Natural Language Processing for Indian Languages

A Language Relatedness Perspective

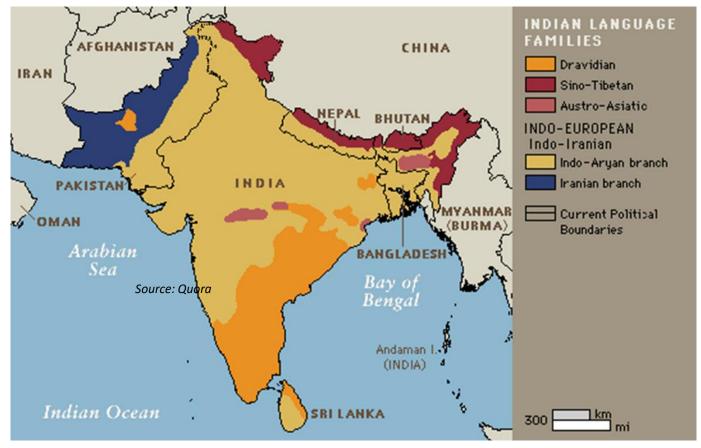
Anoop Kunchukuttan Microsoft AI & Research Machine Translation & Speech Group, Hyderabad

ankunchu@microsoft.com

AI Deep Dive Workshop at NASSCOM DSAI-CoE, 30th August 2019

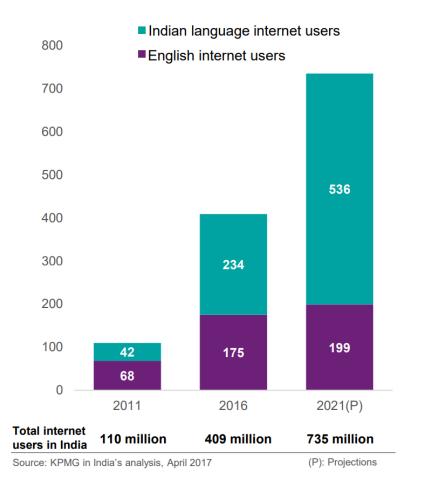
Outline

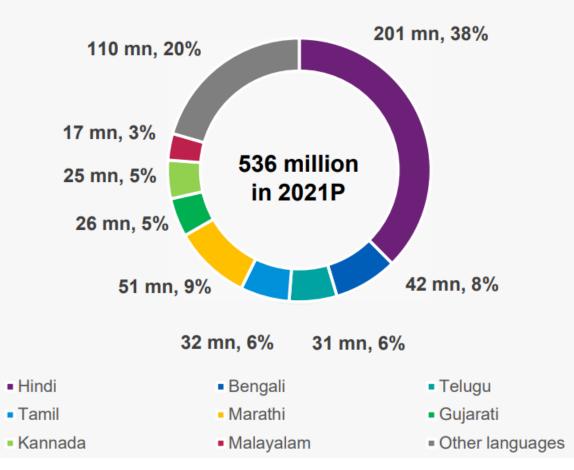
Motivation


- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Diversity of Indian Languages

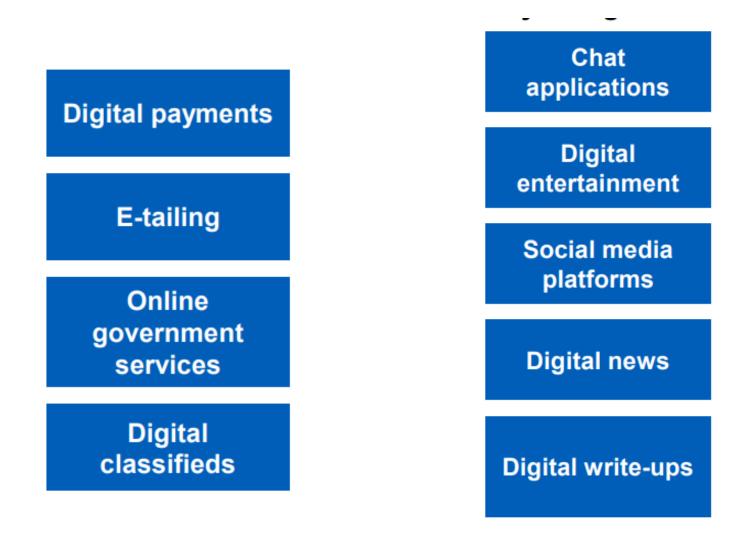
Highly multilingual country


Greenberg Diversity Index 0.9


- 4 major language families
- 1600 dialects
- 22 scheduled languages
- 125 million English speakers
- 8 languages in the world's top 20 languages
- 11 languages with more than 25 million speakers
- 30 languages with more than 1 million speakers

Sources: Wikipedia, Census of India 2011

Indian Languages on the Internet



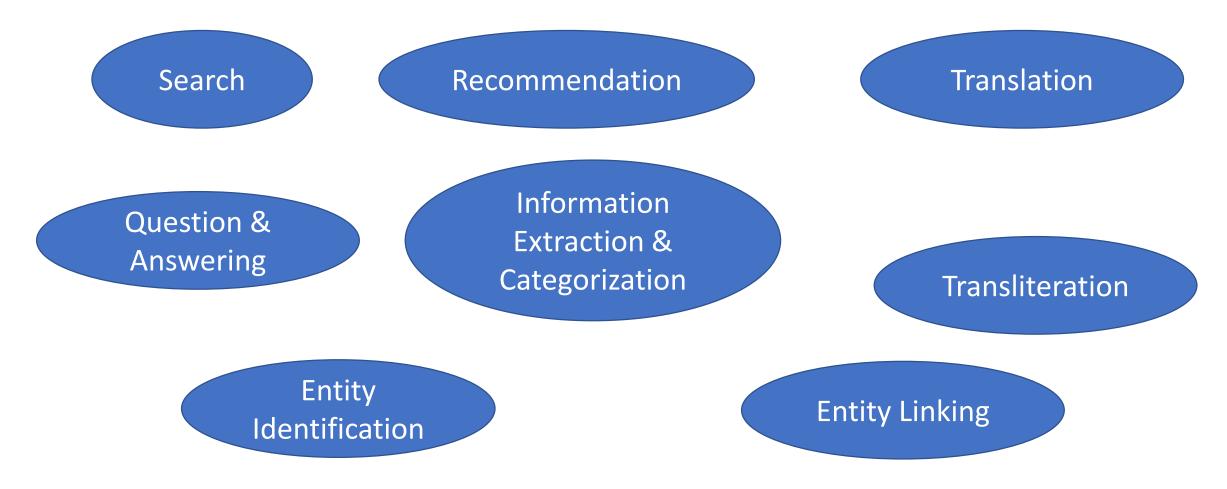
Internet User Base in India (in million)

Language Internet users 2021 projected (in million)

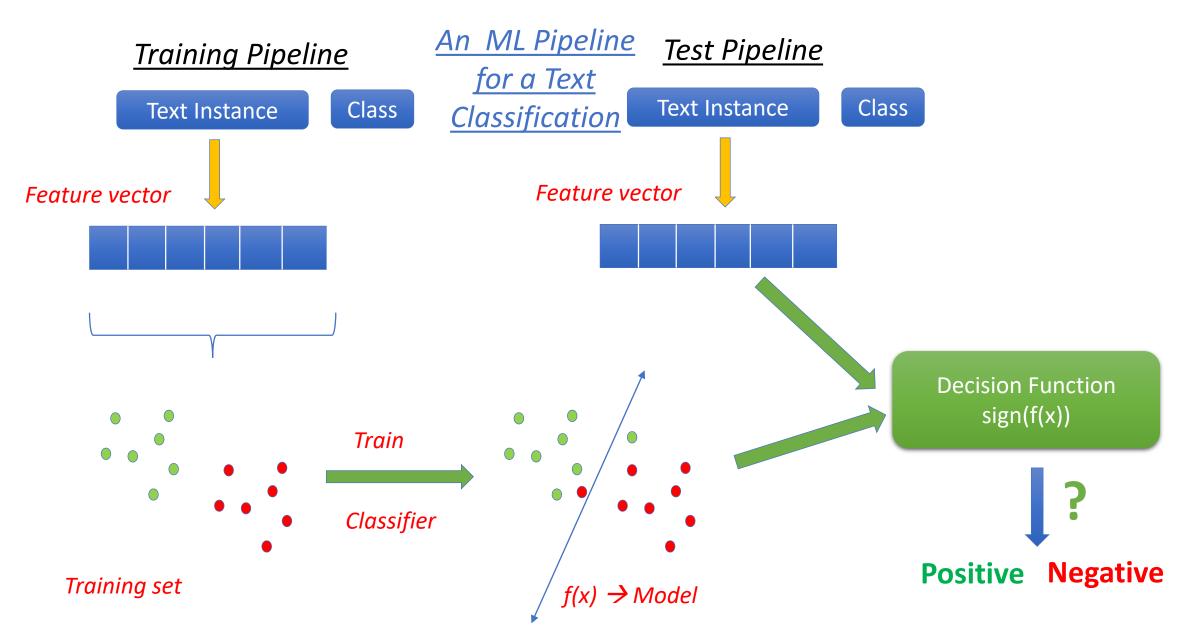
Source: Indian Languages: Defining India's Internet KPMG-Google Report 2017

Major Applications requiring Indian language support

Challenges on language adoption on the Internet


70% Indian language internet users face challenges in using English keyboards 60% Indian language internet users stated limited language support and content to be the largest barrier for adoption of online services

60% of the users dropping out of internet stated high cost of internet and limited internet access as the primary reason 30% Indian language internet users are aware of the online content but not comfortable using the online medium


How do we improve support for Indian languages?

Improving Indian Language Support

Applications and websites which support rich experiences:

Machine Learning is the dominant NLP Paradigm

Scalability Challenges in ML solutions

- NLP requires human expertise → difficult and expensive to replicate for every language
 - Annotated data
 - Linguistic knowledge inputs
- Expense cannot be justified for all languages
- Difficult to deploy and maintain systems for multiple languages

Let's look at examples of different kinds of annotations ...

Monolingual Corpora – easy to collect

ನವದೆಹಲಿ: ಆರ್ಥಿಕ ಬೆಳವಣಿಗೆ ಕುಂಠಿತಗೊಳ್ಳುವುದನ್ನು ತಡೆಯಲು ಕೇಂದ್ರ ಸರ್ಕಾರವು ಹಲವು ಕ್ರಮಗಳಿಗೆ ಮುಂದಾಗಿದೆ. ಒಂದೇ ಬ್ರ್ಯಾಂಡ್ ಚಿಲ್ಲರೆ ಮಾರಾಟ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮ, ಕಲ್ಲಿದ್ದಲು ಗಣಿಗಾರಿಕೆ ಮತ್ತು ತಯಾರಿಕೆ ಸೇರಿದಂತೆ ವಿವಿಧ ಕ್ಷೇತ್ರಗಳಲ್ಲಿ ವಿದೇಶಿ ನೇರ ಹೂಡಿಕೆಯ (ಎಫ್ಡಿಐ) ನಿಯಮಗಳನ್ನು ಸಡಿಲಿಸಿದೆ.

ಪ್ರಧಾನಿ ನರೇಂದ್ರ ಮೋದಿ ಅವರ ಅಧ್ಯಕ್ಷತೆಯಲ್ಲಿ ಬುಧವಾರ ನಡೆದ ಕೇಂದ್ರ ಸಚಿವ ಸಂಪುಟ ಸಭೆಯು ಹೂಡಿಕೆದಾರ ಸ್ನೇಹಿಯಾದ ಹಲವು ಕ್ರಮಗಳನ್ನು ಕೈಗೊಂಡಿದೆ. ಏಕ ಬ್ರ್ಯಾಂಡ್ ಚಿಲ್ಲರೆ ಮಾರಾಟ ಮಳಿಗೆಗಳಲ್ಲಿ ಶೇ 30ರಷ್ಟು ಭಾರತೀಯ ಸರಕುಗಳು ಇರಬೇಕು ಎಂಬ ನಿಯಮವನ್ನು ಸಡಿಲ ಮಾಡಲಾಗಿದೆ. ಹಾಗೆಯೇ, ಗುತ್ತಿಗೆ ತಯಾರಿಕೆ ಹಾಗೂ ಕಲ್ಲಿದ್ದಲು ಗಣಿಗಾರಿಕೆಯಲ್ಲಿ ನೂರರಷ್ಟು ಎಫ್ಡಿಐಗೂ ಅವಕಾಶ ನೀಡಲಾಗಿದೆ.

