Parameter Estimation for IBM Model 1 CS626/CS460

Anoop Kunchukuttan
anoopk@cse.iitb.ac.in
Working under Prof. Pushpak Bhattacharyya

Training Objective

- The probability of a sentence translation is modelled in IBM Model 1 as:

$$
\begin{equation*}
\operatorname{Pr}(\mathbf{f} \mid \mathbf{e})=\frac{\varepsilon}{(I+1)^{m}} \sum_{a_{1}=0}^{l} \ldots \sum_{a_{m}=0}^{l} \prod_{j=1}^{m} t\left(f_{i} \mid e_{a_{j}}\right) \tag{1}
\end{equation*}
$$

- Use Maximum Likelihood Estimation to find the model parameters $t(f \mid e)$
- For a single sentence in the corpus, the objective is:

$$
\begin{gather*}
 \tag{2}\\
\max \operatorname{Pr}(\mathbf{f} \mid \mathbf{e}) \\
\text { s.t. } \\
\sum_{f_{i} \in F} t\left(f_{i} \mid e\right)=1 \quad \forall e \in E
\end{gather*}
$$

- There will be a constraint corresponding to every word in Vocabulary(language E)

Maximizing the objective

The Lagrangian function for this objective can be written as

$$
\begin{align*}
\mathcal{L}\left(t(f \mid e), \lambda_{e}\right)= & \frac{\varepsilon}{(I+1)^{m}} \sum_{a_{1}=0}^{l} \ldots \sum_{a_{m}=0}^{\prime} \prod_{j=1}^{m} t\left(f_{i} \mid e_{a_{j}}\right) \tag{3}\\
& -\sum_{e \in E} \lambda_{e}\left(\sum_{f_{i} \in F} t\left(f_{i} \mid e\right)-1\right)
\end{align*}
$$

Differentiating the Lagrangian w.r.t each $t(f \mid e)$ gives us

$$
\begin{equation*}
\frac{\varepsilon}{(I+1)^{m}} \sum_{a_{1}=0}^{I} \ldots \sum_{a_{m}=0}^{I}\left(\sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a_{j}}\right)\right) t(f \mid e)^{-1} \prod_{k=1}^{m} t\left(f_{k} \mid e_{a_{k}}\right)-\lambda_{e} \tag{4}
\end{equation*}
$$

where δ is defined as,

$$
\begin{array}{rll}
\delta(a, b) & =1 & \text { if } a=b \\
& =0 & \text { if } a \neq b
\end{array}
$$

The sum in brackets basically counts the number of times the words f and e are aligned in the sentence pair.

Maximizing the objective - 2

At the point of optimality $\frac{\partial \mathcal{L}}{\partial t(f \mid e)}=0$ giving,

$$
\begin{align*}
\lambda_{e} & =t(f \mid e)^{-1} \sum_{a \in \mathcal{A}} \operatorname{Pr}(f, a \mid e) \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a_{j}}\right) \tag{5}\\
t(f \mid e) & =\lambda_{e}^{-1} \sum_{a \in \mathcal{A}} \operatorname{Pr}(f, a \mid e) \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a_{j}}\right) \tag{6}
\end{align*}
$$

$t(f \mid e)$ in the form presented here is difficult to compute. As generally done in EM, we try to define $t(f \mid e)$ as a function of an expected quantity computed in the E-step.

Maximizing the objective - 3

- Define $c(f, e ; \mathbf{f}, \mathbf{e})$ as the expected number of times word f aligns with word e in the pair of sentences (\mathbf{f}, \mathbf{e}).

$$
\begin{equation*}
c(f, e ; \mathbf{f}, \mathbf{e})=\sum_{a \in \mathcal{A}} \operatorname{Pr}(a \mid \mathbf{f}, \mathbf{e}) \sum_{j=1}^{m} \delta\left(f, f_{j}\right) \delta\left(e, e_{a_{j}}\right) \tag{7}
\end{equation*}
$$

- Replacing the above in Equation 6,

$$
\begin{equation*}
t(f \mid e)=\lambda^{-1} \operatorname{Pr}(f \mid e) c(f \mid e ; \mathbf{f}, \mathbf{e}) \tag{8}
\end{equation*}
$$

- Equation 8 gives us the formula for estimating $t(f \mid e)$ in the M-step.
- λ is only a normalizer as we shall see later
- You can read this equation as computing the translation probability using word alignment counts, the only difference being that these are expected counts.

