2), Upper Middle (3),	
		Lower High (4), High (5)	
	Svar2	Samvrit (1), Ardh-Samvrit (2)	
		Ardh-Vivrit (3), Vivrit (4)	
	Sthaan	Dvayoshthya (1), Dantoshthya (2),	
	(place)	Dantya (3), Varstya (4), Talavya (5)	
		Murdhanya (6), Komal-Talavya (7),	
		Jivhaa-Muliya (8), Svaryantramukhi (9)	
	Prayatna	Sparsha (1), Nasikya (2), Parshvika (3),	
	(manner)	Prakampi (4), Sangharshi (5), Ardh-Svar (6)	Source: Sinah. 2006

Some trivia to end this section

The Periodic Table & Indic Scripts

Dmitri Mendeleev is said to have been inspired by the two-dimensional organization of Indic scripts to create the periodic table

http://swarajyamag.com/ideas/sanskrit-and-mendeleevs-periodic-table-of-elements/

The Full I let	of Mondoleon	Ducdistions with	their	Construit Nom.
The Full List	of Menucleev	s Fredictions with	uten	Sanskin Name

Mendeleev's Given Name	Modern Name		
Eka-aluminium	Gallium		
Eka-boron	Scandium		
Eka-silicon	Germanium		
Eka-manganese	Technetium		
Tri-manganese	Rhenium		
Dvi-tellurium	Polonium		
Dvi-caesium	Francium		
Eka-tantalum	Protactinium		

Where are we?

- Motivation
- Language Relatedness
- A Primer to SMT
- Leveraging Orthographic Similarity for transliteration
- Leveraging linguistic similarities for translation Leveraging Lexical Similarity Leveraging Morphological Similarity
- Leveraging Syntactic Similarity
- Synergy among multiple languages Pivot-based SMT
 - Multi-source translation
- Summary & Conclusion
- Tools & Resources

Where are we?

- Motivation •
- Language Relatedness •
- A Primer to SMT •
- Leveraging Orthographic Similarity for transliteration
- Leveraging linguistic similarities for translation •
 - Leveraging Lexical Similarity
 - Leveraging Morphological Similarity Leveraging Syntactic Similarity
- Synergy among multiple languages Pivot-based SMT
 - Multi-source translation
 - Summary & Conclusion
- Tools & Resources

Rule-based transliteration for Indic scripts (Atreya, et al 2015; Kunchukuttan et al, 2015)

- A naive system: nothing other than Unicode organization of Indic scripts
- First 85 characters in Unicode block for each script aligned .
- Logically equivalent characters have the same offset from the start of the codepage
- Script conversion is simply a question of mapping Unicode characters
- Some exceptions to be handled: •
 - Tamil: does not have aspirated and voiceless plosives
 - Sinhala: Unicode codepoints are not completely aligned Some non-standard characters in scripts like Gurumukhi, Odia, Malayalam 0
- Some divergences

.

- Nukta Representation of Nasalization (निशांत or निशान्त) schwa deletion, especially terminal schwa
- This forms a reasonable baseline rule-based system Would work well for Indian origin names
 - English, Persian and Arabic origin have non-standard mappings

Results of Unicode Mapping

	pa	as	bn	hi	gu	mr	te	kn	ml	ta
pa		62.5	87.4	93.2	84.8	66.2	94.3	93.9	94.7	66.2
as	64.8		83.3	72.9	70.5	69.2	64	66.3	60.2	
bn	90.1	82.4		97.3	88.2	64.6	96.1	94.8	98.4	72.9
hi	83.7	71.9	80.9		85.4	76.6	95.9	93.5	95.7	70.7
gu	87.2	71.7	86.6	99		84	97.1	95.4	98	75.2
mr	68.4	71	68	73.2	82.3		64.3	66.8	66.3	
te	97.6	63	97.6	53.8	97	68.2		98.6	99.1	75.1
kn	97.9	64.2	96.1	98.6	96.3	69.7	99.3		99.7	72.2
ml	98.5	61.6	99.3	99.2	98.3	71.4	98.9	99.8		71.4
ta	81.6		81.3	81.7	82		81.1	80.7	79	

Results can be improved can handling the few language specific exceptions that exist

Akshar based transliteration of Indic scripts

(Atreya, et al 2015)

- Akshar: A grapheme sequence of the form C+V (क् + त + ई) = क्ती • An akshar approximates a syllable:
 - Syllable: the smallest psychologically real phonological unit (a sound like /kri/)
 Akshar: the smallest psychologically real orthographic unit (a written akshar like 'kri')
- Vowel segmentation: Segment the word into akshars

Hindi	Kannada	English
वि द्या ल य	ವಿ ದಾಯ್ ಲ ಯ	vi dya lay
अ र्जु न	ಅ ರ್ಜು ನ	a rju n
5		

Oth	er possible se	egmentation met	thods
Chara	cter-based: Split word into	characters	
	Hindi	Kannada	English
	व िदि्य ाल य	ವ ೆ ದ ್ ಯ ಾ ಲ ಯ	vidyalay
	अ र ्ज ुन	ಅ ರ ್ ಜ ು ನ	arjun
Syllab • •	le-based: Split word at sy Automatic syllabification is Syllabification gives best re Vowel segmentation is an a	lable boundaries non-trivial esults approximation	
	Hindi	Kannada	English
	विद् या लय	ವಿದ್ ಯಾ ಲ ಯ	vid ya lay
	अर् जुन	ಅರ್ ಜು ನ	ar jun

•

.

•

	pa	as	bn	hi	gu	mr	te	kn	ml	ta
pa		CS:77.50	CS:89.80	CS:96.80	CS:90.30	CS:77.80	CS:95.70	CS:96.80	CS:96.90	CS:98.5
		VS:82.50	VS:93.70	VS:98.60	VS:89.50	VS:78.90	VS:97.90	VS:98.40	VS:98.50	VS:98.3
as	CS:73.10		CS:82.58	CS:76.30	CS:74.30	CS:71.00	CS:71.40	CS:73.80	CS:69.00	-
	VS:83.10	02.05.30	V5:86.89	VS:85.90	VS:84.80	VS:80.60	VS:81.70	VS:85.20	VS:78.40	CC-07 -
bn	VS-03 10	VS-87 70		VS-07.80	VS-03.80	VS-80.60	VS-96.20	VS-97.00	VS-08-20	US-08 (
	CS-96.40	CS-70 20	CS-70 70	43.57.00	CS-81 20	CS-72 77	CS-05 70	CS-02.20	CS:05.40	CS-05.6
hi	VS:87.60	VS:84.80	VS:88.30		VS:88.00	VS:82.88	VS:96.50	VS:93.60	VS:96.70	VS:95.8
	CS:89.30	CS:83.00	CS:84.10	CS:98.70		CS:81.60	CS:97.00	CS:95.70	CS:98.00	CS:98.0
gu	VS:88.80	VS:87.00	VS:91.20	VS:99.00		VS:83.00	VS:97.00	VS:96.70	VS:98.40	VS:98.2
	CS:78.70	CS:79.40	CS:75.40	CS:66.87	CS:77.40		CS:67.00	CS:74.90	CS:69.20	
mr	VS:79.90	VS:88.60	VS:84.40	VS:75.88	VS:81.40		VS:74.60	VS:78.60	VS:73.90	
to	CS:97.40	CS:75.20	CS:96.40	CS:99.20	CS:97.60	CS:70.10		CS:98.70	CS:99.00	CS:98.5
	VS:98.40	VS:79.80	VS:98.10	VS:99.30	VS:98.20	VS:76.90		VS:98.80	VS:97.70	VS:98.8
kn	CS:97.60	CS:76.40	CS:94.60	CS:98.50	CS:96.20	CS:71.50	CS:99.20		CS:99.50	CS:98.9
	VS:98.40	VS:81.30	VS:97.40	VS:98.90	VS:96.80	VS:79.60	VS:99.60		VS:99.90	VS:99.3
ml	CS:99.00	CS:72.20	CS:99.60	CS:99.10	CS:98.40	CS:71.80	CS:98.90	CS:99.80		CS:97.2
	V5:99.10	V5://./U	V5:99.00	V5:99.30	V5:99.00	V5://./U	V5:99.40	V5:99.90	CC-05 70	V5:97.5
ta	LS:84.10	-	US:05 20	VS:05 50	VS:06.60	-	US:06.60	US:06 30	VS:05.00	

Where are we? Leveraging Lexical Similarity • Motivation • Language Relatedness A Primer to SMT • Leveraging Orthographic Similarity for transliteration • Leveraging linguistic similarities for translation Leveraging Lexical Similarity Leveraging Morphological Similarity Leveraging Syntactic Similarity Synergy among multiple languages Pivot-based SMT • Multi-source translation Summary & Conclusion Tools & Resources

Lexically similar words

Words that are similar in form and meaning

- Cognates: words that have a common etymological origin

 egs. within Indo-Aryan, within Dravidian

 Loanwords: borrowed from a donor language and incorporated into a
- recipient language without translation • egs. Dravidian in Indo-Aryan, Indo-Aryan in Dravidian, Munda in Indo-Aryan
- Fixed Expressions & Idioms: multiwords with non-compositional semantics
- Named Entities

Caveats

- <u>False Friends</u>: words similar in spelling & pronunciation, but different in meaning.
 - Similar origin: semantic shift
 Different origins pAnl(hi) [water], pani(ml)[fever]
 - Loan shifts and other mechanisms of language contact
- Open class words tend to be shared more than closed class words
- <u>Shorter words</u>: difficult to determine relatedness

How can machine translation benefit?