ಒಂದೇ ಬ್ರ್ಯಾಂಡ್ ಚಿಲ್ಲರೆ ಮಾರಾಟ ಮಳಿಗೆಗಳಲ್ಲಿ ಪ್ರತಿ ವರ್ಷ ಶೇ 30ರಷ್ಟು ಭಾರತೀಯ ಸರಕು ಮಾರಾಟವಾಗಬೇಕು ಎಂಬ ನಿಯಮ ಇದೆ. ಆದರೆ, ಐದು ವರ್ಷದ ವಹಿವಾಟು ಸರಾಸರಿಯಲ್ಲಿ ಶೇ 30ರಷ್ಟು ದೇಶೀಯ ಸರಕುಗಳು ಮಾರಾಟವಾದರೆ ಸಾಕು ಎಂದು ನಿಯಮವನ್ನು ಸರಳಗೊಳಿಸಲಾಗಿದೆ. ಹಾಗೆಯೇ, ಶೇ 30ರಷ್ಟು ಭಾರತೀಯ ಸರಕನ್ನು ರಫ್ತು ಮಾಡುವುದಕ್ಕೂ ಅವಕಾಶ ಕೊಡಲಾಗಿದೆ.

Digital Content available varies by languages

Sentiment Analysis - Simple Annotation

One of the most loved love stories of Bollywood is DEVDAS. It has been remade several times and ten years ago, Anurag Kashyap gave a different touch to the tale through DEV D [2009]. All the interpretations have been liked as there's a charm in the story of a man who goes on a self-destructive path when he fails to get the girl he loves. Two years ago, Sandeep Reddy Vanga made a Telugu film named ARJUN REDDY, which had a kind of a deja vu of DEVDAS. Yet, it stood out due to the treatment, execution and performances. ARJUN REDDY became a cult success and now its Hindi remake KABIR SINGH is all set to hit theatres. So does KABIR SINGH turn out to be as good as or better than ARJUN REDDY? Or does it fail to stir the emotions of the viewers? Let's analyse.

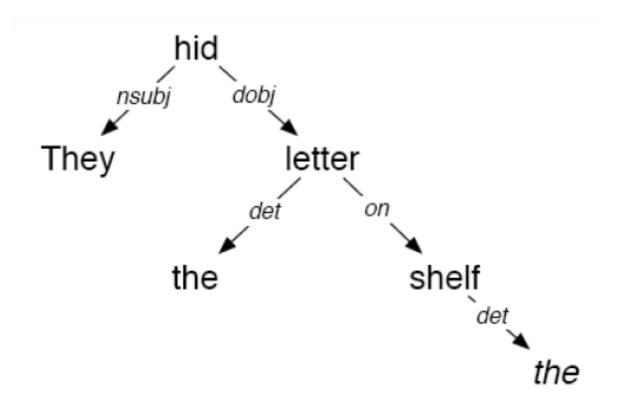
Neutral

An example of a text classification problem

Named Entity Annotation –

More time consuming, but does not require a lot of expertise

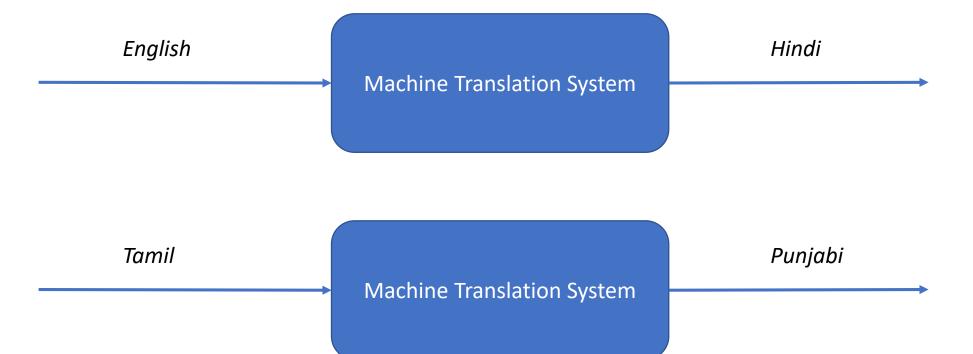
Deutsche Telekom yesterday delayed the demerger of its T-Mobile wireless business, which owns UK network One2One, until next year owing to the volatility of the stock markets. Deutsche Telekom was among a number of European telecom companies looking to demerge or float wireless operations this year. BT is expected to demerge its wireless business in the autumn.


However Deutsche Telekom, still partly state-owned, warned yesterday that investor appetite for hi-tech shares is still too low. Analysts consider T-Mobile, which has 60m subscribers across Europe, to be one of Deutsche Telekom's most valuable assets and welcomed the decision to delay.

Parallel Corpora – large requirement, needs good language skills

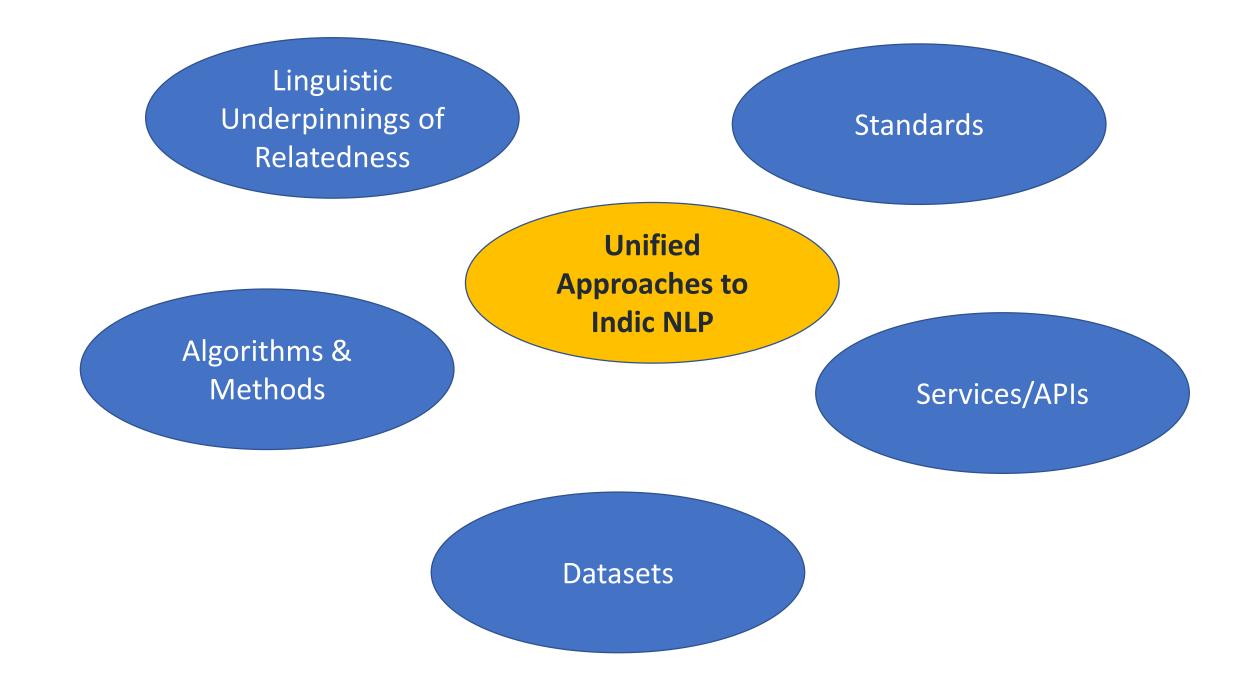
A boy is sitting in the kitchen	एक लडका रसोई में बैठा है	
A boy is playing tennis	एक लडका टेनिस खेल रहा है	
A boy is sitting on a round table	एक लडका एक गोल मेज पर बैठा है	
Some men are watching tennis	कुछ आदमी टेनिस देख रहे है	
A girl is holding a black book	एक लडकी ने एक काली किताब पकडी है	
Two men are watching a movie	दो आदमी चलचित्र देख रहे है	
A woman is reading a book	एक औरत एक किताब पढ रही है	
A woman is sitting in a red car	एक औरत एक काले कार मे बैठी है	

Parse Tree – needs good linguistic expertise

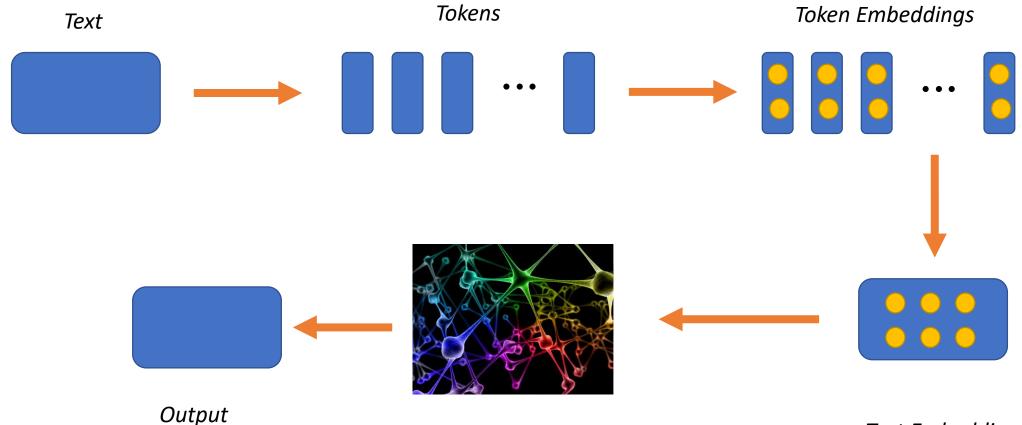


They hid the letter on the shelf

Need for a Unified Approach for Indic NLP

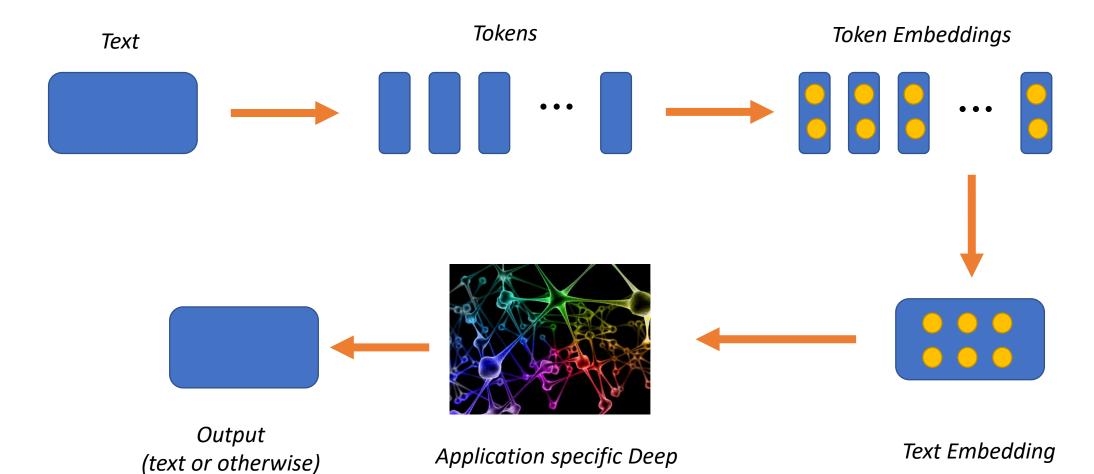

Expensive to create datasets for each language

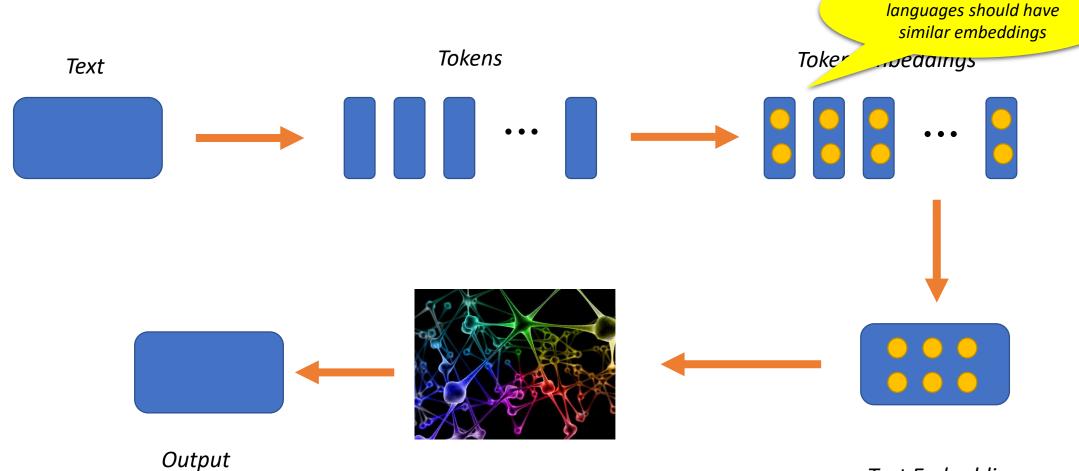
- Can we utilize resources developed for some languages for other languages?
- Can diverse input from different languages lead to better generalization?
- Can we support multiple languages with reduced effort & cost for deployment and maintenance?
- Can we use unsupervised data sources?
- Can we utilize relatedness between Indian languages?



