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ABSTRACT
We introduce Snap, a framework for packet processing that out-
performs traditional software routers by exploiting the parallelism
available on modern GPUs. While obtaining high performance,
it remains extremely flexible, with packet processing tasks imple-
mented as simple modular elements that are composed to build fully
functional routers and switches. Snap is based on the Click modular
router, which it extends by adding new architectural features that
support batched packet processing, memory structures optimized
for offloading to coprocessors, and asynchronous scheduling with
in-order completion. We show that Snap can run complex pipelines
at high speeds on commodity PC hardware by building an IP router
incorporating both an IDS-like full-packet string matcher and an
SDN-like packet classifier. In this configuration, Snap is able to for-
ward 40 million packets per second, saturating four 10 Gbps NICs
at packet sizes as small as 128 byes. This represents an increase in
throughput of nearly 4x over the baseline Click running comparable
elements on the CPU.

1. INTRODUCTION
As networks advance, the need for high-performance packet pro-
cessing in the network increases for two reasons: first, networks
get faster, and second, we expect more functionality from them [28,
17, 10, 4, 8, 3]. The nature of packet data naturally lends itself
to parallel processing [7], and recent work has demonstrated that
GPUs, which have thousands of cores, are well-suited to a number
of packet-processing tasks. These include, but are not limited to,
route lookup [9], encryption [12], and deep packet inspection [25,
11]. However, a software router is made up of more than just these
heavyweight processing and lookup elements. A range of other
elements are needed to build a fully functional router, including
“fast path” elements such as TTL decrement, checksum recalcula-
tion, and broadcast management, and “slow path” elements such
as handling of IP options, ICMP, and ARP. Building new features
not present in today’s routers adds even more complexity. To take
full advantage of the GPU in a packet processor, what is needed
is a flexible, modular framework for building complete processing
pipelines by composing GPU programs with each other and with
CPU code.

We have designed and implemented Snap to address this need.
It extends the architecture of the Click modular router [15] to sup-
port offloading parts of a packet processor onto the GPU. Snap
enables individual elements, the building blocks of a Click process-
ing pipeline, to be implemented as GPU code. It extends Click with
“wide” ports that pass batches of packets, suitable for processing in
parallel, between elements. Snap also provides elements that act
as adapters between serial portions of the processing pipeline and
parallel ones, handling the details of batching up packets, efficiently

copying between main memory and the GPU, scheduling GPU exe-
cution, and directing the outputs from elements into different paths
on the processing pipeline. In addition to these user-visible changes
to Click, Snap also makes a number of “under the hood” changes to
the way that Click manages memory and optimizes its packet I/O
mechanisms to support multi-10 Gbit rates.

This paper makes three contributions. First, we design a set of
enhancements to the Click architecture that make it easy to integrate
GPU elements into a processing pipeline. These extensions are in
keeping with Click’s design philosophy of using simple modular
elements that can be composed to form a variety of router con-
figurations. Second, we develop a set of techniques that enable a
high-performance implementation of these extensions. These in-
clude packet slicing to save bus bandwidth, predicated execution
to handle divergent paths through the element graph, and hybrid
synchronous/asynchronous packet pipeline scheduling with in-order
completion. Third, we implement a set of GPU-accelerated ele-
ments that provide common processing functionality, which serve as
demonstrations of Snap’s usefulness. We show that these elements
achieve high rates of forwarding performance on a commodity PC,
even when complex computational elements are used in combination.
When combining an IP router, an SDN-like packet classifier, and
an IDS-like full-payload string matcher, Snap forwards at 44 Mpps,
reaching full line rate on four 10 Gbps NICs for all but the small-
est packets. This yields a speedup of nearly 4x over the baseline
CPU-based Click.

2. BACKGROUND
Before describing Snap’s design and implementation, we begin with
short introductions to GPU computing and Click. We present a sim-
ple set of experiments that demonstrate that introducing computation-
heavy elements into Click configurations reduces performance, and
the potential for the GPU to alleviate this problem. We also give a
brief survey of related work.