Related languages share vocabulary (cognates, loan words)

- Reduce out-of-vocabulary words & parallel corpus requirements
 - \circ $\;$ Automatic parallel lexicon (cognates, loan words, named entities) induction
 - Improve word alignment
 - \circ $\;$ $\;$ Transliteration is the same as translation for shared words $\;$

d a way to measure orthographic &

onetic similarity of

words in across

Character-oriented SMT

String Similarity Function

If $\pmb{\Sigma}_i$ and $\pmb{\Sigma}_2$ are alphabet sets and \Re is the real set, a string similarity function can defined as:

LCSR & NED

Metrics that take into account order:

- LCSR: Longest Common Subsequence Ratio (Melamed, 1995)
- lcsr(x,y)=ratio of length of longest subsequence to that of longer string
- NED_b: Normalized Edit Distance based metric (Wagner & Fischer, 1974)
 ned_b(x,y)=ratio of edit distance to length of longer string

x = "अंध ा प न" y = "आंधळ े प ण ा"

ned_b(x,y)=1-(%)=0.375

lcsr(x,y)=(3/8)=0.375

Variants

• Instead of unigrams, n-grams could be considered as basic units. Favours matched characters to be contiguous (*Inkpen et al*, 2005)

x = "अग्रंघ ा प म" y = "आग्रंघ ळ रेप ण ा" dice_2gram(x,y) =1/12=8.33

- Skip gram based metrics could be defined by introducing gaps (Inkpen, 2005)
- Use similarity matrix to encode character similarity, substitution cost
- Learn similarity matrices automatically (Ristad, 1999; Yarowsky, 2001)
- LCSF metric to fix LCSR preference for short words (Kondrak, 2005)

Phonetic Similarity & Alignment

Given a pair of phoneme sequences, find the alignment between the phonemes of the two sequences, and an alignment score:

अन्धन - पन - (andhApana, Hindi) आन्ध- ळठेपणन (AndhaLepaNA, Marathi)

You need the following:

- Grapheme sequence to phoneme sequence conversion
- Mapping of phonemes to their phonetic features
- Phoneme Similarity function
- Algorithm for computing alignment between the phoneme sequence

Phonetic Feature Representation for phonemes

Feature	Values
Basic Character Type	vowel, consonant, nukta, halanta, anusvaara, miscellaneous
Vowel Length	short, long
Vowel Strength	weak (a,aa,i,ii,u,uu), medium (e,o), strong (ai,au)
Vowel Status	Independent, Dependent
Consonant Type	plosive (क to म), fricative (स.ष.श, ह), central approximant(य,व,zha), lateral approximant (la,La), flap(ra,Ra)
Place of Articulation	velar, palatal, retroflex, dental, labial
Aspiration	True, False
Voicing	True, False
Nasal	True, False

	Feature	Phonological	Numerical
	name	term	value
some feature values are similar to each other	Place	[bilabial]	1.0
han others		[labiodental]	0.95
		[dentai]	0.9
 Labio-dental sounds are more similar to 		[arveorar]	0.85
bilabial sounds than yelar sounds		[renonex]	0.8
Weights are assigned to each possible		[palato-arveorar]	0.75
Weights are assigned to each possible		[valar]	0.7
value a feature can take		fuvularl	0.5
 Difference in weights can capture this 		[nharyngeal]	0.3
intuition		[glottal]	0.1
	Manner	[ston]	1.0
	manner	[affricate]	0.9
		[fricative]	0.8
		[approximant]	0.6
		[high vowel]	0.4
		[mid vowel]	0.2
		[low vowel]	0.0
	High	[high]	1.0
		[mid]	0.5
		[low]	0.0
	Back	[front]	1.0
		[central]	0.5
Source: Kondrak, 2000		[back]	0.0

Some features are more important than others

Covington's distance measure Covington (1996) Features used in in ALINE & salience values Kondrak (2000)

Methods		
Thresholding based on similarity metrics		
Classification with similarity & other features		
Competitive Linking		
	83	

Features for a Classification System

- String (LCSR, NED_b, PREFIX, Dice, Jaccard, etc.) & Phonetic Similarity measures (Bergsma & Kondrak, 2007)
- Aligned n-gram features (Klementiev & Roth, 2006; Bergsma & Kondrak, 2007)
 (पानी,पाणी) → (प,प),(ा,ा),(ी,ी) (पा,पा)
- Unaligned n-gram features (Bergsma & Kondrak, 2007) (पानी,पाणी) → (न,ण),(ानी,ाणी)
- Contextual similarity features

Competitive Linking (Melamed, 2000)

- <u>Meta-algorithm</u> which can be used when pairwise scores are available
- Represent candidate pairs by a complete <u>bipartite graph</u>
 Edge weights represents score of the candidate cognate pairs
- Solution: Find maximum weighted matching in the bipartite graph
- NP-complete
- Heuristic solution:
 - Find candidate pair with maximum association
 Remove these from further consideration
 - Iterate

Cognates/False-friends vs. Unrelated (Inkpen et al 2005)

Orthographic	Threshold	Accuracy
similarity measure		
IDENT	1	43.90%
PREFIX	0.03845	92.70%
DICE	0.29669	89.40%
LCSR	0.45800	92.91%
NED	0.34845	93.39%
SOUNDEX	0.62500	85.28%
TRI	0.0476	88.30%
XDICE	0.21825	92.84%
XXDICE	0.12915	91.74%
BI-SIM	0.37980	94.84%
BI-DIST	0.34165	94.84%
TRI-SIM	0.34845	95.66%
TRI-DIST	0.34845	95.11%
Average measure	0.14770	93.83%

Performance of in	ndividual measures
Thresholds were	learnt using single
feature alegalfier	

Classifier	Accuracy
	cross-val
Baseline	63.75%
OneRule	95.66%
Naive Bayes	94.84%
Decision Trees	95.66%
DecTree (pruned)	95.66%
IBK	93.81%
Ada Boost	95.66%
Perceptron	95.11%
SVM (SMO)	95.46%
Results of classified	cation
LCSR, NED are simp measures	ole, effective

measures n-gram measures perform well Classification gives modest improvement over individual measures on this simple

<text>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text>

:

Augmenting Parallel Corpus with Cognates

Heuristics

Add cognate pairs to the parallel corpus

- High recall cognate extraction better than high precision (Kondrak et al, 2003; Onataun, 1999)
 alignment methods robust to some false positive among cognate pairs
- Replication of cognate pairs improves alignment quality marginally (Kondrak et al, 2003; Och & Ney, 1999; Brown et al, 1993)
 - Higher replication factors for words in training corpus to avoid topic drift Replication factor can be elegantly incorporated into the word alignment models
- One vs multiple cognate pairs per line
 - better alignment links between respective cognates for multiple pairs per line (Kondrak et al, 2003)

Augmenting Parallel Corpus with Cognates (2)

Results from Kondrak et al (2003)

- Implicitly improves word alignment: 10% reduction of the word alignment error rate, from 17.6% to 15.8%
- Improves vocabulary coverage
- Improves translation quality: 2% improvement in BLEU score

Evaluation	Baseline	Cognates
Completely correct	16	21
Syntactically correct	8	7
Semantically correct	14	12
Wrong	62	60
Total	100	100

- Cannot translate words not in parallel or cognate corpus
- Knowledge locked in cognate corpus is underutilized

This method is just marginally useful

Using orthographic features for Word Alignment

- Generative IBM alignment models can't incorporate phonetic information
- Discriminative models allow incorporation of arbitrary features (Moore, 2005)
- Orthographic features for English-French word alignment: (Taskar et al, 2005)
 - exact match of words
 exact match ignoring accents
 - exact matching ignoring vowels
 - LCSR
 - short/long word