Broad Goal: Build NLP Applications that can work on different languages

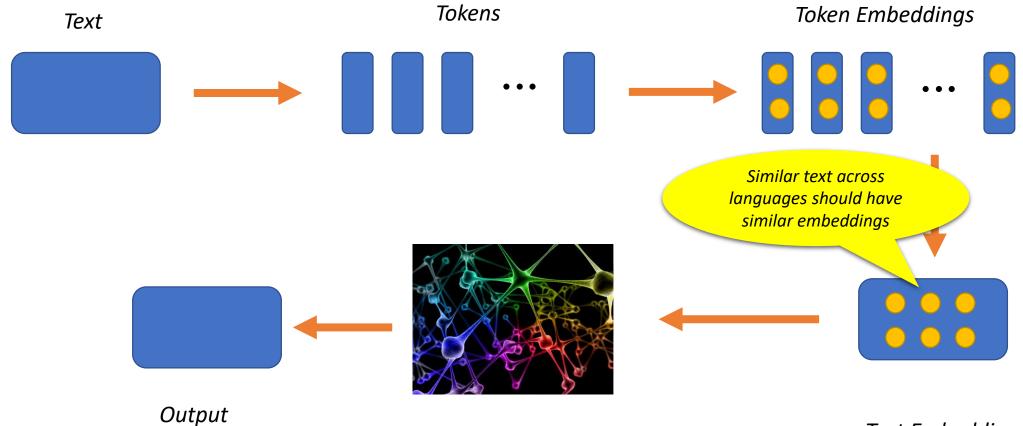
Can we improve English-Hindi translation using Tamil-Punjabi model? Can we do English → Punjabi translation even if this data is not seen in training? Can we train a single model for all translation pairs?


A Typical Deep Learning NLP Pipeline

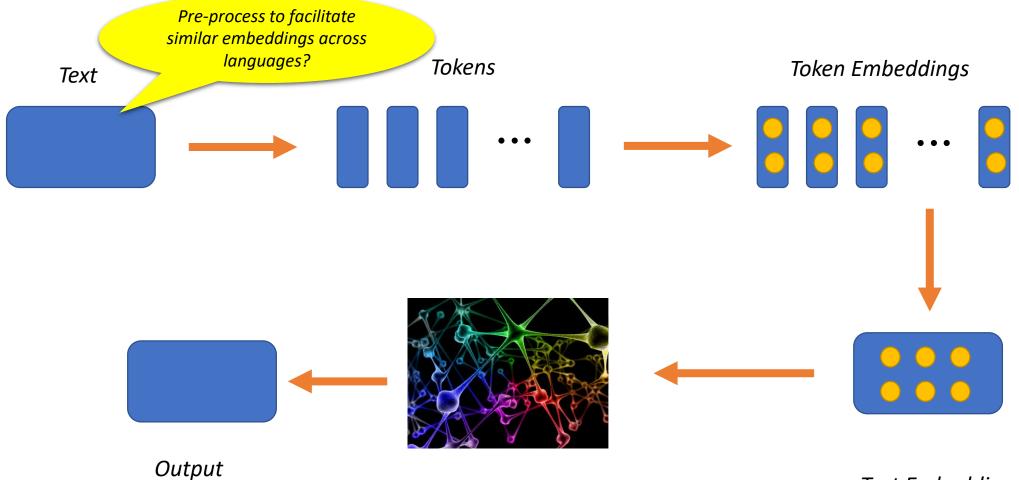

Output (text or otherwise)

Application specific Deep Neural Network layers

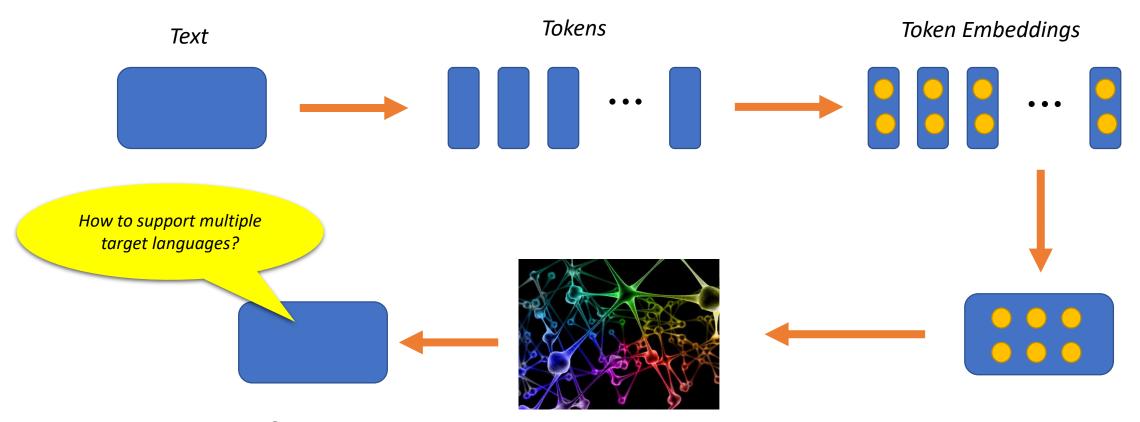
How do we transfer information across languages?



Neural Network layers


Output (text or otherwise)

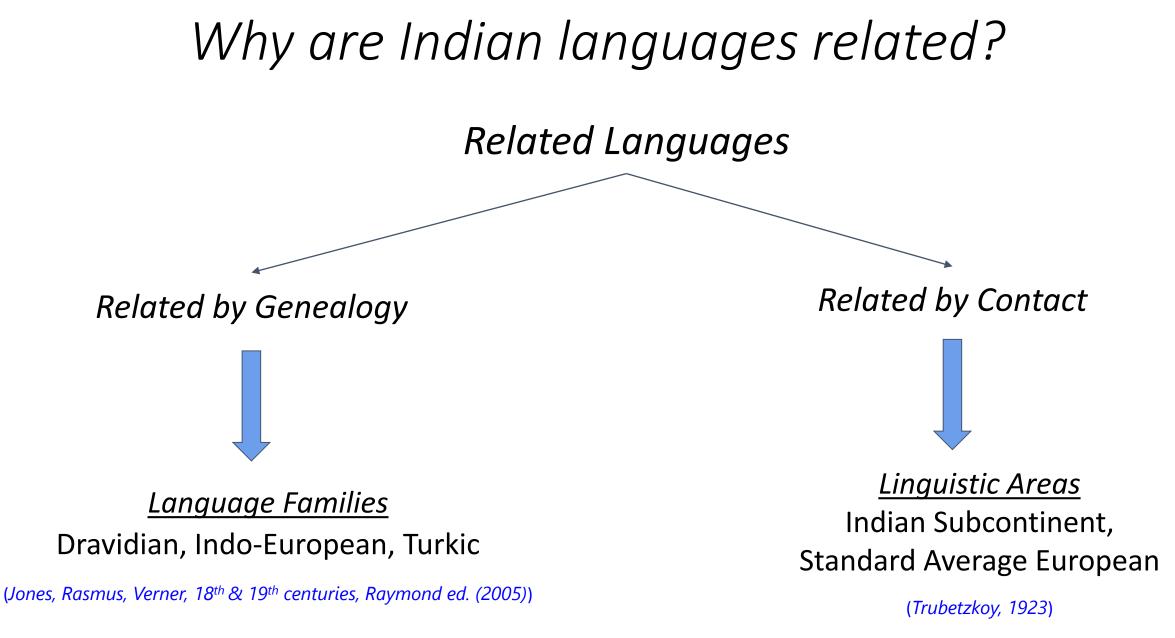
Application specific Deep Neural Network layers


Output (text or otherwise)

Application specific Deep Neural Network layers

Output (text or otherwise)

Application specific Deep Neural Network layers


Output (text or otherwise)

Application specific Deep Neural Network layers

Outline

- Motivation
- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Relatedness between Indian Languages

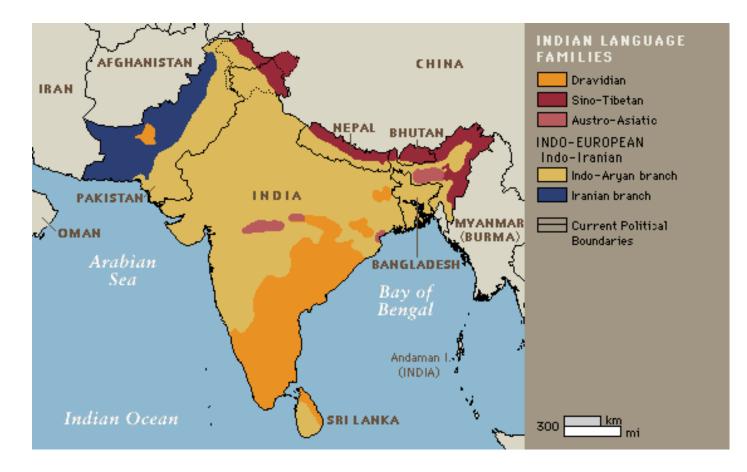
Related languages may not belong to the same language family!

Language Families

<u>Group of languages related through descent from a common ancestor,</u> <u>called the **proto-language** of that family</u>

	Sanskrit	Greek	Latin
'father'	pitā	patēr	pater
'foot'	pad-	pod-	ped-
'blood'	krūra-	kreas	cruor
'three'	trayah	treis	trēs
'that'	tad	to	-tud

Basis of classification


Regularity of sound change is the basis of studying genetic relationships

MEANING	LATIN	PORTUGUESE ²	CASTILIAN	ITALIAN	Romanian
'eight'	<i>octo</i> /'okto:/🛛	<i>oito</i> /'ojtu/🛛	ocho /'ot∫o/□	otto /'stto/[]	opt /'opt/🛛
'milk'	<i>lactem</i> /ˈlaktẽ/🛛	<i>leite /</i> 'lɐjtə/🛛	<i>leche</i> /ˈlet∫e/□	<i>latte /</i> 'latte/[]	<i>lapte /</i> 'lapte/[]
'fact'	<i>factum</i> /′faktũ/□	<i>feito</i> /ˈfɐjtu/🏾	<i>hecho</i> /'et∫o/□	<i>fatto /</i> ¹ fatto/[]	<i>fapt</i> /'fapt/[]

Source: Eifring & Theil (2005)

These words are called **cognates**

Language Families in India

4 major language families

<u>Indo-Aryan</u>: North India and Sri Lanka (branch of Indo-European)

Dravidian: South India & pockets in the North

<u>Tibeto-Burman</u>: North-East and along the Himalayan ranges

<u>Austro-Asiatic</u>: pockets in Central India, North-East, Nicobar Islands

Plus

Andamanese family Unknown language of the Sentinelese

Cognates in Indian Languages

English	Vedic Sanskrit	Hindi	Punjabi	Gujarati	Marathi	Odia	Bengali
					chapāti,		
bread	Rotika	chapātī, roțī	roți	paũ, roțlā	poli, bhākarī	pauruți	(pau-)ruți
fish	Matsya	Machhlī	machhī	māchhli	māsa	mācha	machh
	bubuksha,						
hunger	kshudhā	Bhūkh	pukh	bhukh	bhūkh	bhoka	khide
		bhāshā,	boli, zabān,				
language	bhāshā, vāNī	zabān	pasha	bhāshā	bhāshā	bhāsā	bhasha
ten	Dasha	Das	das, daha	das	dahā	dasa	dôsh

English	Tamil	Malayalam	Kannada	Telugu	
fruit	pazham , kanni	pazha.n , phala.n	haNNu , phala	pa.nDu , phala.n	
fish	mlnn	matsya.n , mln, mlna.n	mlnu , matsya , jalavAsi, mIna	cepalu , matsyalu , jalaba.ndhu	
hunger	ger paci vishapp , udarArtti , kShutt , pashi		hasivu, hasiv.e,	Akali	
language	guage pAShai, m.ozhi bhASha , m.ozhi		bhASh.e	bhAShA , paluku	
ten	pattu patt,dasha.m,dashaka.m		hattu	padi	