2.1 GPU Computing Basics
A modern programmable GPU acts as a co-processor: it receives
code (called “kernels”), data, and commands from the host CPU.
The main focus of GPU evolution is increasing parallelism: current
high-end GPUs have more than two thousands cores [19]. Because
they are high-volume, mass-market devices, a large amount of engi-
neering effort goes into constant improvements, and they are cheaper
than more specialized parallel offload engines. A key challenge of
GPU computing is that GPU code requires bulk data to see a speedup
over CPU code. A single GPU core has much lower performance
than a CPU core, but together, the thousands of cores in a GPU can
provide greater throughput than the CPU for many types of highly
parallel tasks. For maximum utilization, it is desirable to launch
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many threads per GPU core: GPUs use zero-cost thread switching
to hide memory access latency, and thus typically require at least
tens of thousands of threads to achieve good utilization. It is not
unusual for scientific computing workloads to launch millions of si-
multaneous threads. GPUs use a SIMT (Single Instruction, Multiple
Thread) execution model, in which a group of cores shares a single
program counter, executing threads in lockstep.

GPUs have their own on-board device memory, which can be as
large as 6 GB [19]. GPU cores can only access the device memory
directly, so data must be copied in from the PC’s main memory
(called “host memory” in GPU computing) via DMA over the PCIe
bus. The PCIe bus is also used for CPU-GPU communication, such
as launching GPU kernels and synchronizing states as the compu-
tation progresses. The result is that there is overhead every time a
GPU kernel is launched, and managing this overhead is an important
part of using the GPU as an offloading engine. Fortunately, bulk
data copies and large thread counts can be used to amortize this
overhead when the data being operated on is large enough. For
analyses of these overheads, we refer the reader to PacketShader [9],
SSLShader [12], and GPUstore [23]. More detail about GPU com-
puting, especially the CUDA environment that we used to implement
Snap, can be found in the CUDA Guide [18].

2.2 Click
Click is a modular software router that provides an efficient pipeline-
like abstraction for packet processing on PC hardware. A packet
processor is constructed by connecting small software modules
called “elements” into a graph called a “configuration.” Click ele-
ments have two kinds of “ports:” input ports and output ports, and
a single element may have more than one of each. A connection
between two elements is made by connecting an output port of one
element to an input port of another. Packets move along these con-
nections when they are pushed or pulled: an element at the head of
the pipeline can push packets downstream, or packets can be pulled
from upstream by elements at the tail of the pipeline. Packets typ-
ically enter Click at a FromDevice element, which receives them
from a physical NIC and pushes them downstream as they arrive.
Unless dropped, packets leave through a ToDevice element, which
pulls them from upstream and transmits them as fast as the outgoing
NIC allows. Queues are used to buffer packets between push and
pull sections of the configuration.

At the C++ source-code level, elements are written as subclasses
of a base Element class, ports are instances of a Port class, and
network packets, which are represented by instances of the Packet
class, are passed one at a time between Elements by calling the
elements’ push() or pull() methods. We run Click at user level—
although Click can run directly in the kernel, with the Netmap [20]
zero-copy packet I/O engine, user-level Click has a higher forward-
ing rate than the kernel version [20].

2.3 Motivating Experiments
Our work on Snap is motivated by two facts: (1) rich packet pro-
cessing functionality can represent a major bottleneck in processing
pipelines; and (2) by offloading that functionality onto a GPU, large
performance improvements are possible, speeding up the entire
pipeline. We demonstrate these facts with two motivating experi-
ments. (Our experiment setup and methodologies are described in
more detail in Section 4.)

Our first experiment starts with the simplest possible Click for-
warder, shown at the top of Figure 1. It does no processing on
packets. It simply forwards them from one interface to another.
We then add, one at a time, elements that do IP route lookup, clas-
sification based on header bits (as is done in most SDN designs),

FromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Simple Forwarder:

Simple IP Router:

Simple SDN Forwarder:

Simple IDS:

LookupIPRouteFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

SDNClassifierFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

IDSMatcherFromDevice
(ethX, RingY)

ToDevice
(ethX, RingY)

Figure 1: Simple Click configurations

Configuration Throughput Relative TPut
Simple Forwarder 30.97 Gbps 100%
IP Router 19.4 Gbps 62.7%
IDS 17.7 Gbps 57.3%
SDN Forwarder 18.8 Gbps 60.7%

Table 1: Relative throughputs of simple processing pipelines.

and string matching (used in many intrusion detection systems and
deep-packet-inspection firewalls). The relative throughputs of these
four configurations, normalized to the throughput of the Simple
Forwarder, are compared in Table 1. We can clearly see from this
table that the addition of a even a single, common, processing task
into the forwarding pipeline can significantly impact performance,
cutting throughput by as much as 43%. In short, processing does
represent a bottleneck, and if we can speed it up, we can improve
router throughput.