• 7% reduction in alignment error rate

- Similar features can be designed for other writing systems
- Cannot handle OOVs

Model	AER
Dice (without matching)	38.7 / 36.0
Model 4 (E-F, F-E, intersected)	8.9 / 9.7/ 6.9
Discriminative Matchi	ng
Dice Feature Only	29.8
+ Distance Features	15.5
+ Word Shape and Frequency	14.4
+ Common Words and Next-Dice	10.7
+ Model 4 Predictions	5.4

Leveraging Lexical Similarity

Reduce OOV words & parallel corpus requirements

- Phonetic & Orthographic Similarity
- Identification of cognates & named entities
- Transliterating OOV words

Transliterating OOV words

- OOV words can be:
 - Cognates
 - Loan words
 Named entities
 - Other words
- Cognates, loanwords and named entities are related orthographically
- Transliteration achieves translation
- Orthographic mappings can be learnt from a parallel transliteration/cognate corpus

Transliteration as Post-translation step

Durrani et al (2014), Kunchukuttan et al (2015)

Option 1: Replace OOVs in the output with their best transliteration

Option 2: Generate top-k candidates for each OOV. Each regenerated candidates is scored using an LM and the original features

 \underline{Option} 3: 2-pass decoding, where OOV are replaced by their transliterations in second pass input

Rescoring with LM & second pass use LM context to disambiguate among possible transliterations

Translate vs Transliterate conundrum

False friends	Name vs word
hi: mujhe pAnl cahiye (I want water)	en: Bhola has come home
ml-xlit-OOV : enikk paNi vennum (I want work) ml: enikk veLL.m vennum	hi: <u>bholA</u> ghara AyA hai en: The innocent <u>boy</u> has come home hi: vah <u>bholA</u> ladkA ghara AyA hai
Which part of a name to transliterate?	Transliteration is not used
United Arab Emirates	United States
s.myukta araba amirAta	amrlkA

Integrate Transliteration into the Decoder

Durrani et al (2010), Durrani et al (2014)

- In addition to translation candidates, decoder considers all transliteration candidates for each word
 Assumption: 1-1 correspondence between words in the two languages
 - monotonic decoding
- Translation and Transliteration candidates <u>compete</u> with each other
- The features used by the decoder (LM score, factors, etc.) help make a choice between translation and transliteration, as well as multiple transliteration options

Additional Heuristics

1. Preferential treatment for true cognates: Reinforce cognates which have the same meaning as well as are orthographically similar using new feature:

joint_score(f,e) = sqrt(xlation_score(f,e) * xlit_score(f,e))

2. LM-OOV feature:

- Number of words unknown to LM.
- Why?: LM smoothing methods assign significant probability mass to unseen events 0 This feature penalizes such events

Results (Hindi-Urdu Translation)

Durrani et al (2010)

Phrase-Based (1) (1)+Post-edit Xlit (1)+PB with in-decoder Xlit (3) (3) + Heuristic 1 14.3 16.25 18.6 18.86

Hindi and Urdu are essentially literary registers of the same language. We can see a 31% increase in BLEU score

फिर भी वह शान्ती से नहीं रह सकता है پھر بھی وہ <u>سکون</u> سے نہیں رہ سکتا ہے p_hIr b_hi vh <u>s@kun</u> se n@her̃h s@kt_dA "Even then he can't live peacefully" ओम शान्ती ओम फराह खान की दूसरी फिल्म है اوم <u>شانتی</u> اوم فراح خان کی دوسری فلم ہے Aom SAnt_di Aom frhA xAn ki d_dusri fIl@m he "Om Shanti Om is Farah Khan's second film"

	hi	ur	pa	bn	gu	mr	kK	ta	te	ml	\mathbf{en}
ni		19.26	23.98	21.05	21.25	19.87	18.39	9.84	15.38	11.47	8.25
\mathbf{ur}	16.67	1.4	17.65	26.32	10.53	9.52	11.11	13.04	14.29	4.35	5.56
pa	29.54	20.14	-	20.62	20.53	17.40	16.90	6.87	14.18	7.55	6.55
bn	27.35	17.17	22.57	-	22.01	20.05	19.19	7.68	14.96	10.38	8.41
gu	33.82	21.67	27.34	25.72		25.82	22.15	8.66	17.66	10.54	7.68
\mathbf{mr}	30.29	17.50	23.77	25.08	29.07	-	25.25	8.79	16.50	9.54	4.99
$\mathbf{k}\mathbf{K}$	27.89	18.21	23.81	23.96	24.01	24.21	-	9.29	16.17	10.17	6.05
$_{\mathrm{ta}}$	16.90	11.38	12.40	13.63	13.07	11.00	11.82	· •	11.32	8.67	3.64
te	19.53	11.49	16.74	15.59	15.00	13.20	13.02	7.36	-	7.73	5.07
ml	15.50	8.95	11.70	13.22	12.26	10.14	10.39	7.94	10.97	-	3.54
\mathbf{en}	5.85	5.22	4.70	4.16	3.34	3.11	4.34	1.91	4.11	2.79	-
Tr BL O(Né	anslitera .EU sco OV cour early cor	ite untra res impr t reduce rect trar	% d inslated rove by ed by up	words a up to 4% to 30% ions: an	in OOV & rescor 6 6 for IA I 0ther 9-	using s re with L anguag 10% de	M and I .M and I es, 10% crease i	I transli .M-OOV for Dra n OOV	teration / feature vidian la count c	es (Durr anguage an pote	ani, 2 es ntially

Key ideas

- Translation as Transliteration
- Character as the basic unit of translation
- Represent the sentence as a pair of character sequence
- Word boundaries are represented by special characters

Example

<u>word-level representation</u> (hi) राम ने श्याम को पुस्तक दी (mr) रामाने श्यामला पुस्तक दिली

<u>char-level representation</u> (hi) र**ाम_न**े_श**्य**ाम_को_प**्स**्तक_द**ौ** (mr) र**ाम**ान**े_ श**्य**ामल**ा_प**ुस**्तक_द**ौ**ल ौ

Motivation (Neubig et al, 2012)

- The primary divergences between related languages/dialects are:
 - spelling/pronunciation differences suffix sets
 - function words
- A single integrated framework to tackle:
 - Named entities Cognates
 - High degree of inflection and agglutination Lack of word boundaries
- In short, handle data sparsity is the issue
- Can this concept apply to any pair of languages?

Making CO-SMT work

Corpus representation: Add word-boundary boundary marker character

Sentences are too long; decoding and word alignment are inefficient

- Limit on sentence length in training corpus; loss of training corpus (Tiedemann, 2009)
- Extract phrases from word based phrase table as candidates; larger models (Vilar, 2007) No distinct advantage of one model over another (Tiedemann, 2009)

Limitations:

- Does not solve the decoding problem
- . Is the corpus representative

Monotone decoding: since character level reordering is not properly defined. However, using reordering has also been shown to be useful (*Tiedemann*, 2009)

Tuning: character level tuning not meaningful, should be done at the word level (Tiedemann, 2012)

Squeezing out performance from CO-SMT

Capturing larger context information (Tiedemann, 2009)

- Larger order LM
- Larger phrase lengths

Viable since data sparsity is not an issue in the character space (except for logographic scripts). Improves translation accuracy

Exploring the character \rightarrow word oriented translation continuum

Overlapping n-gram as basic unit (Tiedemann, 2012)

Combining with a word-oriented SMT (WO-SMT) (Nakov & Tiedemann, 2012)

- System combination of CO-SMT and WO-SMT and selecting translation outputs
- Merging the two models: transform WO-SMT phrase table to character level Add origin features

-,	BLEU%	LCSR%	No	System	%BLEU
-based (lexicalised reord)	50.12	75.95	1	word-based	32.19
based (lexicalised reord)	48.98	80.65	2	char-based (unigram)	32.28
based (monotone)	48.94	80.36	3	char-based (bigram)	32.71
-based (lexicalised reorder) ger n-gram & phrase length	50.07	80.94	4	system combination (MEMT) (3+4)	32.92
ourse: Tiedemann, 2000			5	merging phrase tables (4+4)	33.94
	in a long		Sou Mac	rce: Nakov & Tiedemann, 2012 fo edonian→ Bulgarian translation	r
As measured by BLEU vord level models <u>BLEU is not an approp</u> Evaluator can still per conger LM and phras	J metrie	c, charac tric, since e d translatic ext in cha	xact word on quality, or based	d models are <u>comparabl</u> s may not be generated <u>LCSR</u> may capture that better model helps	e

Motivation

Where are we?