Computing in the E-step

- $c(f \mid e)$ needs to be computed in the E-step.
- Equation 7 requires iterating over all alignments computationally intractable
- Solution exists for Model 1. c can be computed without enumeration of alignments
- Key idea is to rewrite objective function as Product of Sum

$$
\begin{equation*}
\sum_{a_{1}=0}^{\prime} \cdots \sum_{a_{m}=0}^{\prime} \prod_{j=1}^{m} t\left(f_{j} \mid e_{a_{j}}\right)=\prod_{j=1}^{m} \sum_{i=1}^{\prime} t\left(f_{j} \mid e_{i}\right) \tag{9}
\end{equation*}
$$

As an example,

$$
t_{11} t_{21}+t_{11} t_{22}+t_{12} t_{21}+t_{12} t_{22}=\left(t_{11}+t_{12}\right)\left(t_{21}+t_{22}\right)
$$

Notation: $t_{j i}=t\left(f_{j} \mid e_{i}\right)$

Computing in the E-step - 2

The Lagrangian function in terms of this revised objective function

$$
\begin{equation*}
\mathcal{L}(t, \lambda)=\frac{\epsilon}{(I+1)} \prod_{j=1}^{m} \sum_{i=1}^{I} t\left(f_{j} \mid e_{i}\right)-\sum_{e i n E} \lambda_{e}\left(\sum_{f_{i} \in F} t\left(f_{i} \mid e\right)-1\right) \tag{10}
\end{equation*}
$$

On differentiating w.r.t $t(f \mid e)$

$$
\frac{\partial \mathcal{L}}{\partial t(f \mid e)}=\frac{\sum_{j} \delta\left(f_{j}, j\right) \sum_{i} \delta\left(e_{j}, e\right)}{\sum_{k} t\left(f \mid e_{k}\right)} \operatorname{Pr}(\mathbf{f} \mid \mathbf{e})-\lambda_{e}
$$

How did we get this? See the next slide.

Why? - 2 cases I

1. t_{11} and t_{21} may actually refer to the same word pair: Here two positions in the F language sentence may have the same word. If we differentiate,

$$
\left(t_{11}+t_{12}+t_{13}\right)\left(t_{21}+t_{22}+t_{23}\right)\left(t_{31}+t_{32}+t_{33}\right)
$$

w.r.t t_{11}, the first term would go to 1 . However, if $t_{11}=t_{21}$ the differentiation gives the result,

$$
\left(\left(t_{11}+t_{12}+t_{13}\right)+\left(t_{21}+t_{22}+t_{23}\right)\right)\left(t_{31}+t_{32}+t_{33}\right)
$$

Note that the two sum terms are identical, since the F-language words are the same. So, counting the number of words f we could write the above as,

$$
\frac{2}{\left(t_{11}+t_{12}+t_{13}\right)}\left(\left(t_{11}+t_{12}+t_{13}\right)\left(t_{21}+t_{22}+t_{23}\right)\left(t_{31}+t_{32}+t_{33}\right)\right)
$$

Why? - 2 cases II

In general, we can write the above as,

$$
\begin{equation*}
\frac{\sum_{j} \delta\left(f_{j}, j\right)}{\sum_{k} t\left(f \mid e_{k}\right)} \prod_{j=1}^{m} \sum_{i=0}^{\prime} t\left(f_{j} \mid e_{i}\right) \tag{11}
\end{equation*}
$$

2. t_{11} and t_{12} may actually refer to the same word pair: Hence two position in the E language sentence may have the same word. So if we differentiate,

$$
\left(t_{11}+t_{12}+t_{13}\right)\left(t_{21}+t_{22}+t_{23}\right)\left(t_{31}+t_{32}+t_{33}\right)
$$

w.r.t t_{11}, we would get,

$$
\frac{2}{\left(t_{11}+t_{12}+t_{13}\right)}\left(\left(t_{11}+t_{12}+t_{13}\right)\left(t_{21}+t_{22}+t_{23}\right)\left(t_{31}+t_{32}+t_{33}\right)\right)
$$

Getting these two cases together and setting the derivative to 0 will give you:

$$
\begin{align*}
& \frac{\sum_{j} \delta\left(f_{j}, j\right) \sum_{i} \delta\left(e_{j}, e\right)}{\sum_{k} t\left(f \mid e_{k}\right)} \operatorname{Pr}(\mathbf{f} \mid \mathbf{e})-\lambda_{e} \tag{12}\\
& \lambda_{e}=\frac{\sum_{j} \delta\left(f_{j}, j\right) \sum_{i} \delta\left(e_{j}, e\right)}{\sum_{k} t\left(f \mid e_{k}\right)} \operatorname{Pr}(\mathbf{f} \mid \mathbf{e}) \tag{13}
\end{align*}
$$

Substituting for λ from Equation 13 into Equation 8 gives us,

$$
\begin{equation*}
c(f \mid e ; \mathbf{f}, \mathbf{e})=\frac{t(f \mid e)}{\sum_{k} t\left(f \mid e_{k}\right)} \sum_{i} \delta\left(e_{i}, e\right) \sum_{j} \delta\left(f_{j}, f\right) \tag{14}
\end{equation*}
$$

$c\left(f_{k} \mid e ; \mathbf{f}, \mathbf{e}\right)$ can be interpreted as weighing the max number of possible alignments by the translation probability λ_{e} can be computed using the constraint $\sum_{k} t\left(f_{k} \mid e\right)=1$ giving,

$$
\begin{equation*}
\lambda_{e}=\sum_{k} \operatorname{Pr}(\mathbf{f} \mid \mathbf{e}) \tag{15}
\end{equation*}
$$

Q.E.D