Our next set of experiments compares the performance of these
three processing element when run on the CPU and on the GPU.
These experiments involve no packet I/O—we are simply interested
in discovering whether the raw performance of the GPU algorithms
offers enough of a speedup to make offloading attractive. We process
packets in batches, which is necessary to get parallel speedup on the
GPU. The results are shown in Figure 2. Two things become clear
from these graphs. First, GPUs do indeed offer impressive speedups
for these tasks: we see a 16x speedup for IP route lookup (559 Mpps
on the GPU vs 34.7 Mpps on the CPU). Second, fairly large batches
of packets are needed to achieve this speedup. These results are in
line with findings from earlier studies [25, 9].

GPUs are not appropriate for every type of packet processing
element. In particular, elements that require a guarantee that they
see every packet in a flow in order, or that have heavy state syn-
chronization requirements, are not well-suited to massively parallel
processing. Our challenge in Snap is to make it possible to take
advantage of GPU parallelism in a practical a way that preserves the
inherent composability and flexibility of Click, including incorpora-
tion of CPU elements into the processing pipeline.

2.4 Related Work
GPU-accelerated packet processing has begun to appear in the lit-
erature in the past few years [9, 12, 25, 11, 26]. This work focuses
on offloading specific processing tasks to the GPU, such as route
lookup, encryption, string matching, and name resolution. It uses
specialized engines for offloading packets to the GPU; these engines,
such as the psio engine created for PacketShader [9], are highly
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(a) IP lookup algorithm (radix tree)
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(b) IDSMatcher algorithm (Aho-Corasick)
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(c) SDN forwarder classifier algorithm

Figure 2: GPU vs. CPU performance on packet processing algorithms. Note that the axes are non-linear.

efficient, but they are not well suited to building pipelines more
complex than a single processing function. In particular, they do
not directly provide efficient support for splitting packets across
divergent processing paths–for example, sending packets through
different downstream code paths as a result of routing lookups or
IDS matches. This limits their use to simple linear pipelines, rather
than the complex element graphs supported by Click. Snap draws
inspiration from this work, and seeks to simply and efficiently in-
tegrate GPU processing into complex, fully-functional routers and
other packet processors. Snap will be an enabler for future work in
this area.

PTask [22] is a GPU framework that supports complex dataflow
graphs; however, its model of data processing, which is based on
Unix pipes, is different from the model used by a packet processor.
In PTask, each processing element consumes its input data and pro-
duces one or more new streams of output data. Packet processing, in
contrast, passes the same data, packets, through a series of elements
that modify, annotate, drop, or deliver them. This leads to a different
set of design decisions regarding how to allocate, store, manage,
and reuse data memory.

Click has existing support for multiple processors [6]; however,
this support was designed for the level of parallelism seen on PC
CPUs; ie. dozens of cores, not hundreds or thousands. Route-
Bricks [7] showed that Click-based software routers can be scaled
up by using a network of PCs. In contrast, Snap focuses on the
routing performance of a single PC, and is thus complementary to
RouteBricks; by increasing each PC’s throughput, Snap could be
used to reduce the number of PCs needed in a RouteBricks-like
routing cluster. Kim et al. demonstrated another strategy for improv-
ing Click performance by batching packets [13]. Here, batching
refers to executing the same element on a set of packets in series,
in contrast with standard Click, which executes a set of elements
on the same packet in series. This work is also complementary to
Snap, as it could be used to accelerate the CPU portions of a Snap
pipeline, and could be driven by Snap’s batch scheduling.