- Language Relatedness
- A Primer to SMT
- Leveraging Orthographic Similarity for transliteration
- Leveraging linguistic similarities for translation
 - Leveraging Lexical Similarity
 - <u>Leveraging Morphological Simila</u>
 Leveraging Syntactic Similarity arity
- Synergy among multiple languages Pivot-based SMT
 - Multi-source translation
- Summary & Conclusion
- Tools & Resources

Morphological Similarities

Word segmentation improves translation output for morphologically rich languages

Morphological Similarity

- Related languages may exhibit morphological isomorphism correspondence between the suffixes and post-positions
 - e.g. source suffix → target suffix + target post-position aोडीला aाडीला aाडीला and (viTinu munnii)→ घर के सामने (ghar ke sAmne) (in front of the house)
- Isomorphism makes translation easier If suffixes were translated as phrases, these would have to be learnt from parallel corpus
- Morphological divergences to be bridged •
 - Does the source suffix transform to target suffix or post-position or both? Are there multiple options for translation of the suffix?

Unsupervised Word Segmentation

Reduce data sparsity by decomposing words in training corpus into their component morphemes

മംഗൾയാൻ ഒമ്പത് <u>മാസങ്ങൾകഴിഞ്ഞ്</u> ചൊവൂയിൽ എത്തി maMgaLyAn ompata mAsa.NgaL kazhiJN chowayi etti Mangaiyan nine months after Mars_in reached മംഗൾയാൻ ഒമ്പൽ <u>മാസ ങ്ങൾ കഴിഞ്ഞ്</u> ചൊവൂ യിൽ എത്തി maMgaLyAn ompata <u>mAsa_Naga</u> kazhiJN chowa yi etti

- Learn word segmentation from a list of words and their corpus frequencies (optional)
- Finds the lexicon (set of morphemes) such that the following objectives are met:
 - The likelihood of the tokens is maximized
 - The size of lexicon is minimized
 - Shorter morphemes are preferred
- The technique is language independent and requires and only monolingual resources to learn word segmentation

110

			Tourisn	n		Health			Genera	1
Lang	Metric	PB	PB+	PB+	PB	PB+	PB+	PB	PB+	PB+
Pair			morph	morph+		morph	morph+		morph	morph
				translit			translit			translit
ha hi	B	34.38	37.1	37.66	36.46	38.66	39.04	36.24	38.61	38.92
on-m	M	55.73	58.38	58.98	57.44	59.89	60.37	57.36	59.47	59.84
man hi	B	40.24	46.86	46.86	39.84	46.86	46.86	41.35	47.92	47.92
<u>1111</u> -111	M	60.78	66.47	66.47	60.29	66.76	66.76	61.79	67.17	67.17
to bi	B	17.76	22.42	22.91	21.55	26.05	26.35	20.45	25.34	25.65
ta-m	M	36.11	41.61	42.31	39.94	45.03	45.42	38.93	44.57	50.00
4. h.:	B	26.99	31.77	32.45	29.74	35.59	36.04	29.88	35.43	35.88
te-m	M	47.20	52.48	53.35	50.05	56.05	56.68	50.20	55.82	56.38
Source o H	M e word se For morph For compa Similar tre	gmenta nologica aratively	52.48 tion sign lly rich so poor so	53.35 ificantly ir ource like urce like l	nprove ta, imp	serforn ovemen	56.68 nance its of upto ts of upto	24% in 6% in E	BLEU BLEU	56.38
Tranci	itoration (nort od	iting mar	rainally im	provoc	tranclati				
		post-eu	ovo by u	pto 1 2%	proves	uansiau	JII			
	DELLO SCOI	es impi	ove by u	40/						

Examples

Morphological segmentation helps overcome data sparsity

Source	गौतम बुद्ध अभयारण्य <u>कोडरमामध्ये</u> वसलेले आहे जेथे चित्ता आणि वाघ आहेत .
Segmented	गौतम बुद्ध अभयारण्य <u>कोडरमा मध्ये</u> वसलेल े आहे जेथे चिता आणि वाघ आहेत -
Xlation: simple PBSMT	गौतम बुद्ध अभ्यारण्य <u>कोडरमामध्ये</u> स्थित है जहाँ चीता और बाघ हैं ।
Xlation: PBSMT + segmentation	गौतम बुद्ध अभ्यारण्य <u>कोडरमा में</u> स्थित है जहाँ चीता और बाघ हैं ।

Aggressive segmentation results in deterioration of translation quality

Source	इक्ष्वाकु पुत्र राजा विशाल याला वैशाली राज्याचा संस्थापक मानले जाते .
Segmented	<u>इ क्ष ्वा कु पुत्र</u> राजा विशाल याला वैशाली राज्य ाचा संस्थापक मानले जाते .
Xlation: simple PBSMT	इ <u>क्ष्वाकु पुत्र</u> राजा विशाल इसे वैशाली राज्य का संस्थापक माना जाता है ।
Xlation: PBSMT + segmentation	<u>सन सफेद ्वा विकृत</u> पुत्र राजा विशाल इसे वैशाली राज्य का संस्थापक माना जाता है ।

Where are we? Motivation Language Relatedness A Primer to SMT Levenaging Orthographic Similarity for transliteration Levenagin Qurphological Similarity Levenaging Syntactic Similarities foo translation Levenaging Syntactic Similarities Levenaging Syntactic Similarity Moti-source translation Summary & Conclusion Tools & Resources

The structural divergence problem for En-IL

- Significant structural divergence between English and Indian languages (Indo-Aryan & Dravidian)
 - English is SVO
 All Indian languages are SOV
- Standard PBSMT cannot handle long-distance reordering
- <u>Source Reordering</u>: Change the word of source side of the training corpus to match the target language word order prior to SMT training

Longer phrases can be learnt
 Decoder cannot evaluate long distance reorderings by search in a small window

Rule-based source reordering Portable rules for $En \rightarrow IL$ pairs $SS_mVV_mOO_mCm \rightarrow C'_mS'_mS'O'_mO'V'_mV'$ Indo-Aryan Dravidian where, S: Subject O: Object V: Verb C_m : Clause modifier X': Corresponding cor where X is S, O, or V X_m : modifier of X Generic reordering (Ramanathan et al 2008) hin urd pan ben guj mar kok tam tel mal (A) Phrase based system (S1) eng Basic reordering transformation for English→ eng 26.53 18.07 22.86 14.85 17.36 10.17 13.01 4.17 6.43 4.85 nstituent in Hindi, (B) Phrase based system with source reordering: generic rules (S2) eng 29.63/20.42/26.06 16.85/20.11/11.46/15.01/4.97 7.83 5.53 -(C) Phrase based system with source reordering: Hindi-adapted rules (S3) eng 30.86 21.54 27.52 18.20 21.33 12.68 15.73 5.09 8.29 5.68 VP(advP ypw/dcP.advP dcP ypw) English: Bikaner, popularly known as the came courty is located a Rajsshan. Parse: Bikaner. / IPF (advP popularly) / opw known) (dcP as the camel country) is located in Rajsthan. Partial Recordered: Bikaner , advP popular-bocated in Rajshan. S2: Generic En-Hi reordering rule-base Hindi-tuned reordering (Patel et al 2013) S3: En-Hi reordering rule-base, tuned for Hindi Improvement over the basic rules by Source reordering improves BLEU scores for 15% and 21% for source analyzing En→ Hi translation output Reordered: Bikaner , (advP popularly) (dcP he camel country as) (vpw known) Rajsthan in reordering system systems S2 and S3 respectively for all language pairs located 1s . Hindi: bikaner , jo aam taur par unton ke desh ke naam se jana jata hai, rajasthan me sthit A single rule-base serves all major Indian languages Even Hindi-tuned rules perform well for other Indian languages as target

Examples

Source reordering helps improves word order

Steps	Sentence
Input Sentence	Bilirubin named colored substance is made in our body absolutely everyday .
Source side reordering	Bilirubin named colored substance in our body absolutely everyday made is .
Phrase based Translation	Bilirubin नामक रंग के पदार्थ हमारे शरीर में प्रतिदिन बनते है ।
Transliteration	वाइलीरुविन नामक रंग के पदार्थ हमारे शरीर में प्रतिदिन बनते है ।

Reordering rules can generate wrong word order

In this example, no rules for imperative sentences cause reordering error

 Input Sentence
 Burn on cooking 20 live scorpions in 1 litre sesame seed oil .