Dravidian

Source: Wikipedia and IndoWordNet

Linguistic Area (Sprachbund)

- To the layperson, Dravidian & Indo-Aryan languages would seem closer to each other than English & Indo-Aryan
- Linguistic Area: A group of languages (at least 3) that have common <u>structural</u> features due to geographical proximity and language contact (Thomason 2000)
- Not all features may be shared by all languages in the linguistic area

Examples of linguistic areas:

- Indian Subcontinent (Emeneau, 1956; Subbarao, 2012)
- Balkans

Borrowed Words

Indo-Aryan words in Dravidian languages

Most classical languages borrow heavily from Sanskrit

Sanskrit word	Dravidian Language	Loanword in Dravidian Language	English
cakram	Tamil	cakkaram	wheel
matsyah	Telugu	matsyalu	fish
ashvah	Kannada	ashva	horse
jalam	Malayalam	jala.m	water

Dravidian words in Indo-Aryan languages

- A matter of great debate
- Could probably be of Munda origin also
- See writings of Kuiper, Witzel, Zvelebil, Burrow, etc.
- Proposal of Dravidian borrowing even in early Rg Vedic texts

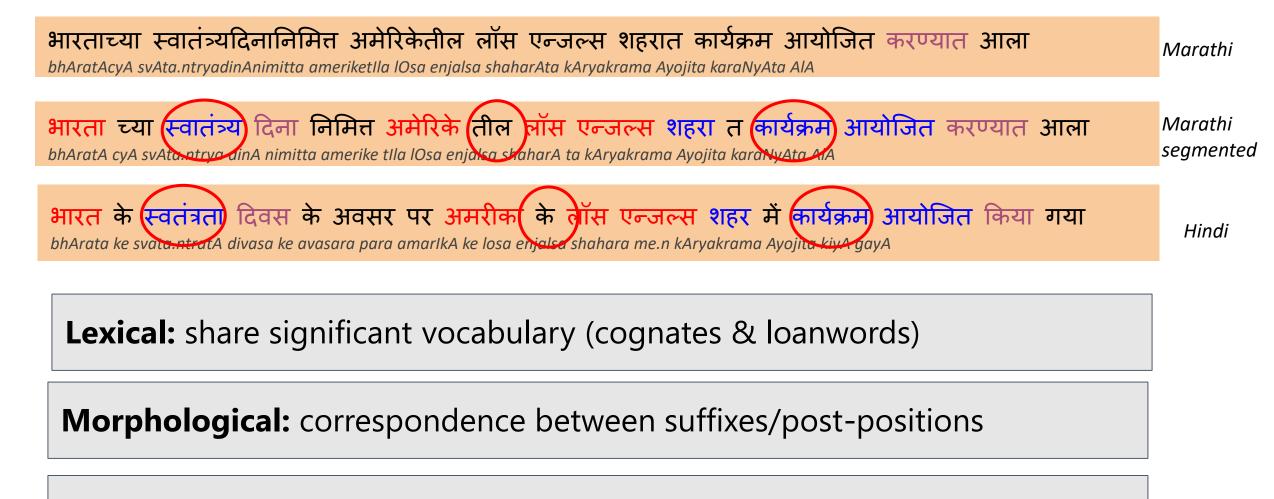
Borrowed Syntactic Features

<u>Retroflex Sounds in Indo-Aryan Languages</u>: टठडढण

- Found in Indo-Aryan, Dravidian and Munda language families
- Not found in Indo-European languages outside the Indo-Aryan branch

Echo Words: Generally means etcetera or things like this

hi: cAya-vAya, te: pull-gull, ta v.elai-k.elai


- Standard feature in all Dravidian languages
- Not found in Indo-European languages outside the Indo-Aryan branch

SOV word order in Munda languages

- Their Mon-Khmer cousins have SVO word order
- Munda language were originally SVO, but have become SOV over time

Similarities between Indian languages

Key Similarities between related languages

Syntactic: share the same basic word order

Lexical Similarity

(Words having similar *form* and *meaning*)

Cognates

a common etymological origin

roTI (hi)	roTIA (pa)	bread
bhai (hi)	bhAU (mr)	brother

• Loan Words

borrowed without translation

matsya (sa)	matsyalu (te)	fish
pazha.m (ta)	phala (hi)	fruit

• Named Entities

do not change across languages

mu.mbal (hi)	mu.mbal (pa)	mu.mbal (pa)
keral (hi)	k.eraLA (ml)	keraL (mr)

• Fixed Expressions/Idioms

MWE with non-compositional semantics

dAla me.n kuCha kAlA honA	(hi)	Something fishy
dALa mA kAIka kALu hovu	(gu)	Something Jishy

Enables sharing of data across languages

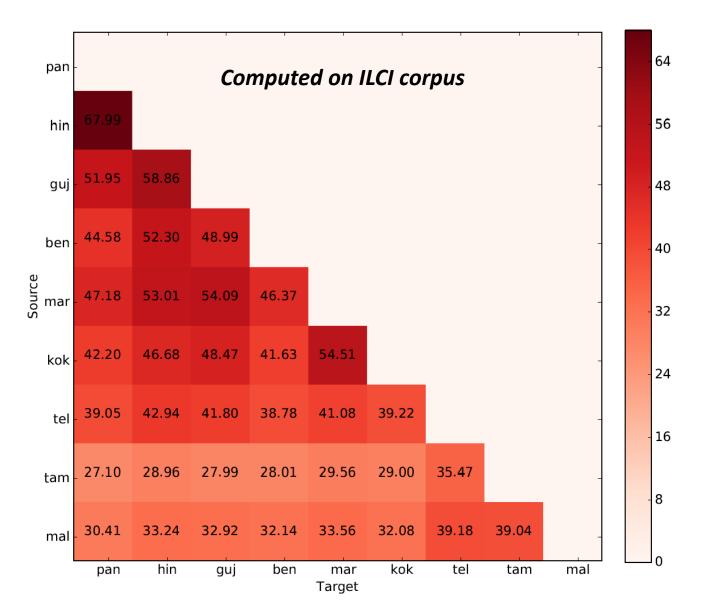
But, be warned of

<u>False Friends:</u> Similar spelling ; different meaning

- Different origin: pAnI (hi) [water] -> panI (ml) [fever]
- Semantic shift: bala means hair (hi, frequent sense) and baLa means child (mr)

 $\frac{Short \ words:}{jaLa} \leftarrow \rightarrow jAla$

How similar are Indian Languages?


Estimate lexical similarity from parallel corpus

Longest Common Subsequence Ratio (LCSR) for a sentence pair

$$LCSR(s_1, s_2) = \frac{LCS(s_1, s_2)}{\max(len(s_1), len(s_2))}$$

LCSR for a language pair

$$LCSR(L_1, L_2) = \frac{1}{|P(L_1, L_2)|} \sum_{\substack{(s_1, s_2) \in \\ P(L_1, L_2)}} LCSR(s_1, s_2)$$

Syntactic Similarity

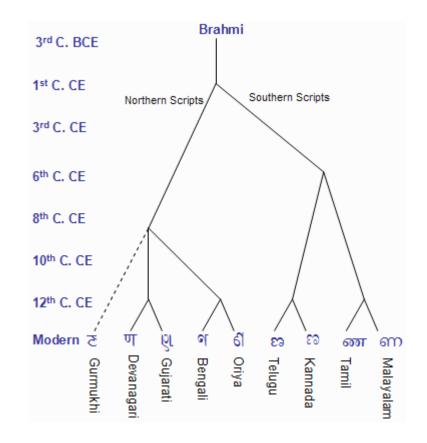
- Almost all Indian languages has SOV word order
- SOV word order determines relative order between:
 - Noun-adposition
 - Noun-genitive
 - Noun-Relative clause
 - Verb-Auxilary
- Word order plays a very important role in most NLP applications
 - Language Modelling
 - Machine Translation
- Relatively Free Word Order

Morphological Similarity

- Inflectionally rich
- Sometimes agglutinative
- Function words with largely 1-1 correspondence
- Similar internal word structure and compositional semantics
- Similar case-marking systems

Hindi Post-position	Marathi Suffix	Case Description
को (<i>ko</i>)	ला (<i>lA</i>)	Accusative
को (ko)	ला (<i>lA</i>)	Dative
से (se)	नी (nI)	Instrumental
मे (me)	त (<i>ta</i>)	Locative
का (kA)	चा (cA)	Genitive

Orthographic Similarity


- highly overlapping phoneme sets
- mutually compatible orthographic systems
- similar grapheme to phoneme mappings

Indic Scripts

All major Indic scripts derived from the Brahmi script

First seen in Ashoka's edicts

- Same script used for multiple languages
 - Devanagari used for Sanskrit, Hindi, Marathi, Konkani, Nepali, Sindhi, etc.
 - Bangla script used for Assamese too
- Multiple scripts used for same language
 - Sanskrit traditionally written in all regional scripts
 - Punjabi: Gurumukhi & Shahmukhi, Sindhi: Devanagari & Persio-Arabic

Common characteristics

Devanagari	अ आ इ ई उ ऊ ऋ ऌ ऍ ऎ ए ऐ ऑ ऒ ओ औ क ख ग घ ङ च छ ज झ
Bengali	অ আ ই ঈ উ ঊ ঋ ৯ এ ঐ ও ঔ ক খ গ ঘ ঙ চ ছ জ ঝ ঞ ট ঠ ড
Gurmukhi	ਅ ਆ ਇ ਈ ਉ ਊ ਏ ਐ ਓ ਔ ਕ ਖ ਗ ਘ ਙ ਚ ਛ ਜ ਝ ਞ ਟ ਠ ਡ ਢ ਣ ਤ ਥ
Gujarati	અ આ ઇ ઈ ઉ ઊ ઋ ઍ એ ઐ ઑ ઓ ઔ ક ખ ગ ઘ ઙ ચ છ જ ઝ ઞ ટ ઠ
Oriya	ଅ ଆ ଇ ଈ ଉ ଊ ଋ ଌ ଏ ଐ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଛ ଜ ଝ ଞ ଟ ୦ ଡ ଢ ଣ
Tamil	அ ஆ இ ஈ உ ஊ எ ஏ ஐ ஒ ஒ ஔ க ங ச ஜ ஞ ட ண த ந
Telugu	అ ఆ ఇ ఈ ఉ ఊ ఋ ఌ ఎ ఏ ఐ ఒ ఓ ఔ క ఖ గ ఘ ఙ చ ఛ జ ఝ
Kannada	ಅ ಆ ಇ ಈ ಉ ಊ ಋ ಌ ಎ ಏ ಐ ಒ ಓ ಔ ಕ ಖ ಗ ಘ ಙ ಚ ಛ ಜ ಝ ಞ
Malayalam	അ ആ ഇ ഈ ഉ ഊ ഋ ഌ എ ഏ ഐ ഒ ഓ ഔ ക ഖ ഗ ഘ

- Largely overlapping character set, but the visual rendering differs
- Traditional ordering of characters is same (*varnamala*)
- Dependent (*maatras*) and Independent vowels

Abugida scripts:

- primary consonants with secondary vowels diacritics (*maatras*)
- rarely found outside of the Brahmi family
- Consonant clusters (क्क,क्ष)
- Special symbols like:
 - anusvaara (nasalization), visarga (aspiration)
 - halanta/pulli (vowel suppression), nukta (Persian/Arabic sounds)
- Basic Unit is the akshar (a pseudo-syllable)

Syllable as Basic Unit

akshara, the fundamental organizing principle of Indian scripts

(CONSONANT) + VOWEL

Examples: की (kl), प्रे (pre)

Pseudo-Syllable

True Syllable \Rightarrow Onset, Nucleus and Coda Orthographic Syllable \Rightarrow Onset, Nucleus