3. THE DESIGN AND IMPLEMENTATION
OF SNAP

We designed Snap with two goals in mind: enabling fast packet
processors through GPU offloading while preserving the flexibility
in Click that allows users to construct complex pipelines from sim-
ple elements. Snap is designed to offload specific elements to the
GPU: parts of the pipeline can continue to be handled by existing
elements that run on the CPU, with only those elements that present
computational bottlenecks re-implemented on the GPU. From the
perspective of a developer or a user, Snap appears very similar to
regular Click, with the addition of a new type of “batch” element that

can be implemented on the GPU and a set of adapter elements that
move packets to and from batch elements. Internally, Snap makes
several changes to Click in order to make this pipeline work well at
high speeds. Several themes appear in our design choices. In many
cases, we find that if we do “extra” work, such as making copies
of packets in main memory, or passing along packets that we know
will be discarded, we can decrease the need for synchronization and
reduce our use of the relatively slow PCIe bus. We also find that
scheduling parts of the pipeline asynchronously works well, and fits
naturally with Click’s native push/pull scheduling. In this section,
we walk through the design and implementation of Snap, starting at
a high level with the user-visible changes, and progressing through
the lower level changes that stem from these high-level decisions.

3.1 Widening Click’s Pipeline
As shown by the experiments in Section 2.3, in order to see large
benefits from GPU offloading, we need to provide the GPU with
relatively large batches of packets. In standard Click, the connection
between elements is a single packet wide: the push() and pull()
methods that pass packets between elements yield one packet each
time they are invoked. To efficiently use a GPU in the pipeline, we
added wider versions of the push() and pull() interfaces, bpush()
and bpull(). These methods exchange a new structure called a
PacketBatch, which will be described in more detail in the following
section. We also made Click’s Port class aware of these wider inter-
faces so that it can correctly pass PacketBatches between elements.
bpush() and bpull() belong to a new base class, BElement, which
derives from Click’s standard Element class.

In standard Click, to implement an element, the programmer cre-
ates a new class derived from Element and overloads the push()
and pull() methods. This is still supported in Snap; in fact, most of
our pipelines contain many unmodified elements from the standard
Click distribution, which we refer to as “serial” elements. To imple-
ment a parallel element in Snap the programmer simply derives it
from BElement and overrides the bpush() and bpull() methods.

A GPU-based parallel element is comprised of two parts: a GPU
side, which consists of GPU kernel code, and a CPU side, which re-
ceives PacketBatches from upstream elements and sends commands
to the GPU to invoke the GPU kernel. Snap provides a GPURun-
time object to help Click code interact with the GPU, which is
programmed and controlled using NVIDIA’s CUDA toolkit [18].
GPU-based elements interact with GPURuntime to request GPU
resources such as memory. The GPU kernel is written in CUDA’s
variant of C or C++, and is wrapped in an external library that is
linked with the element sources when compiling Snap. Typically,
each packet is processed by its own thread on the GPU.
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3.2 Batching Packets for the GPU
The BElement class leaves us with a design question: how should
we collect packets to form PacketBatches, and how should we man-
age copies of PacketBatches between host and GPU memory? Our
answer to this question takes its cue from the functioning of Click’s
Queue elements. Parts of a Click configuration operate in a push
mode, with packets arriving from a source NIC; other parts of the
configuration operate in pull mode, with packets being pulled along
towards output NICs. At some point in the configuration, an adapter
must be provided between these two modes of operation. The family
of Queue elements plays this role. In practice, the way a packet is
processed in Click is that it is pushed from the source NIC through
a series of elements until it reaches a Queue, at which point it is
deposited there and Click returns to the input NIC to process the
next packet. On the output side of the Queue, the packet is dequeued
and processed until it reaches the output NIC.

In an analogous manner, we have created a new element, Batcher,
which collects packets one at a time from a sequential Element on
one side and pushes them in batches to a BElement on the other side.
A Debatcher element performs the inverse function. Implementing
this functionality as a new element, rather than changing Click’s
infrastructure code, has three advantages. First, it minimizes the
changes within Click itself. Second, it makes transitions between
CPU and GPU code explicit; since there are overheads associated
with packet batching, it is undesirable for it to be completely invisi-
ble to the user. Third, and most important, it means that batching
and offloading are fully under the control of the creator of the Snap
configuration—while we provide carefully-tuned implementations
of Batcher and Debatcher elements, it is possible to provide alter-
nate implementations designed for specific uses (such as non-GPU
BElements) without modifying Snap.
Batcher has two important configuration parameters: batch-size

and timeout:

• batch-size determines how many packets the Batcher col-
lects before passing them to its output. A large batch ex-
ploits more parallelism, but can increase latency, since it takes
longer to collect.