 Source side reordering
 1 in 20 live scorpions cooking on Burn sesame seed oil litre .

Where are we? Motivation Language Relatedness A Primer to SMT Leveraging Orthographic Similarity for transliteration Leveraging Inguistic similarities for translation Leveraging Lexical Similarity Leveraging Syntactic Similarity Leveraging Syntactic Similarity Synergy among multiple languages Pivot based SMT Multi-source translation Summary & Conclusion Tools & Resources

Why pivot based SMT?

Bridge Mode

No parallel resources are available between source and target languages

Augmentation Mode

Scarce parallel resources between source and target languages, but ample resources between source-pivot and/or pivot/target

- New translation pairs
- New translation options

Improvement in lexical coverage

Methods for Composition of *src-pvt* and *pvt-tgt* systems

- Pseudo-Corpus Synthesis
- Cascading Direct Systems
- Model Triangulation

Comparison of Composition Methods

Criteria	Pseudo-corpus	Cascaded	Triangulation
Ease of implementation	Easy	Easy	Involved
Training Time	Low, just as much as a baseline PBSMT system	No separate training	High, due to the time required for merging
Decoding Time	Low, just as much as a baseline PBSMT system	Very high, due to multiple decoding	High due to increase in model size
Model Size	training corpus size <=2*max(src- pvt,pvt-tgt) corpus same order as PBMST model of this size	No new model created	Blow-up due to the join during merge
Translation Accuracy	could be comparable to cascaded model	taking top-n candidates better than top-1	best method

Translation Accuracies (Case Studies)

Marino & Gispert, 2006

Catalan-English with Spanish as pivot Cascaded & Synthetic approaches are comparable

	BLEU	WER	PER
at → Eng (cascaded)	0.5147	36.31	27.08
Cat → Eng (synthetic)	0.5217	35.79	26.79
$pa \rightarrow Eng$	0.5470	34.41	25.45
ing > Cat (cascaded)	0.4680	40.66	32.24
ing > Cat (synthetic)	0.4672	40.50	32.11
ing → Spa	0.4714	40.22	31.41

Utiyama & Isahara, 2007

- Various European languages with English as pivot Triangulation is the better than
- cascading
- using top-n(=15) candidates better than top-1 for cascading method
 The triangulation method is comparable

to the direct translation system (>90% of direct system's performance as measured by BLEU)

Source-Target	Direct		Triangulation	C	ascading (n=15)	Ca	ascading(n=1)
Spanish-French	35.78	>	32.90 (0.92)	>	29.49 (0.82)	>	29.16 (0.81)
French-Spanish	34.16	>	31.49 (0.92)	>	28.41 (0.83)	>	27.99 (0.82)
German-French	23.37	>	22.47 (0.96)	>	22.03 (0.94)	>	21.64 (0.93)
French-German	15.27	>	14.51 (0.95)	>	14.03 (0.92)	<	14.21 (0.93)
German-Spanish	22.34	>	21.76 (0.97)	>	21.36 (0.96)	>	20.97 (0.94)
Spanish-German	15.50	>	15.11 (0.97)	>	14.46 (0.93)	<	14.61 (0.94)

Augmentation Methods • Linear Interpolation • Fillup Interpolation Multiple Decoding Paths .

Linear Interpolation (Wu & Wang, 2009)

- Given n models (direct+pivots), combine them to create a single translation model via linear interpolation of models
- Interpolation of phrase translation & lexical probability for PBSMT

 $\phi(\overline{f} \mid \overline{e}) = \sum_{i=1}^{n} \alpha_{i} \phi_{i}(\overline{f} \mid \overline{e})$

 $p_{\mathbf{w}}(\overline{f} \mid \overline{e}, a) = \sum_{i=1}^{n} \beta_{i} p_{\mathbf{w},i}(\overline{f} \mid \overline{e}, a)$

where, α_i and β_i are interpolation weights for model *i* for each feature

• Choosing interpolation weights

- Higher weight to direct model Weighted by BLEU score of standalone systems
- Tune on development set

Fillup Interpolation (Dabre et al, 2015)

- Back-off scheme
- Define a priority of the models being combined
- Create a single phrase table by choosing entries from the input models in order of priority
- Look into the next model only if an entry is not found in the higher ranked input model

No modification of probabilities

- Defining the priority of pivots
 - based on translation quality of each individual model
 - Direct system would most likely be first! based on similarity between source/target and pivot languages

Multiple Decoding Paths (MDP) (Nakov & Ng, 2009; Dabre et al, 2015)

- Runtime integration
- Decoder searches over all phrase tables for translation options
- Each model will result in its own hypothesis
- The decoder will score each of the hypothesis and select the best one
- Cannot define priority or weighting of the different phrase tables These tend to be ad-hoc anyw
- Makes up for this limitation by allowing multiple models to compete with each other

Comparison of Augmentation Methods

Criteria	Linear Interpolation	Fillup	MDP
Ease of implementation	Easy, tuning the interpolation weights is tricky	Easy	Difficult
Training Time	Tuning time could be enormous	Merging the tables can be done efficiently	No overhead
ecoding Time No overhead		No overhead	High due to searching over multiple paths
Weighting of Models	Yes	Yes	No
Translation Accuracy	marginal improvement over direct model, may not be statistically significant	performance comparable to linear interpolation	best method, gives significant improvement over direct system

Translation Accuracies (Case Studies) (Dabre et al, 2015)

- Japanese-Hindi translation using various pivots
- Not clear if any of the linear interpolation is better than other
- Performance of Fillup and linear interpolation cannot be distinguished
- MDP is clearly better than all interpolation schemes

Pivot	Linear	Linear	Fill	MDP		
Language	Interpolate (1)	Interpolate (2)	Interpolate	With		
	With Direct	With Direct	With Direct	Direct		
1. Direct	33.86					
2. Chinese	34.03	34.61	34.31	35.66		
3. Korean	34.65	34.18	34.64	35.60		
4. Esperanto	34.63	34.55	35.32	35.74		

Effect of Multiple Pivots

Fr-Es translation using 2 pivots Source: Wu & Wang (2007)

Hi ←→ Ja translation using 7 pivots Source: Dabre et al (2015)

•

•

System Ja→Hi Hi→Ja Direct 37.47 33.86 Direct+best pivot 35 74 39.49 (es) (ko) Direct+Best-3 pivots 38.22 41 09 Direct+All 7 pivots 38.42 40.09

- Adding a pivot increases vocabulary coverage
 - Does adding more pivots help?
 - The answer fortunately is YES!
- Especially useful when the training corpora are small

Divergence Scenarios in Pivot-SMT

- Same colour indicates that the languages are not divergent for the linguistic phenomena under consideration
- Examples of Linguistic phenomena: word order, language family, agglutination, etc.

Addressing Word-Order divergence (Patil, Chavan et al, 2015)

Scenario

- Word Order Divergence between source and target language
- Given a source-pivot and pivot-target lexicalized reordering model, obtain a source-target lexicalized reordering model
 - For the phrase pairs that are newly added through Phrase Table Triangulation, no reordering information is available
 - Why lexicalized reordering model?: language agnostic and no additional resource requirements
- Use of pivot language to assist the direct translation system

Language Combination	Without Reordering triangulation	With Reordering triangulation	Language Combination	Without Reordering triangulation	With Reordering triangulation
En-Hi-Gu	17.57	17.67	En-Hi-Gu	17.37	17.71
En-Hi-Mr	13.17	13.18	En-Hi-Mr	13.11	13.19

- consideration to evidence from the data
- Count-based method utilizes evidence from the data to compute the multiplicative factor
- Consistently outperforms direct reordering system

- Agglutinative source language & non-agglutinative target ٠
- Pivot may/may not be agglutinative
- Use of pivot language to assist the direct translation system •

Case Study: Malayalam-Hindi translation

Source: Malayalam (agglutinative) Target: Hindi (not agglutinative) Pivots: Bangla, Gujarati, Punjabi (not agglutinative) Konkani, Marathi, Tamil, Telugu (agglutinative)

System	% BLEU
Direct	16.11
Direct+All Pivot	18.67
Direct (source segmented)	23.35
Direct+All Pivot (source, pivot segmented)	25.51

Effect of Triangulation: Augmentation by pivot improves BLEU Score by 15% over direct system

Effect of Triangulation+Word segmentation: Rise in BLEU score by 58% over direct system

Segmenting both pivot and source is beneficial: Word segmentation on pivot level as well gives BLEU score increase of 4% to 18% over word segmentation at source only, depending on the pivot used