Organized as per sound phonetic principles

shows various symmetries

Primary vowels			Sh	iort				ing			Diphth	ionas	
		In	itial	Diacr	itic	Initia		Diac	ritic	Initi		Diac	ritic
Unroun	ded low centr	ब अ	• a	प	pa	आ	ā	पा	pā				
Unrou	inded high froi	nt इ	i	पि	pi	ई	ī	पी	pī				
Rou	nded high bac	ः उ	u	पु	pu	ऊ	ū	पू	рū				
S	Syllabic variant	ts ૠ	ŗ	पृ	pŗ	ॠ	ŗ	Ţ	pŗ				
		ऌ	ļ	पू	pĮ	ॡ	Ī	पू	pĮ				
Seco	ndary vowel	s				_		~		2		-	
ι	Unrounded fro	nt				ए	е	पे	pe	ए	ai	प	pai
	Rounded bac	:k				ओ	0	पो	ро	औ	au	पौ	pau
	Occlusive		3 celess) plosiv	es		Voi	iced pl	osives	\$	Na	Isals	
	Ī	unaspir		-	rated	una			aspira				
	Velar	क	ka	ख	kha	1	ſ	ga	घ	gha	ङ	ńa	1
	Palatal	च	са	छ	cha	5	ł	ja	झ	jha	স	ña	1
2	Retroflex	ट	ţa	δ	ţha	હ	5	da.	ढ	<u></u> dha	ण	ņa	1
	Dental	त	ta	थ	tha	द	Į.	da	ध	dha	न	na	1
	Labial	प	ра		pha	0		ba	ਸ	bha	म	ma	а
	Sonorants				_		4)			5	ノ	
		Pala			oflex		enta C		Lab ਸ				
6	Sonorants								ч	va			
	Sibilants	হা	śa	ष	şa	t	ſ	sa					
	Other lett	ers											
		ह	ha	ळ	ļa								

Benefits due to script design

- Common design and standardization enables easy conversion from one script to another
- Makes exploiting lexical similarity possible
- Phonetic scripts: helps capture similarity between characters

	0A8	0A9	0AA	0AB	0AC	0AD	0AE		098	099	09A	09B	09C	09D	09E
0		ઐ	δ	ર	ી	š	ૠ	0	٩	ষ্টি	ঠ	র	ী		শ্ধ
	(1111)	0A90	0AA0	OABO	0AC0	OADO	0AE0	_	0980	0990	09A0	09B0	09C0	71111	09E0
1	ک ۵۵۱	ઑ	3		ु ब्रद्ध		CAE1	1	ै 0981		उ		្ត្		S 09E1
2	٠ ۵۸82		<u>ک</u>	લ୍ 0AB2	%		ැ 0AE2	2	ः 0982		D 09A2	ল ₀₉₆₂	ୢୢୢୢୢ		ू 09E2
3	0A83	ઓ	ણ	U DAB3	N		ୁ ME3	3	<u>ः</u>	3 0993	<u>କ</u> _{09A3}		Q 09C3		3 09E3
4		ઔ ™	ત		س مط			4		3	0944		میں 800		
5	અ ೲ85	ک ۵۸۹5	શ 	ପ୍	<u>ان</u>			5	অ	ক	থ				
I					//////	11111		2	0985	0995	09A5	//////	HHH	HHH	11111

Feature	Possible Values
Туре	Unused (0), Vowel modifier (1), Nukta (2),
	Halant (3), Vowel (4), Consonant (5),
	Number (6), Punctuation (7)
Height (vowels)	F ront (1), M id (2), B ack (3)
Length	Short (1), Medium (2), Long (3)
Svar1	Low (1), Lower Middle (2), Upper Middle (3),
	Lower High (4) , High (5)
Svar2	Samvrit (1), Ardh-Samvrit (2)
	Ardh-Vivrit (3), Vivrit (4)
Sthaan	Dvayoshthya (1), Dantoshthya (2),
(place)	Dantya (3), Varstya (4), Talavya (5)
	Murdhanya (6), Komal-Talavya (7),
	Jivhaa-Muliya (8), Svaryantramukhi (9)
Prayatna	Sparsha (1), Nasikya (2), Parshvika (3),
(manner)	Prakampi (4), Sangharshi (5), Ardh-Svar (6)

Source: Singh, 2006

Useful for natural language processing: transliteration, speech recognition, text-to-speech

The Periodic Table and Indic Scripts

Dmitri Mendeleev is said to have been inspired by the two-dimensional organization of Indic scripts to create the periodic table

http://swarajyamag.com/ideas/sanskrit-and-mendeleevs-periodic-table-of-elements/

Mendeleev's Given Name	Modern Name		
Eka-aluminium	Gallium		
Eka-boron	Scandium		
Eka-silicon	Germanium		
Eka-manganese	Technetium		
Tri-manganese	Rhenium		
Dvi-tellurium	Polonium		
Dvi-caesium	Francium		
Eka-tantalum	Protactinium		

The Full List of Mendeleev's Predictions with their Sanskrit Names

India as a linguistic area gives us robust reasons for writing a common or core grammar of many of the languages in contact

~ Anvita Abbi

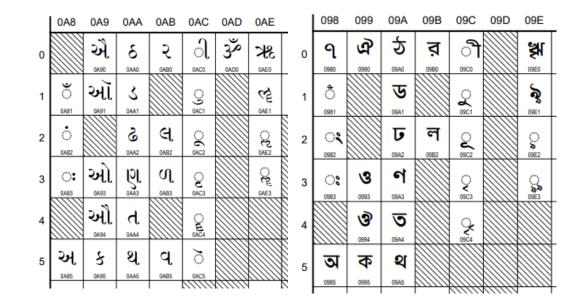
Outline

- Motivation
- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Utilizing Relatedness between Indian Languages

Orthographic Similarity

Lexical Similarity


Syntactic Similarity

Utilizing Orthographic Similarity

Script Conversion

- Read any script in any script
- Unicode standard enables consistent script conversion

unicode_codepoint(char) - Unicode_range_start(L₁) + Unicode_range_start(L₂)

केरला કેરલા কেরলা

Multilingual Acronym Generation

Simple application of script conversion

Need to build Latin to Indic script mappings only once

ए सी एल ACL ೨ সী এল ಏ ಸೀ ಏಲ

Multilingual Transliteration

Train a joint transliteration model for multiple Indian languages to English & vice-versa

Example of Multi-task Learning

Similar tasks help each other

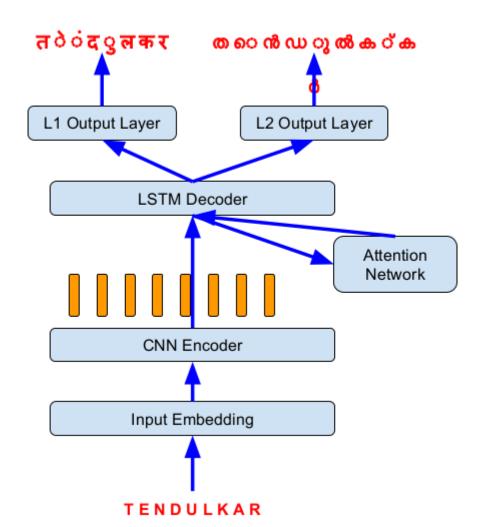
Zero-shot transliteration is possible

Perform Kannada → English transliteration even if network has not seen that data

Bengali \rightarrow English corpus

Telugu \rightarrow English corpus

Concat training sets

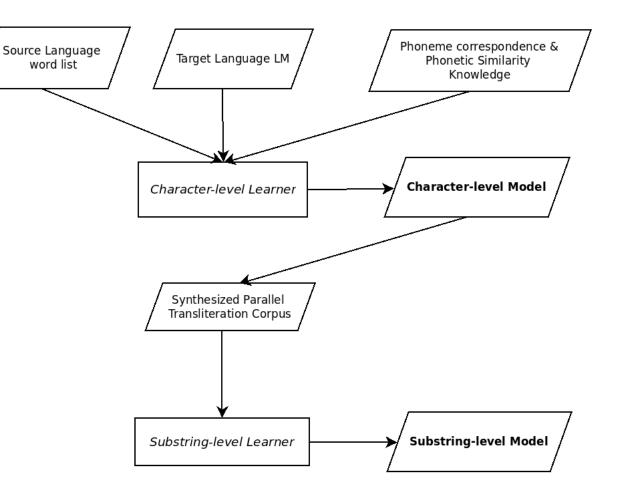

Malayalam	കോഴിക്കോട്	kozhikode
Hindi	केरल	kerala
Kannada	ಬೆಂಗಳೂರು	bengaluru

Convert to a common script

Malayalam	कोऴिक्कोट्	kozhikode
Hindi	केरल	kerala
Kannada	बेंगळूरु	bengaluru

Share network parameters across languages

Output layer for each target language

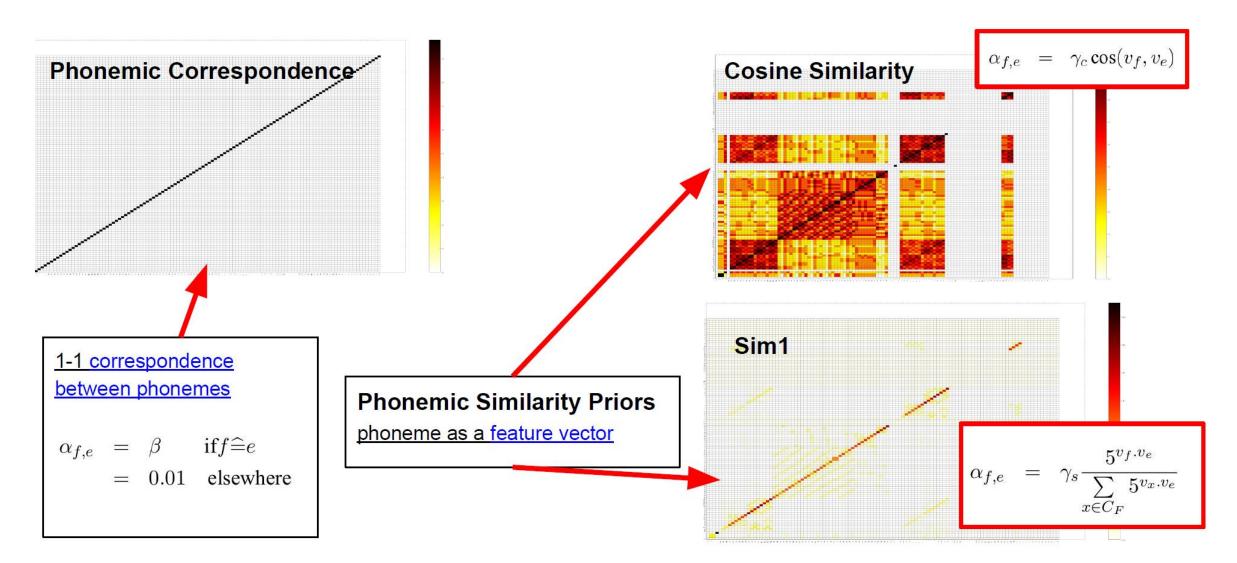

Unsupervised Transliteration

Learn:

Transliteration model (T_x) for source language (F) to target language (E)

Inputs:

- Monolingual word lists (W_F and W_E)
- Phonetic Representations of words


• Represent each Indic character as a feature vector

• Define a similarity measure based on the feature vector

Feature	Possible Values		
Basic Character Type	vowel, consonant, anusvaara, nukta, halanta, others		
Vowel Features			
Length	short, long		
Strength	weak, medium, strong		
Status	Independent, Dependent		
Horizontal position	Front, Back		
Vertical position	Close, Close-Mid, Open-Mid, Open		
Lip roundedness	Close, Open		
Consonant Features			
Place of Articulation	velar, palatal, retroflex, dental, labial		
Manner of Articulation	plosive, fricative, flap, approximant (central or lateral		
Aspiration	True, False		
Voicing	True, False		
Nasalization	True, False		

Linguistically-informed phonetic priors

Priors capture how similar two characters are (use Dirichlet Priors)

Effect of linguistic priors

Method	ben-hin		hin-kan		kan-hin			tam-kan				
Methou	A_1	F_1	A_{10}	A_1	F_1	A_{10}	A_1	F_1	A_{10}	A_1	F_1	A_{10}
Ravi & Knight (2009)	12.72	68.95	18.94	0.00	44.76	0.07	0.20	48.84	0.54	0.00	44.46	0.27
Rule-based	16.13	74.60	16.13	13.75	79.6 7	13.75	12.90	79.29	12.90	10.25	68.49	10.25
Phonemic Correspondence Initialization + Prior:												
Correspondence	18.27	75.50	27.04	12.53	77.32	17.89	27.69	81.06	43.55	13.49	69.85	29.06
Cosine	17.74	75.09	26.57	11.38	75.08	18.09	17.54	77.69	32.86	13.21	69.44	26.64
Sim1	18.07	75.25	29.05	11.72	75.61	20.26	19.69	78.18	37.84	13.55	69.74	28.19

- Rule based and use of linguistic priors outperforms Ravi & Knight's (2009) model
- Significant increase in top-1 accuracy over rule-based
- Good top-10 accuracy, which rule-based cannot provide

Syllable-based Transliteration

(Atreya, et al 2015)