• timeout is used to keep a bound on latency; it determines
the maximum amount of time Batcher waits before passing
along a partial batch.

A batch of packets is represented by the PacketBatch structure,
which is illustrated in Figure 3. A PacketBatch is associated not
only with a collection of packets (represented by Click’s Packet
objects), but also with allocations of host and GPU device memory.
Large consecutive buffers are used in host and GPU memory in
order to enable efficient DMA transfers, minimizing the overhead
of setting up transfers across the PCIe bus. The large buffers of a
PacketBatch are split into small buffers, which contain the slices of
packets (such as the headers) that are needed by the BElement(s).
During batching, the Batcher is responsible for selectively copying
data from Click’s Packet object into the packet’s host memory
buffer, as described in Section 3.7.

3.3 Managing Host-Device Memory Copies
GPU code requires both input data and output results to reside
in GPU memory, making it necessary to copy packets back and
forth between main memory and the GPU across the PCIe bus.
Snap factors this task out of the BElements that contain process-
ing code: a HostToDeviceMemcpy element (provided as part of
Snap) is placed between the Batcher and the first element that
runs on the GPU. An analogous DeviceToHostMemcpy element

Packet

Packet

...

Packet slot

Packet slot

...
Packet slot

Packet

Packet pointers Host Memory 
Buffer

Device Memory 
Buffer

PacketBatch

Packets

ROI-based Copy

Host to 
Device 

Memcpy

Packet slot

Packet slot

...
Packet slot

Ptr

Ptr

...
Ptr

Figure 3: The PacketBatch structure. (See Section 3.7 for ROI)

HostToDeviceMemcpy

Batcher

(a) Batching packets for copying
to the GPU

DeviceToHostMemcpy

GPUCompletionQueue

Debatcher

(b) In-order completion manage-
ment and debatching

Figure 4: Batching and debatching elements. Serial interfaces
are shown as simple arrows, wide interfaces as double arrows.

is placed before the Debatcher. Multiple GPU elements can be
placed between a HostToDeviceMemcpy/DeviceToHostMemcpy
pair, allowing the output ports of one to feed into the input ports of
another without incurring a copy back to host memory. This design
reduces the host-device packet copy times, reducing the overall
memory copy overhead. These memory copy elements, along with
the batching and debatching elements, can be seen in Figure 4.

3.4 Parallel Processing Without Reordering
Previous work on parallel packet processing often causes reordering
among packets due to techniques such as load balancing and parallel
dispatch across multiple cores [5, 7]. This can hurt TCP or streaming
performance [16]. Snap, however, does not suffer from this problem:
it waits for all threads in a GPU BElement to complete before pass-
ing the batch to the next element, so Snap does not reorder packets
within a PacketBatch. Because asynchronous scheduling on the GPU
(discussed in more detail in Section 3.8) may cause reordering of
the PacketBatches themselves, we add a GPUCompletetionQueue
element between the DeviceToHostMemcpy and Debatcher ele-
ments. GPUCompletetionQueue keeps a FIFO queue of outstand-
ing GPU operations, and does not release a PacketBatch downstream
to the Debatcher until all previous PacketBatches have been re-
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leased, keeping them in order. Because GPUCompletetionQueue
is simply an Element in the configuration graph, a configuration
that is not concerned about reordering could simply provide an
alternate element that releases batches as soon as they are ready.

3.5 Putting It Together: A GPU Pipeline
Figure 5 shows how all of these elements operate together. Packets
enter one at a time from the top. They could come directly from the
NIC or from sequential Click Elements. A Batcher collects them
into a PacketBatch and sends them along to a HostToDeviceMem-
cpy element, which initiates a copy to the GPU. This, and all other
interaction with the GPU, is done through a GPURuntime element
provided by Snap. The GPU element launches the GPU code kernel
and yields to the DeviceToHostMemcpy element, which sets up a
copy of the GPU element’s results back to host memory; this will
occur automatically when the GPU code completes execution. The
GPUCompletetionQueue element waits for the preceding GPU op-
erations to complete, and passes PacketBatches, in FIFO order, to a
Debatcher. The Debatcher then passes packets one by one into
an output serial Element.