Approximate decoding schemes (Och & Ney, 2001)

PROD Model

- Restrict hypothesis space to the best target sentences from each input sentence
 This can be done using a standard single source decoder
 - $\mathbf{e}_n = \arg \max \{ p(\mathbf{e}) \cdot p(\mathbf{f}_n | \mathbf{e}) \}, \quad n = 1, \dots, N$
- For each candidate e_n, the translation model scores all translation models are computed
 The candidates are then scored using the simplified model (2) on previous slide
- MAX Model
 - Simplifies the decoding objective even further Just chooses the best translation out of the target translation from each decoder
 - $\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} \{ p(\mathbf{e}) \cdot \max_{n} p(\mathbf{f}_{n} | \mathbf{e}) \}$
 - $= \arg \max_{\mathbf{e},n} \{ p(\mathbf{e}) \cdot p(\mathbf{f}_n | \mathbf{e}) \}$.
- Limitations

Hypothesis space is restricted to a great extent
 Limited to selecting the best translation from amongst each individual system
 Cannot combine translation options from different language pair models

Combining translation options from multiple languages Output Combination (Matusov et al, 2006; Schroeder et al, 2009) Post-processing approach Get top-k translations from each language-pair's model Stitch together a new translation by combining translation fragments from different outputs Rescore the newly composed translation using language model & other features Common representation (like confusion network) to represent all outputs for combination dog barked very loudly the Confusion network Translation ontic Input Combination (Schroeder et al, 2009) Select input fragments from different input sentences Create a common *lattice* to represent the multiple inputs Input the confusion network to the decoder percessions dama la chilles o companiente o companiente da provide de la companiente da provide da pr

	Approach	test2006	test2007		
	French Only	29.72	30.21		
ase Study (Schroeder et al, 2009)	French + Swedish				
	MAX 29.86 30.13				
	LATTICE	29.33	29.97		
Multi-source translation	MULTILATTICE	29.55	29.88		
performs better than single	SysComb	31.32	31.77		
method, MAX	French + Swedish + Spanish				
Adding more input languages:	MAX	30.18	30.33		
 no improvement for 	LATTICE	29.98	30.45		
MAX	MULTILATTICE	30.50	30.50		
 Improves quality for PROD, input and output 	SysComb	33.77	33.87		
combination	6 Languages				
 MAX better than PROD for 2 	MAX	28.37	28.33		
input languages (Och, Ney	LATTICE	30.22	30.91		
2001)	MULTILATTICE	30.59	30.59		
 Output combination is the bast method 	SysComb	35.47	36.03		
best method					
 Input combination shows promise 	BLEU scores for Engl MAX: Max approach SysComb: output con Lattice & MultiLattice: MultiLattice uses mult	ish as target la bination input combinat iple confusion i	nguage ion methods networks		

vv	here are we?
• • • •	Motivation Language Relatedness A Primer to SMT Leveraging Orthographic Similarity for transliteration Leveraging linguistic similarities for translation • Leveraging Lexical Similarity • Leveraging Syntactic Similarity • Synergy among multiple languages <u>Summary & Conclusion</u> Tools & Resources

Let's look back at the questions we started with

- What does it mean to say languages are related?
- Can translation between related languages be made more accurate?
- Can multiple languages help each other in translation? •
- Can we reduce resource requirements? •
- Universal translation seems difficult. Can we find the right level of linguistic generalization?
- Can we scale to a group of related languages?
- What concepts and tools are required for solving the above questions?

158

What does it mean to say languages are related?

- Genetic relation → Language Families
- Contact relation → Sprachbund (Linguistic Area)
- Linguistic typology → Linguistic Universal
- Orthography \rightarrow Sharing a script

India as a 'linguistic area'

Exercise

- Are there other notions of relatedness?
- How does relatedness help?

Can we reduce resource requirements?

- <u>Small set of common rules</u> for tasks involving Brahmi-derived scripts:
 ORUP Rule-based transliteration
 - Approximate syllabification
 Bootstrapping unsupervised transliteration
 - Made possible by consistent script principes & systematic design of

Unicode encoding

- <u>Common set of source reordering rules</u> for English-Indian languages due to the common canonical word order among Indian languages
- <u>Reduction in parallel corpus requirement</u> due to orthographic similarity :

 Easily detect cognates, named entities to augment the parallel corpus
 Translate words not represented in parallel corpus
 - Translate words not represented in parallel corpus

Can language relatedness of improved translation/transliteration?

- Orthographic Similarity: Properties of Brahmi-derived scripts to improve transliteration
 - Approximate syllabification via vowel segmentation made possible by script properties
 There is a lot of potential to harness the scientific design of Indic scripts
- Lexical & Phonetic Similarity help us do the following:
 - Improve word alignment
 Translate OOVs
 - Character-oriented SMT
 - Character-oriented SMT between arbitrary language pairs has shown some promising, may be worth investigating
- <u>Morphological Similarity</u>: Data sparsity reduction manifests as significant gains in translation accuracy
- <u>Syntactic Similarity:</u> We get a free ride because of similar word order

Can multiple languages help each other?

- Improvement in translation & transliteration performance due to synergy among multiple languages
- Pivot-based translation helps translation by bringing in additional translation options and increasing vocabulary coverage
- Multi-source translation helps translate better by using other languages to reduce linguistic ambiguities during translation
- Related languages contribute most to improvement
- Bridging divergence gap among languages involved is important
- What is a good pivot?
 - Related language
 Morphologically simple
 - English is always an option due to the rich availability of resources involving English
- Understanding the mechanisms in which various languages interact
- in a pivot-based setup is an open question

Key Tools & Concepts

- Language Typology
- Phonetic properties
- Phonetic & Orthographic similarity
- Cognate Identification
- Confusion networks & Word lattices
- Triangulation of translation models
- System combination of SMT output

Related Work that might be of interest

- Study of linguistic typology
- Historical/Comparative linguistics
- Mining bilingual dictionaries and named entities
- Mining parallel corpora
- Word alignment using bridge languages
- Unsupervised bilingual morphological segmentation
- Character-oriented SMT for arbitrary languages
- Rule-based and Example-based MT in the light of linguistic similarities

What is the right level of generalization to build an MT system?

Design Goals

- Broad coverage of multiple languages
- Reasonably accurate translation (indicative translations)
- Reduce the linguistic resources required
- Universal translation schemes cannot achieve all these goals
- Building customized solutions for every language pair is not feasible

Is a language family or linguistic area a good level of generalization?

Where are we?

- Motivation
- Language Relatedness
- A Primer to SMT
- Leveraging Orthographic Similarity for transliteration
- Leveraging linguistic similarities for translation
 - Leveraging Lexical Similarity
 - Leveraging Morphological Similarity
 Leveraging Syntactic Similarity
- Synergy among multiple languages
- Summary & Conclusion
- Tools & Resources
- Tools & Resources

Language & Variation

- Ethnologue: Catalogue of all the world's living languages (www.ethnologue.com)
- <u>World Atlas of Linguistic Structures</u>: Large database of structural (phonological, grammatical, lexical) properties of languages (wals.info)
- Comrie, Polinsky & Mathews. The Atlas of Languages: The Origin and Development of Languages Throughout the World
- Daniels & Bright. The World's Writing systems.

Tools

- Pivot-based SMT: <u>https://github.com/tamhd/MultiMT</u>
- System Combination: <u>MEMT</u>
- · Moses contrib has tools for combining phrase tables
- Moses can take confusion network as input
- Multiple Decoding Paths is implemented in Moses

Script Conversion among Indic scripts (16 languages) Machine Transliteration among 18 languages Available as REST Web Service Documentation: <u>http://www.clit.itb.ac.</u> <u>in/brahminet/stati/res.html</u> Planned: Python client in Indic NLP Library Script conversion & romanization can also be accessed offline using the Indic NLP library	Brahmi Net, REST API Toniteration typ://www.fill.illi.illi.ed.in/indicalposh/indicalpos two:/begagenet_timenet_ sever_begagenet_timenet_ questionnet_timenet_ questionnet_timenet_ ("h":["heregel.com"])
Anoop Kunchukuttan, Ratish Puduppully , Pushpak Bhatta	acharyya, Brahmi-Net: A transliteration and script conversion system
for languages of the Indian subcontinent , Conference of t	he North American Chapter of the Association for Computational