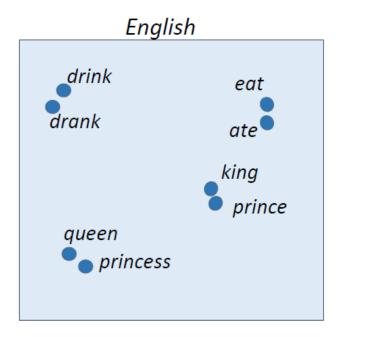
Syllable as the basic transliteration unit

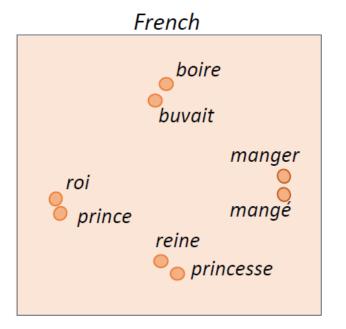
Hindi	Kannada	English
वि द्या ल य	ವಿ ದ್ಯಾ ಲ ಯ	vi dya lay
अर्जु न	ಅ ರ್ಜು ನ	a rju n

Transliteration Accuracies

	pa	as	bn	hi	gu	mr	te	kn	ml	ta
		CS:77.50	CS:89.80	CS:96.80	CS:90.30	CS:77.80	CS:95.70	CS:96.80	CS:96.90	CS:98.50
pa		VS:82.50	VS:93.70	VS:98.60	VS:89.50	VS:78.90	VS:97.90	VS:98.40	VS:98.50	VS:98.30
as	CS:73.10		CS:82.58	CS:76.30	CS:74.30	CS:71.00	CS:71.40	CS:73.80	CS:69.00	
a.,	VS:83.10		VS:86.89	VS:85.90	VS:84.80	VS:80.60	VS:81.70	VS:85.20	VS:78.40	_
bn	CS:90.30	CS:78.60		CS:97.40	CS:90.40	CS:68.20	CS:96.20	CS:95.50	CS:98.40	CS:97.70
	VS:93.10	VS:87.70		VS:97.80	VS:93.80	VS:80.60	VS:96.90	VS:97.00	VS:98.20	VS:98.00
hi	CS:86.40	CS:79.30	CS:79.70		CS:81.20	CS:72.77	CS:95.70	CS:93.30	CS:95.40	CS:95.60
	VS:87.60	VS:84.80	VS:88.30		VS:88.00	VS:82.88	VS:96.50	VS:93.60	VS:96.70	VS:95.80
gu	CS:89.30	CS:83.00	CS:84.10	CS:98.70		CS:81.60	CS:97.00	CS:95.70	CS:98.00	CS:98.00
	VS:88.80	VS:87.00	VS:91.20	VS:99.00		VS:83.00	VS:97.00	VS:96.70	VS:98.40	VS:98.20
mr	CS:78.70	CS:79.40	CS:75.40	CS:66.87	CS:77.40		CS:67.00	CS:74.90	CS:69.20	
	VS:79.90	VS:88.60	VS:84.40	VS:75.88	VS:81.40		VS:74.60	VS:78.60	VS:73.90	
te	CS:97.40	CS:75.20	CS:96.40	CS:99.20	CS:97.60	CS:70.10		CS:98.70	CS:99.00	CS:98.50
	VS:98.40	VS:79.80	VS:98.10	VS:99.30	VS:98.20	VS:76.90		VS:98.80	VS:97.70	VS:98.80
kn	CS:97.60	CS:76.40	CS:94.60	CS:98.50	CS:96.20	CS:71.50	CS:99.20		CS:99.50	CS:98.90
	VS:98.40	VS:81.30	VS:97.40	VS:98.90	VS:96.80	VS:79.60	VS:99.60		VS:99.90	VS:99.30
ml	CS:99.00	CS:72.20	CS:99.60	CS:99.10	CS:98.40	CS:71.80	CS:98.90	CS:99.80		CS:97.20
	VS:99.10	VS:77.70	VS:99.60	VS:99.30	VS:99.00	VS:77.70	VS:99.40	VS:99.90		VS:97.90
ta	CS:84.10		CS:86.20	CS:86.80	CS:86.70		CS:86.50	CS:86.90	CS:85.70	
	VS:94.30		VS:95.30	VS:95.50	VS:96.60		VS:96.60	VS:96.20	VS:95.90	10

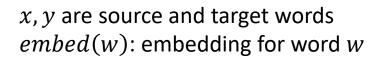
Syllable-level transliteration (VS) outperforms character-level transliteration (CS)

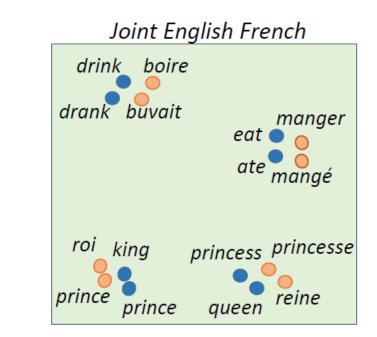

Utilizing Relatedness between Indian Languages


Orthographic Similarity

Lexical Similarity

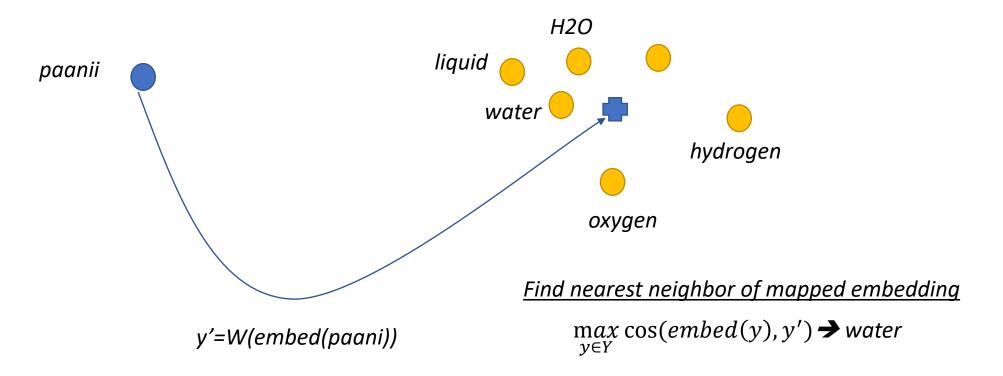
Syntactic Similarity


Multilingual Word Embeddings



<u>Monolingual Word Representations</u> (capture syntactic and semantic similarities between words)

embed(y) = f(embed(x))



<u>Multilingual Word Representations</u> (capture syntactic and semantic similarities between words both <u>within and across languages</u>)

(Source: Khapra and Chandar, 2016)

Bilingual Lexicon Induction

Given a mapping function and source/target words and embeddings: Can we extract a bilingual dictionary?

A standard intrinsic evaluation task for judging quality of cross-lingual embedding quality

The case of related languages

Concat

- Concat monolingual corpora and train embeddings
- Same words will have same embeddings
- Subword information in both languages considered by FastText

Identity

 For identical words, just assign corresponding embedding for word in other language embedding(ghar,marathi) = embedding (ghar,hindi)

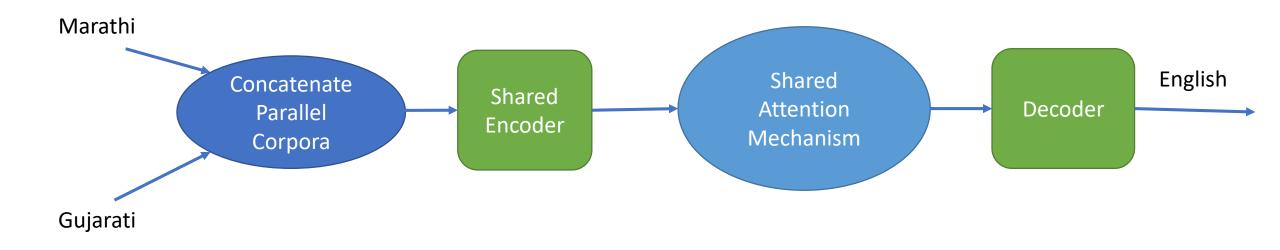
Enhanced embedding representation

- Add features to monolingual embeddings to capture character occurrence
- Learn bilingual embeddings on these enhanced monolingual embeddings

Original embedding

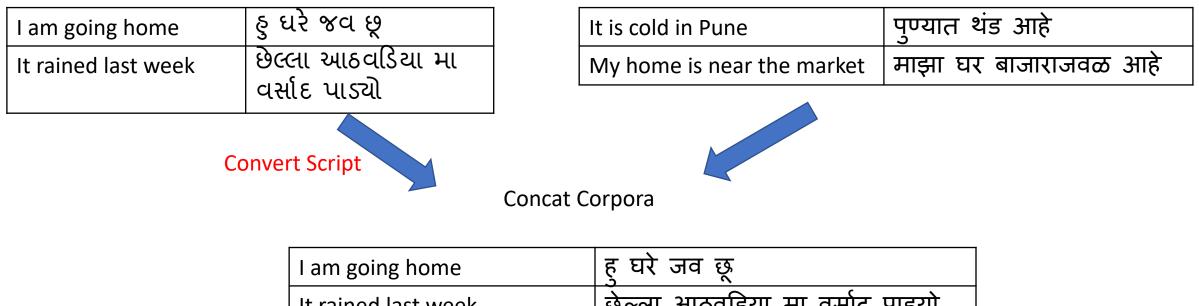
Char co-occurrence

Evaluation

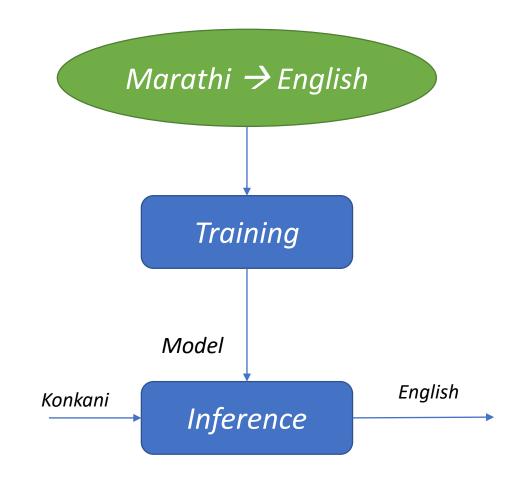

Method	En-German	En-Italian	En-Finnish
Baseline (B)	40.27	39.40	26.47
B + identity (I)	51.73	44.07	42.63
B + enhanced (E)	50.33	48.40	29.63
B + I + E	55.40	47.13	43.54

Precision@1

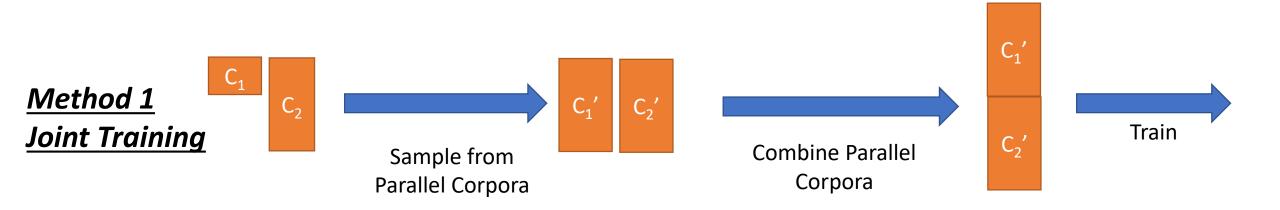
Multilingual Neural Machine Translation


(Zoph et al., 2016; Nguyen et al., 2017; Lee et al., 2017; Dabre et al., 2018)

We want Gujarati \rightarrow English translation \rightarrow but little parallel corpus is available We have lot of Marathi \rightarrow English parallel corpus


Combine Corpora from different languages

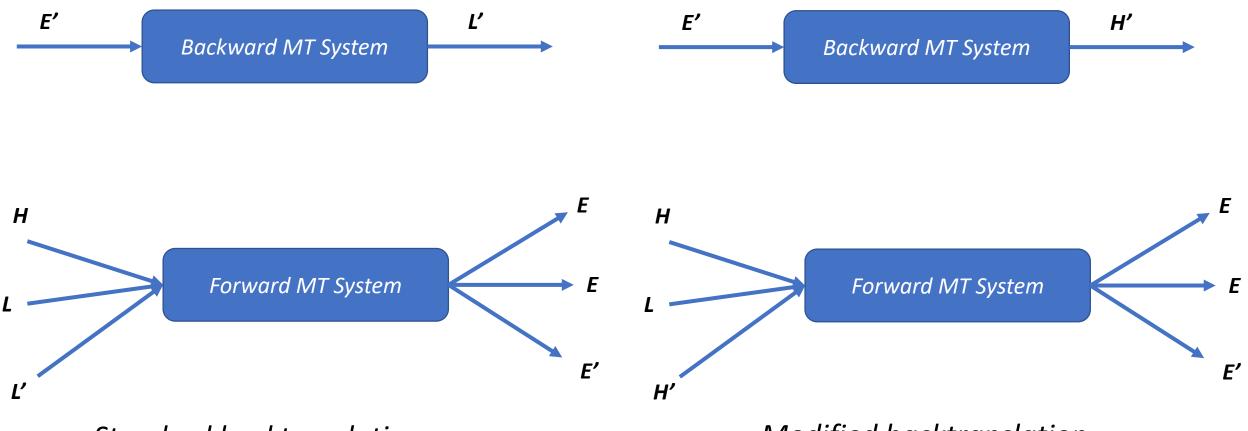
(Nguyen and Chang, 2017)