This picture tells only the part of the story that is visible at the
level of a Snap configuration. The remainder of this section is
devoted to a set of design decisions and optimizations that occur at
lower levels to make these pieces work efficiently.

3.6 Handling Packet Divergence in Batches
Snap faces a problem not encountered by other GPU processing
frameworks [9, 11, 25], namely the fact that packets in Click do
not all follow the same path through the Element graph. Elements
may have multiple output Ports, reflecting the fact that different
packets get routed to different destination NICs, or that different
sets of processing elements may be applied depending on decisions
made by earlier elements. This means that packets that have been
grouped together into a PacketBatch may be split up while on the
GPU or after being returned to host memory. We encounter two
main classes of packet divergence. In routing or classification
divergence, the number of packets exiting on each port is relatively
balanced; with exception-path divergence most packets remain on
a “fast path” and relatively few are diverted for special processing.
Packet divergence may also appear in two places: before the packets
are sent to the GPU, or on the GPU, as a result of the decisions made
by BElements.

Figure 6(a) shows an example of exception-path divergence be-
fore reaching the GPU: packets may be dropped after the TTL
decrement if their TTLs reach zero. Figure 6(b) shows an example
of routing divergence on the GPU. In this example, different IDS
elements (likely applying different sets of rules) are used to process
a packet depending on its next hop, as determined by IP routing
lookup.

Divergence before reaching the GPU is one reason that we do not
attempt to implement zero-copy in the PacketBatch structure. The
effect of divergence early in the pipeline is memory fragmentation,
giving us regions of memory in which only some packets need to be
copied to the GPU. This problem is particularly pronounced in the
case of routing/classification divergence. Copying all packets, even
unnecessary ones, to the GPU would waste time and scarce PCIe
bandwidth. Alternately, we could set up a number of small DMA
transfers, covering only the necessary packets, but this results in
high DMA setup overhead. Instead, we use the relatively plentiful
memory bandwidth in host RAM to copy the necessary packets to
one continuous region, which can be sent to the GPU with a single
DMA transfer.

For divergence that occurs on the GPU, our experiments show
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Set copyback for PacketBatch

A GPU Element
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GPURuntime 
element

initiate
host-to-device
memcpy
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. . .
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memcpy;
GPU kernel 

launch...
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GPU
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Figure 5: A batch processing path with one GPU element.

that the overheads associated with splitting up batches and copying
them into separate, smaller PacketBatches are prohibitive, especially
in the case of exception-path divergence. Assembling output Packet-
Batches from selected input packets is also not concurrency-friendly:
determining each packet’s place in the output buffer requires knowl-
edge of how many packets precede it, which in turn requires global
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Figure 6: Handling divergent packet paths.

serialization or synchronization. Therefore, Snap attaches a set of
predicate bits to each packet in a PacketBatch—these bits are used to
indicate which downstream BElement(s) should process the packet.
Predicates are stored as annotations in Click’s Packet structure.
The thread processing each packet is responsible for checking and
setting its own packet’s predicate; this removes the need for coordi-
nation between threads in preparing the output. Because they are
only used to mark divergence that occurs on the GPU, not before it,
we save PCIe bus bandwidth by not copying predicate bits to GPU
memory; we do, however, copy them from the GPU once a chain
of BElements is finished, since they are needed to determine the
packets’ next destination Elements on the CPU.

Figure 6(c) shows how this predicated execution works. The
GPUElement-1 element marks packets with either Predicate 0 or
Predicate 1, depending on which downstream element should pro-
cess them. The packets remain together in a single PacketBatch
as they move through the element graph, but GPUElement-2 only
processes packets with Predicate 0 set and GPUElement-3 only pro-
cesses those with Predicate 1. Eventually, once they have left the
GPU, the packets encounter a Dispatcher element, which sends
them to different downstream destinations depending on their pred-
icate bits. This arrangement can be extended to any number of
predicate bits to build arbitrarily complicated paths on the GPU.