Input La	anguage	English	
Output	Language	Hindi	
Output i	in	Chosen output language O All output languages	
Operatio	on	Transiteration Top 5	
		 Script conversion 	
Enter in	put text	madres	
		Transference of the frame of the frame of the source and the source of the source of the source of the frame of the source and	
	Language	Transitionation is conversion of least from one script to another starying tabilital is tagged language convertions. et ag. HR, plot (b) becomes will, pNN (b)) Colgic conversion tability reserves to the source script in the target script et ag. HT(f)) and DHT (b) for yop/ Transition involves tradeford interactions; Fir our transition system, precess voit Build -Accessible (Colgit Text)	
	Language Hindi	Transitionic nonvesion all test from one sorgit to another staying tabilut to target tanguage conversions. et al., पण्णे, point (p) becomes wait, point (p). Stopic conversion tatihulty represents the source sorgit in the target sorgit e, at "P(1) and UP" (pr) (p) and UP" (point popAl Transition involves transfered or transition system, please viat Shiteh-Assundable. Output Test RFR.R	

Brahmi-Net Transliteration Corpus

- 1.6 million word pairs among 10 Indian languages (+English)
- Mined from the ILCI corpus
- URL: <u>http://www.cfilt.iitb.ac.in/brahminet/static/register.html</u>
- License: Creative Common Attribution-NonCommercial (CC BY-NC)

Anoop Kunchukutan, Ratish Puduppully, Pushpak Bhattachanyya, Brahmi-Net: A transiteration and script conversion system for languages of the Indian subcontinent, Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies: System Demonstrations (NAACL 2105). 2015.

Indo-Aryan						D	ravidia	an			
	hin	urd	pan	ben	guj	mar	kok	tam	tel	mal	eng
hin		21185	40456	26880	29554	13694	16608	9410	17607	10519	10518
urd	21184		23205	11379	14939	9433	9811	4102	5603	3653	5664
pan	40459	23247		25242	29434	21495	21077	7628	15484	8324	8754
ben	26853	11436	25156	-	33125	26947	26694	10418	18303	11293	7543
guj	29550	15019	29434	33166		39633	35747	12085	22181	11195	6550
mar	13677	9523	21490	27004	39653	-	31557	10164	18378	9758	4878
kok	16613	9865	21065	26748	35768	31556		9849	17599	9287	5560
tam	9421	4132	7668	10471	12107	10148	9838	-	12138	10931	3500
tel	17649	5680	15598	18375	22227	18382	17409	12146		12314	4433
mal	10584	3727	8406	11375	11249	9788	9333	10926	12369		3070
eng	10513	5609	8751	7567	6537	4857	5521	3549	4371	3039	-

Diverse types of transliterations

Category	Example	Extended ITRANS transliteration			
Nour d Datision	(eoदैô, अंधेरी)	(aMdherI,aMdherI)			
Named Entities	(७९४) (७९४)	(akabara,akabara)			
	(telephone ,टेलीफोन/टेलिफोन)	(, TelIphona/Teliphona)			
Spelling variations	(Belgaum , बेलगाँव/बेलगाम)	(, belagA.Nva/belagAma)			
	(फेब्रुवारी, फरवरी)	(phebruvArI, pharavarI)			
Tatsam words ⁵	(3)507(,maanmana)	(aha.nkAra,aha NkAra.n)			
	(करुणा, कलाका)	(karuNA,karuNa)			
	(可好, akth 的o)	(cakra,cakra.n)			
	(syphilis, सिफिलिस)	(,siphilisa)			
English Loan words	(telephone, टेलिफोन)	(, Teliphona)			
	(কাউন্সিলিং,counselling)	(kAunsili.n,)			
	(tandoori, तंदूरी)	(tandoori, ta.MdUrI)			
Indian origin words	(avatar,अवतार)	(avatar,avatAra)			
	(yoga, योगा)	(yoga, yogA)			
Ψ Sound shifts	(केरळ, केरल)	(keraL, keral)			
	(अंधळेपणा, अंधेपन)	(aMdhLepaNa, aMdhepan)			
Commenter .	(कसे, कैसे)	(kase, kaise)			
Cognates	(गाढय, गधा)	(gaDhav, gadha)			
	(பக்தர்கள், भक्तगण)	(paktarkaL, bhaktagaN)			
	(ajCgmSkaio , एरोबिक्स)	(eropiks,erobiks)			
Script differences	(acgmSado , गंगोत्री)	(ka~Nkotari,gaMgotrI)			
	(अमृतस,അുതസർ)	(amRitasara,amRitasar)			

Xlit-Crowd: Hindi-English Transliteration Corpus

- The corpus contains transliteration pairs for Hindi-English
- Obtained via crowdsourcing using Amazon Mechanical Turk by asking workers to transliterate Hindi words into Roman script
- The source words for the task came from NEWS 2010 shared task corpus Size: 14919 transliteration pairs

Mitesi M. Khapra, Ananthakrishnan Ramanahan, Anoop Kundhukutan, Karthik Visweswariah, Pushpak Bhattacharyya When Transilteration Met Crowdsourcing : An Empirical Study of Transilteration via Crowdsourcing using Efficient, Non-redundent and Fair Quality Control . Language and Resources and Evaluation Conference (LREC 2014). 2014.

Shata-Anuvaadak Resources

- PBSMT translation models for 110 language pairs
- Language Models for 11 language pairs •
- These have been built from the ILCI corpus ٠
- ILCI corpus can be requested from TDIL (http://www.tdil-dc.in) ٠
- If unavailable, these trained models can directly be used •
- License: Creative Common Attribution-NonCommercial CC BY-NC

URL: http://www.cfilt.iitb.ac.in/~moses/shata_anuvaadak/register.html

Anoop Kunchukuttan, Abhijit Mishra, Rajen Chatterjee, Ritesh Shah, Pushpak Bhattachanyya. Shata-Anuvadak: Tackling Multiway Translation of Indian Languages . Language and Resources and Evaluation Conference. 2014.

Acknowledgments

- Prof. Pushpak Bhattacharyya
- Prof. Malhar Kulkarni
- Rohit More
- Harshad Chavan
- Deepak Patil
- Raj Dabre •
- Abhijit Mishra
- Rajen Chatterjee
- Ritesh Shah Ratish Puduppully
- Arjun Atreya •
- Aditya Joshi ٠
- Rudramurthy V Girish Ponkiya

and everyone at the Center for Indian Language Technology

References

- Anvita Abbi. Languages of India and India and as a Linguistic Area. 2012. Retrieved November 15, 2015, from http://www.net/Languages of India and India as a Linguistic area.pdf
- Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty, D. Melamed, F. Och, D. Purdy, N. Smith, and D. Yarowsky, Statistical machine translation. Technical report, Johns Hopkins University. 1999 Shane Bergsma, Grzegorz Kondrak. Alignment-based discrimina ive string similarity. Annual meeting-Association for Computat
- Linguistics. 2007.
- N. Bertoldi, M. Barbaiani, M. Federico, R. Cattoni. Phrase-based statistical machine translation with pivot languages. IWSLT. 2008. Alexandra Birch, Miles Osborne, and Philipp Koehn. Predicting success in machine translation. Proceedings of the Conference on
- Empirical Methods in Natural Language Processing Association for Computational Linguistics, 2008. Peter Daniels and William Bright. *The world's writing systems*. Oxford University Press, 1996. Peter Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. *The mathematics*
- Parameter estimation. Computational linguistics. 1993.
- Michael Covington. An algorithm to align works for historical comparison. Computational linguistics. 1996. Raj Dabre, Fabrien Cromiers, Sadao Kurohashi, and Pushpak Blattacharyya. Leveraging small multilingual corpora for SMT using many
- Adri'a De Gispert, Jose B Marino. Catalan-english statistical machine translation without parallel corpus: bridging through spanish. In
- Proc. of 5th International Conference on Language Resources and Evaluation (LREC). Nadir Durrani, Hassan Sajjad, Hieu Hoang and Philipp Koehn. Integrating an unsupervised i
- translation. EACL. 2014.