It rained last week	छेल्ला आठवडिया मा वर्साद पाड्यो
It is cold in Pune	पुण्यात थंड आहे
My home is near the market	माझा घर बाजाराजवळ आहे

Zeroshot Translation

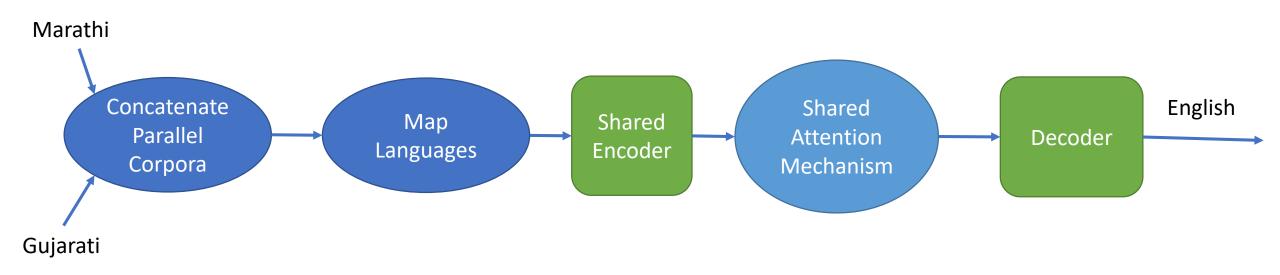
Training Multilingual NMT systems



Subword-level Representation of Corpora

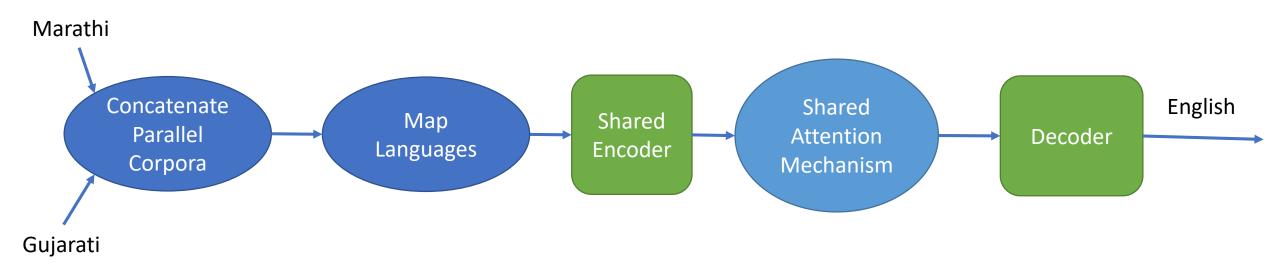
I am going home	हु घरे जव छू
It rained last week	छे_ल्ला आठवडि_या मा वर्सा_द पाड्यो
It is cold in Pune	पुण्या त थंड आहे
My home is near the market	माझा घर बा_ जारा_ जवळ आहे

- Words don't match exactly across languages: Subwords needed to utilize lexical similarity
- Possible Representations: Character, character n-grams, syllables, morph, Byte-Pair Encoded (BPE) Units
- BPE is very popular:
 - unsupervised segmentation
 - language-independent
 - Identifies frequent substrings


Backtranslation with a high-resource language

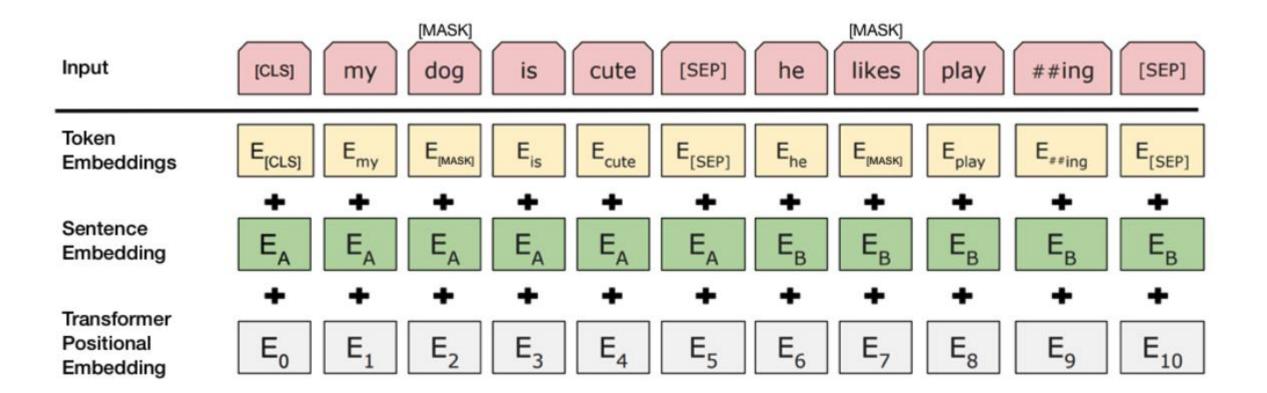
Standard backtranslation

Modified backtranslation


Make Indian Language Representations similar

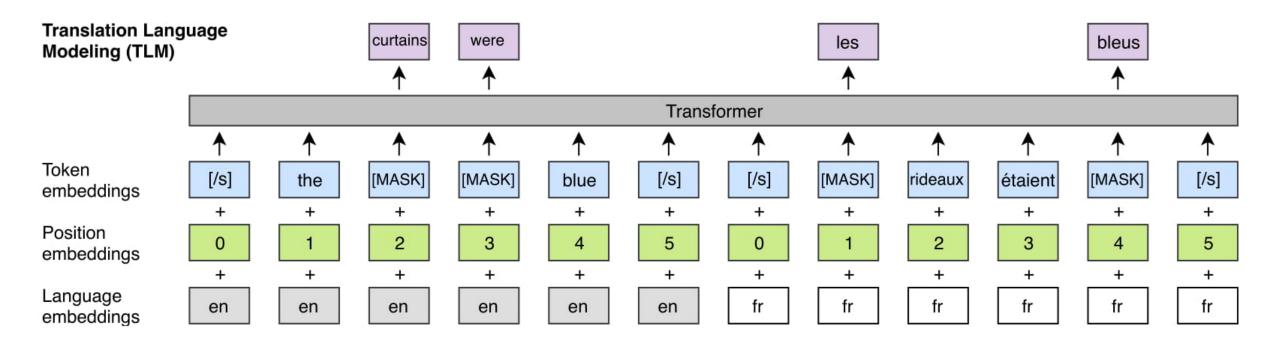
Surface form approaches

- Transliteration
- Word-by-word translation
- Word-by-word translation with beam search

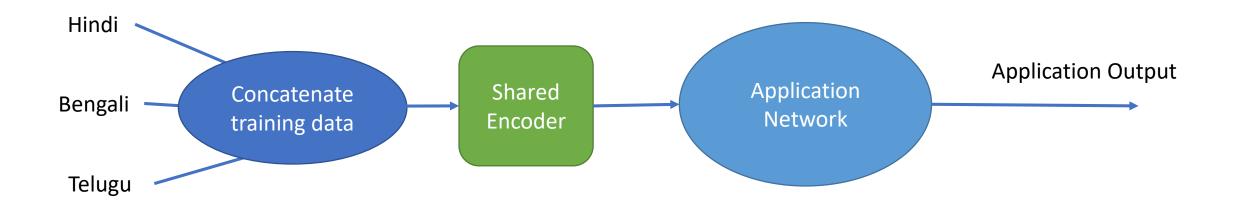

Make Indian Language Representations similar

Multilingual Embedding approaches

- Multilingual Word Embeddings
- Multilingual Sentence Embeddings


Multilingual BERT (Devlin et al., 2018)

Transformer encoder with masked LM objective – i.e. try to predict masked words Concat data from all languages


Cross-lingual Language Model Pre-training

(Lample & Conneau, 2019)

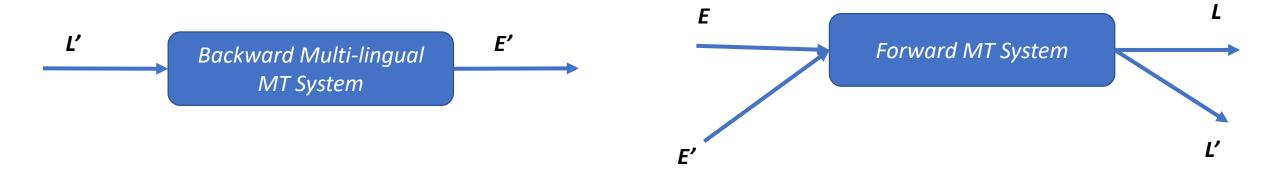
- Variant of BERT that adds a translation objective
- Needs parallel corpus

How to make other NLP applications multilingual?

- Sentiment Analysis
- Named Entity Recognition

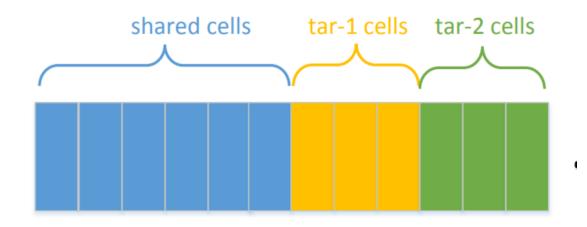
English → Indian Languages

How do we support multiple target languages with a single decoder?


A simple trick!: Append input with special token indicating the target language

<u>Original Input</u>: *France and Croatia will play the final on Sunday*

<u>Modified Input</u>: *France and Croatia will play the final on Sunday <hin>*


Backtranslation via Multilingual Model

Experiment	BLEU
Baseline Bilingual	19.7
(2) Baseline Multilingual $E \rightarrow X$	22.3
(2) + bilingual backtranslation	26.1
(2) + multilingual backtranslation	27.0

English \rightarrow Spanish with English \rightarrow French as helper pair

Shared and Private Decoder Hidden Units

- Shared units allow learning common features
- Language-dependent layers capture language specific information

Experiment	English-Chinese	English-German	English-French
Baseline Bilingual	44.23	27.84	41.50
(2) Baseline Multilingual $E \rightarrow X$	44.30	26.78	41.56
(2) + shared/private units	45.25	27.11	41.98

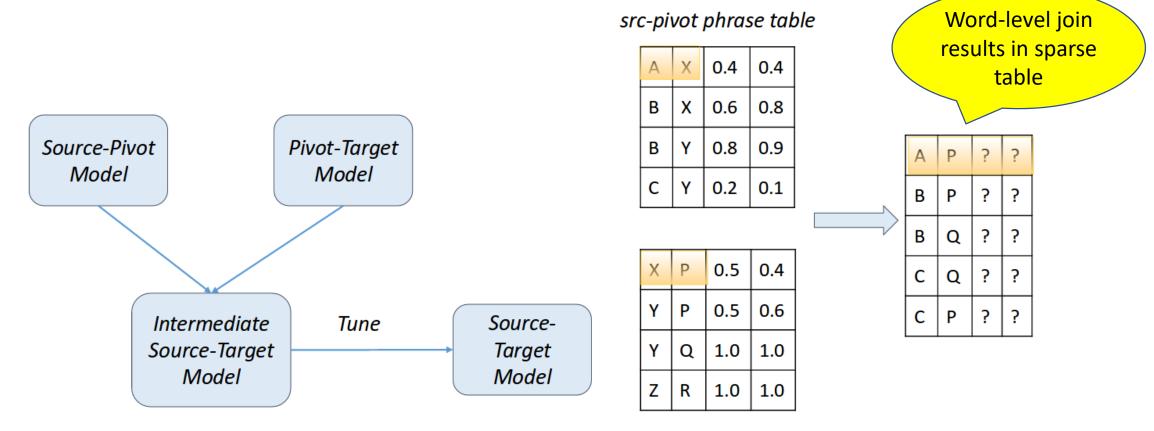
Indian-Indian Language MT

- Syllable as basic translation unit
- Balance between utilizing lexical similarity and word-level information