References

- Nadir Durtani, Hassan Sajjad, Alexander Fraser, and Helmat Schmid. Hindi-to-Urdu machine translation through transliteration. In Proceedings of the 48th Annual meeting of the Association for Computational Languistics. 2010. Nadir Durrani, Bray Haddow, Philly Kehon, Knench Helmelder, Lahrunger Japares-Josef machine translation systems for WMT-14.
- . Yuan Domani, Juny Condon, J. Juny Rocan, Joseph David, Barking Tanabara, and Jana Proceedings of the ACL. 2014 Ninth Workshop on Statistical Machine Translation. 2014. Halvor Eifring, Bøyesen Rolf Theil. *Linguistics for students of Asian and African languages*. Institutt for øst
- studier. 2005. Retrieved November 15 2015, from https://www.uio.no/studier/emner/hf/ikos/EXFAC03-AAS/h05/larestoff/linguistics/
- Murray Emeneau. India as a linguistic area. Language. 1956. Kenneth Heafield, Alon Lavie. Combining Machine Translation Output with Open Source: The Carnegie Mellon Multi-Engine Machine Translation Scheme. The Prague Bulletin of Mathematical Linguistics. 2010.
- Diana Inkpen, Oana Frunza, and Gregorz Kondrak. Automatic identification of cognates and false friends in French and English. Proceedings of the International Conference Recent Advances in Natural Language Processing. 2005. .
- · Mitesh Khapra, A. Kumaran and Pushpak Bhattacharyya. Everybody loves a rich cousin: An empirical study of transliteration through bridge languages. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics 2010.
- Alexandre Klementiev, Dan Roth. Weakly supervised named entity transiteration and discovery from multilingual comparable corp Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for roceedings of the 21st Internatio Computational Linguistics. 2006.
- Philipp Koehn. Statistical machine translation. Cambridge University Press. 2009.
- drak. Cognates and word alignment in bitexts. MT Sur

References

- Grzegorz Kondrak. A new algorithm for the alignment of phonetic sequences. Proceedings of the 1st North American chapter of the ation for Computational Linguistics conference. 2000. .
- Trace-town Courts Courts and Kernin Karght Cognetic conver-fings Kondral, Daniel Marcu and Kerni Karght Cognetic conver-inger Kondral, Daniel Marcu and Kerni Karght Cognetic conver-tion of the North American Chapter of the Association for Computational Linguistics on Human Language Technology 2003. S. Kamar, Odi, P. J. Mocheroy, M. Improving word digments with hering languages. In Proceedings of the North Conference on Empirical Science (Science) and Scie
- Methods in Natural Language Processing and Computational Natural Language Learning. 2007. A. Kumaran, Mitesh M. Khapra, and Pushpak Bhattacharyya. *Compositional Machine Transliteration*. ACM Tran Language Information Processing, 2010.
- Language information (recomp. 2010). Anoop Kunchukuta, Ratisk Poduppully, and Pushpak Bhattacharyya. Brahmi-Net: A transitieration and script conversion system for languages of the Indian subcontinent. Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations. 2015.
- Anoop Kunchukuttan, Abhijit Mishra, Rajen Chatterjee, Ritesh Shah, Pushpak Bhattacharyya. Sata-Anuvadak: Tackling Multiw Translation of Indian Languages. Language Resources and Evaluation Conference. 2014.
- G. Mann, David Yarovsky. Multipush translation lexicon induction via bridge languages. In Proceedings of the second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies. 2001. Speegers Matsons, Naciol Ucliftig, and Hermann Nov. Computing Consensus Translations for Multiple Machine Translation Systems Using
- Enhanced Hypothesis Alignment. EACL. 2006.
- Dan Melamed. Automatic Evaluat ion and Uniform Filter Cascades for Inducing N-best Translation Lexicons. Third Workshop on Very • Large Corpora. 1995.

References

- Dan Melamed. Models of translational equivalence an ong words. Computational Linguistics. 2000. Akiva Miura, Graham Neubig, Sakriani Sakti, Tomoki Toda, Satoshi Nakamura. Improving Pivot Translation by Rem
- Association for Computational Linguistics. 2015. Robert More: A discriminative framework for bilingual word alignment. Proceedings of the confi ice on Human Language Tec logy

ing the Pivot.

- And Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2005. Rohit More, Pivor based Statistical Machine Translation. Master's Thesis. IIT Bombay. 2015. Rohit More, Anoop Kunchukuttan, Raj Dabre, Pushpak Bhattacharyya. Augmenting Pivor based SMT with word segmenting Pivor based SMT with word segmenting Pivor based SMT with word segmenting Pivor based SMT.
- tion. Intern Conference on Natural Language Processing, 2015.
- Concretence on vanish managing Proprioring 2017. Preslav Nakov, Hwee Tou Ng, Improving statistical machine translation for a resource-poor language using related resource-rich languages. Journal of Artificial Intelligence Research. 2012. .
- . Preslav Nakov, and Jörg Tiedemann. Combining word-level and character-level models for machine translation between closely-related languages. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. 2012. Preslav Nakov, Hwee Tou Ng. Improved statistical machine translation for resource-poor languages using related resource-rich languages
- Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009
- Franz Och and Hermann Ney. Statistical multi-source translation. In Proceedings of MT Summit VIII. Machine Translation in the . ation Age , MT Summit. 2001.
- Franz Och, and Hermann Ney. A systematic of imparison of various statistical alignment models " Computational linguistics 2003
- Raj Nath Patel, Rohit Gupta, and Prakash B. Pimpale. Reordering rules for English-Hindi SMT. HYTRA. 2013. Deepak Patil, Harshad Chavan and Pushpak Bhattacharyya. Triangulation of Reordering Tables: An Advancement Over Phrase Table Triangulation in Pivot-Based SMT. International Conference on Natural Language Processing. 2015.

References

- Michael Paul, Andrew Finch, and Eiichrio Sumita. How to choose the best pivot lan ı of low inguages. ACM Transactions on Asian Language Information Processing (TALIP). 2013.
- R. Anathikrishnan, Jaypenad Hegle, Pushpak Bhattacharyya and M. Sanikamar, Singde Syntactic and Morphological Processing Can Holp English-Hindi Stantical Advance Translation, International Joint Conference on NLP. 2008.
 R. Stradt, P. Yanni, Leoring strong-order distance. IEEE Trans. Pattern Anal. Mach. Intell, 20(5):252-253, 1998.
- . Hassan Sajjad, Alexander Fraser, and Helmut Schmid. A statistical model for unsupervised and semi-supervised transliteration mining. Finssin adjust, recumer traces, and remus Schmid. A similar model for impervised and semisupervised and animage proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. 2012.
 J. Schreder, Cohn, T., and Kochn, P. Word lattices for multi-source translation. In Proceedings of the 12th Conference of the European
- Chapter of the Association for Computational Linguistics. 2009. Anil Kumar Singh. A Computational Phonetic Model for Indian Language Scripts. In proceedings of Constraints on Spelling Changes: Fifth
- International Workshop on Writing Systems. 2006. .
- Intendence were very a presence (y) per second (
- project on translation from English to Indian languages. In IEEE International Conference on Systems, Man and Cybernetics. 1995. David Steele, Lucia Specia. WA-Continuum: Visualising Word Alignments across Multiple Parallel Sentences Simultaneously. ACL-. UCNLP. 2015.
- .
- Karumuri Subbarao. South Asian languages : a syntactic typology. Cambridge University Press. 2012. Anil Kumar Singh and Harshit Surana. Multilingual Akshar Based Transducer for South and South Eas th and South East Asian Lang Scripts. In Proceedings of the Seventh International Symposium on Natural Language Processing. Pattaya, Thailand. 2007.

References

- Ben Taskar, Simon Lacoste-Julien, and Dan Klein. A discrit native matching approach to word alignm ent. Proceedings of the con on Human Language Technology and Empirical Methods in Natural Language Processing. Association for Computational Linguistics. 2005.
- Sarah Thomason. Linguistic Areas and Language History. Studies in Slavic and General Linguistics. 2000. Jorge Tiedemann. Character-based PSMT for closely related languages. In Proceedings of the 13th Annual Cor Association for Machine Translation 2009
- Jorg Tiedemann. Character-based pirot translation for under-resourced languages and domains. Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. 2012.
- . Raghavendra Udupa, Mitesh M Khapra. Transliteration equivalence using canonical correlation analysis. Advances in Information Retrieval. 2010.
- Masao Utiyama, Hitoshi Isahara. A comparison of pivot methods for phrase-based statistical machine translation. In HLT-NAACL, pages 484-491 2007
- D. Vilar, Peter, J.-T., & Ney, H. Can we translate letters?. In Proceedings of the Second Workshop on Statistical Machine Tra 2007.
- Robert Wagner, Michael J. Fischer. The string-to-string correction problem. Journal of the ACM. 1974. Haifeng Wang, Hua Wu, and Zhanyi Liu. Word alignment for languages with scarce resources using bilingual corpora of other language
- pairs. COLING-ACL. 2006. Hua Wu, Haifeng Wang. Pivot language approach for phrase-based statistical machine translation. Machine Translation. 2007.
- bert Östling. Bayesian wi a lignment for massively parallel texts. 14th Conference of the European Chapter of the Associ Computational Linguistics. 2014.