Basic Unit	Symbol	Example	Transliteration				
Word	W	घरासमोरचा	gharAsamoracA				
Morph Segment	Μ	घरा समोर चा	gharA samora cA				
Orthographic Syllable	0	घ रा स मो र चा	gha rA sa mo racA				
Character unigram	С	घर ा स म ो र च ा	gha r A sa m o ra c A				
something that is in front of home: ghara=home, samora=front, cA=of							
Va	rious transla	ation units for a Marathi v	vord				

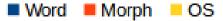
Results

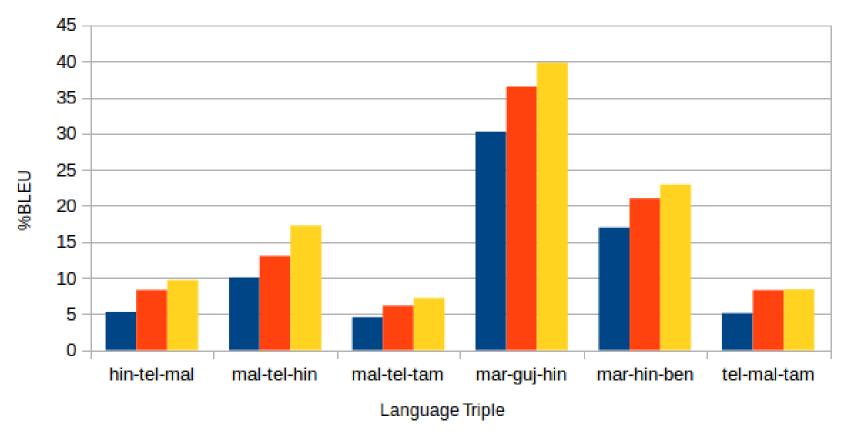
Families	Lang Pair	Sim	W	W_X	М	M_X	С	0
	ben-hin	52.30	31.23	32.79	32.17	32.32	27.95	33.46
IA-IA	pan-hin	67.99	68.96	71.71	71.29	71.42	71.26	72.51
	kok-mar	54.51	21.39	21.90	22.81	22.82	19.83	23.53
DR-DR	mal-tam	39.04	6.52	7.01	7.61	7.65	4.50	7.86
DK-DK	tel-mal	39.18	6.62	6.94	7.86	7.89	6.00	8.51
IA-DR	hin-mal	33.24	8.49	8.77	9.23	9.26	6.28	10.45
DR-IA	mal-hin	33.24	15.23	16.26	17.08	17.30	12.33	18.50
Results in	% BLEU (Sim	: Lexical	Similari	ty [LCSR	R], IA: Ind	do-Aryan	, DR: Di	ravidian)


- Substantial improvement over char-based (46%)
- Significant improvement over strong baselines: W_{χ} (10%) & M_{χ} (5%)
- Improvement when languages don't belong to same family (contact exists)
- More beneficial when languages are morphologically rich

Pivot Translation for Related Languages

Related languages \Rightarrow Use subword level translation units


Translation through intermediate language \Rightarrow Use Pivot based SMT methods Combine the two approaches



pivot-tgt phrase table

Why is syllable-based pivot model better?

- The underlying source-pivot and pivot-target models are better
- Data loss during join is minimized with subword representation

OS level pivot system outperforms other units

~60% improvement over word level

•~15% improvement over morph level

Utilizing Relatedness between Indian Languages

Orthographic Similarity

Lexical Similarity

Syntactic Similarity

Use Source Re-ordering for Phrase-based SMT

(Kunchukuttan et al., 2014)

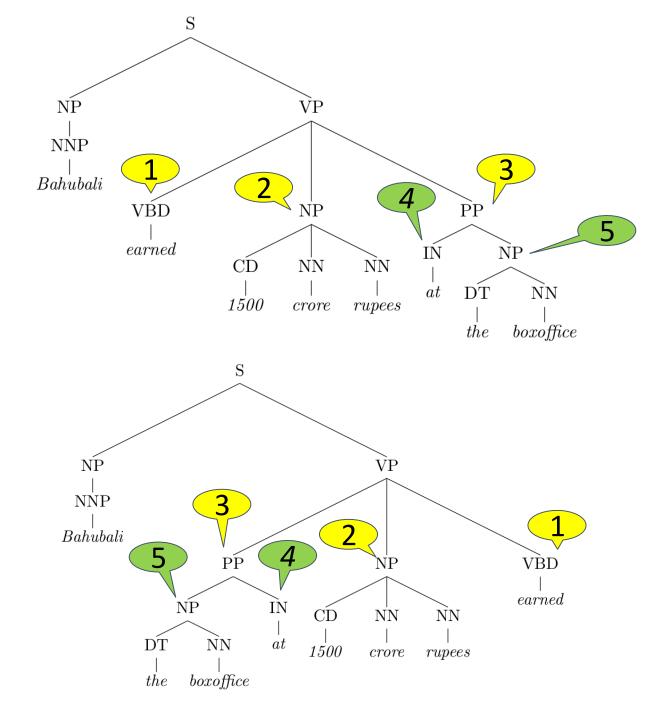
Phrase based MT is not good at learning word ordering

Solution: Let's help PB-SMT with some preprocessing of the input

Change order of words in input sentence to match order of the words in the target language

Let's take an example

Bahubali earned more than 1500 crore rupee sat the boxoffice


Parse the sentence to understand its syntactic structure

Apply rules to transform the tree

 $\frac{VP \rightarrow VBD \text{ NP PP} \Rightarrow VP \rightarrow PP \text{ NP VBD}}{PP \rightarrow IN \text{ NP} \Rightarrow PP \rightarrow \text{NP IN}}$

The new input to the machine translation system is: Bahubali the boxoffice at 1500 crore rupees earned

Now we can translate with little reordering: बाहुबली ने बॉक्सओफिस पर 1500 करोड रुपए कमाए

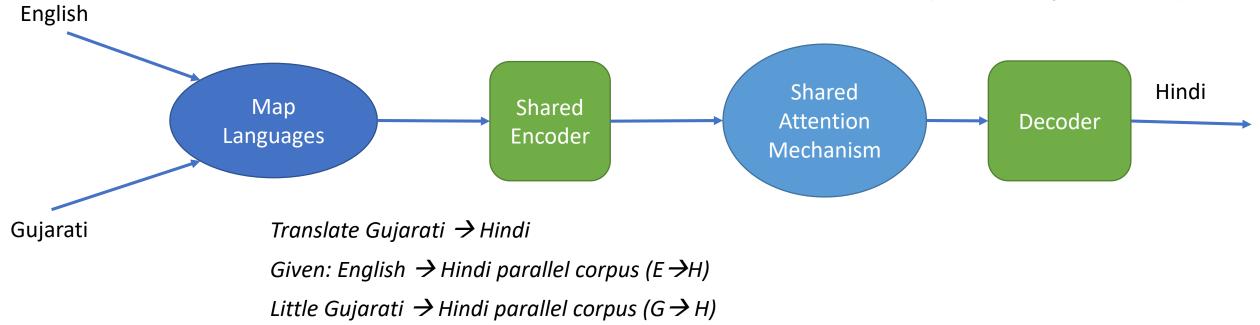
Can we reuse English-Hindi rules for English-Indian languages?

All Indian languages have the same basic word order

		D	ravidia	n					
	pan	hin	guj	ben	mar	kok	tel	tam	mal
Baseline	15.83	21.98	15.80	12.95	10.59	11.07	7.70	6.53	3.91
Generic Hindi-tuned		23.70 24.45						6.82 7.08	

(Kunchukuttan et al., 2014)

<u>Generic reordering</u> (Ramanathan et al 2008)


Basic reordering transformation for English → Indian language translation

Hindi-tuned reordering (Patel et al 2013)

Improvement over the basic rules by analyzing English \rightarrow Hindi translation output

Bridging Word-order Divergence for low-resource NMT

(Rudramurthy et al., 2019)

- Translate English to Gujarati word-by-word → G'->H corpus
- Train the G'->H corpus
- Fine-tune on small G->H corpus

Problem: Difference in Gujarati-English word order

Cannot ensure similar Gujarat and English words have similar representations

Solution: Pre-order English sentence to match Gujarati word-order

Same rules work for all Indic languages

		BLEU	LeBLEU (%)					
Language	No	Pre-C	Ordered	No	Pre-Ordered			
	Pre-Order	нт	G	Pre-Order	нт	G		
Bengali	6.72	8.83	9.19	37.10	41.50	42.01		
Gujarati	9.81	14.34	13.90	43.21	47.36	47.60		
Marathi	8.77	10.18	10.30	40.21	41.49	42.22		
Malayalam	5.73	6.49	6.95	33.27	33.69	35.09		
Tamil	4.86	6.04	6.00	29.38	30.77	31.33		

Outline

- Motivation
- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Indic NLP Library

https://github.com/anoopkunchukuttan/indic nlp library

Design Principles

- Design to support maximum number of Indian languages
- Utilize similarity between Indian languages for scaling to multiple Indian languages
- Modular and Extensible
- Easy of use:
 - Installation
 - Consistent Use
 - Separation between code and data resources

Capabilities

- Text Normalizer
- Sentence Splitter
- Word Tokenizer
- Word Detokenizer
- Word Segmenter
- Syllabification
- Query Script Information
- Phonetic Similarity

- Script Converter
- Romanization
- Indicization
- Transliteration
- Acronym Transliterator
- Statistical Machine Translation
- Lexical Similarity

Language Support

	Indo-Aryan	Dravidian	Others	
Assamese (asm)	Marathi (mar)	Sindhi (snd)	Kannada (kan)	English (eng)
Bengali (ben)	Nepali (nep)	Sinhala (sin)	Malayalam (mal)	/
Gujarati (guj)	Odia (ori)	Sanskrit (san)	Telugu (tel)	
Hindi/Urdu (hin/urd)	Punjabi (pan)	Konkani (kok)	Tamil (tam)	

Tasks

Monolingual	Indo-Aryan								Dravidian								
Woholinguai	san	hin	urd	pan	nep	snd	asm	ben	ori	guj	mar	kok	sin	kan	tel	tam	mal
Script Information	\checkmark	\checkmark	X	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark								
Normalization	\checkmark	\checkmark	×	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark								
Tokenization	\checkmark																
Word segmentation	×	\checkmark	X	\checkmark	×	×	×	\checkmark	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark
Romanization (ITRANS)	\checkmark	\checkmark	X	\checkmark													
ITRANS to Script	\checkmark	\checkmark	×	\checkmark													

Bilingual

- Script Conversion: Amongst the above mentioned languages, except Urdu and English
- **Transliteration:** Amongst the 18 above mentioned languages
- Translation: Amongst these 10 languages: (hin, urd, pan, ben, guj, mar, kok, sin, kan, tel, tam, mal) + English

Library Initialization

The path to the local git repo for Indic NLP library INDIC_NLP_LIB_HOME="/data/t-ankunc/installs/indic_nlp_library_py3"

The path to the local git repo for Indic NLP Resources
INDIC_NLP_RESOURCES="/data/t-ankunc/installs/indic_nlp_resources"

import sys
sys.path.append('{}/src'.format(INDIC_NLP_LIB_HOME))

from indicnlp import common
common.set_resources_path(INDIC_NLP_RESOURCES)

from indicnlp import loader
loader.load()

Outline

- Motivation
- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Indic Standards & Datasets

Enable sharing of data and annotations

Standards

Important to ensure sharing of data and annotations

Necessary to build multilingual NLP systems

- Unicode: codifies Indic script commonalities
- BIS POS Tag Set: hierarchical tagset suitable for Indian languages
- Universal Dependencies: universal accepted tagset for many languages
- IndoWordNet: sense repository for Indian languages

Catalog of Indian Language NLP Resources

https://github.com/indicnlpweb/indicnlp_catalog

Evolving, collaborative catalog of Indian language NLP resources

Please add resources you know of and send a pull request

Commercial Offerings for Indian Languages

	Microsoft	Google	Amazon
Translation	Yes	Yes	Yes
Transliteration	Yes	No	No
Information Extraction	No	No	No

Information Extraction includes entity recognition, intent recognition, sentiment analysis, relation extraction, POS tagging, syntactic parsing, etc.

Outline

- Motivation
- Relatedness between Indian Languages
- Utilizing Relatedness between Indian Languages
- IndicNLP Library
- Datasets, Services and Standards
- Summary

Thank You!

http://www.cse.iitb.ac.in/~anoopk