We have experimented with two strategies for using predicate bits:
scanning all packets’ predicates, and only launching GPU threads
for the appropriate packets; and launching threads for all packets,
and returning immediately from threads that find that their packet
has the wrong predicate. We found it more efficient to launch threads
for all packets: scanning packets for the correct predicates in order
to count the number of threads adds to the startup overhead for the
BElement. The savings in execution time that come from launching
fewer threads are typically smaller than the overhead of scanning
for the correct threads to launch, and it is faster to simply launch all
threads. Because we run many threads per core, the threads that exit
early do not necessarily waste a core.
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Figure 7: A Slicing example

3.7 Slicing for Efficient Offloading
Many packet processing algorithms, such as Ethernet switching,
IP route lookup, packet classification, and IP header checksum
computation, need only a portion of the entire packet. As a common
case, many need only protocol headers. This means that when
offloading, it is not always necessary to copy the entire packet
to device memory. For example, IP route lookup needs only the
destination IP address, so even for minimum-sized 64-byte packets,
copying just the four-byte destination can save up to 94% of the
memory copy bandwidth. This presents another opportunity to use
relatively plentiful main memory bandwidth, by making a small
copy, in order to save time and bandwidth on the more restrictive
PCIe bus. To take advantage of this situation, we designed a slicing
mechanism in PacketBatch to optimize the host-to-device packet
copy performance.

Slicing (illustrated in Figure 7), allows GPU processing elements
to specify the regions of packet data that they operate on, called
Regions of Interest (ROIs). An ROI is a consecutive range in the
packet data buffer, and a GPU processing element can have multiple
ROIs spread throughout the packet. Batcher accepts ROI requests
from its downstream BElements and takes their union to determine
which parts of the packet must be copied to the GPU. It allocates
only enough host and device memory to hold these ROIs, and during
batching, Batcher only copies data in these regions into a packet’s
host memory buffer. This reduces both the memory requirements
for PacketBatches and the overhead associated with copying them to
and from the GPU. During debatching, ROIs are selectively copied
back into the Click Packet structure. Slicing is another reason that
we chose not use a zero-copy approach for PacketBatches.
Batcher contains optimizations to avoid redundant copies in the

case of ROIs that overlap and to combine memcpy() calls for consec-
utive ROIs to reduce function call overhead. For element developers’
convenience, we have provided helper APIs for BElements that al-
low the element to address packet data relative to its ROIs—the true
offsets within the PacketBatch are computed transparently.

One problem associated with ROIs is that it may be difficult
to describe the exact range in numeric values. For example, a
Classifier element may need TCP port numbers, but the offset
of this data within a packet is not constant due to the presence of
IP option headers. To support this case, Batcher provides some
special values to indicate variable offsets, such as the beginning
of the TCP header or the end of the IP header. This also enables
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some special ROIs, such as ROIs that request the entire IP header
including all IP options, or ROIs that cover the payload of the packet.

3.8 Asynchronous Scheduling of BElements
The host uses two main operations for controlling the GPU: initiating
copies between host and device memory; and launching kernels on
the GPU. Both can be done asynchronously, with the CPU receiving
an interrupt when the copy or code execution completes. Multiple
GPU operations can be in flight at once. Based on this, most GPU
elements can work asynchronously on the CPU side: when a GPU
element is scheduled by Snap, it issues appropriate commands to
the GPU and schedules its downstream element by passing the
PacketBatch immediately, without waiting for completion on the
GPU. As a result, a push path or a pull path with GPU elements
can keep pushing or pulling PacketBatches without blocking on the
GPU. This allows us to achieve very low latency at the beginning of
the path, which is critical when packet rates are high—for example
when receiving minimum-sized packets from a 10Gbps interface.
The Click FromDevice element that receives packets from the NIC
must disable interrupts while it pushes packets downstream to first
Queue or Batcher element that they encounter; it is thus critical to
have this path run as quickly as possible to avoid lost packets.

Snap uses CUDA “streams,” which allow multiple memory copies
and kernel executions to run concurrently. Each stream has a queue
of operations which is run in FIFO order. Operations from different
streams run concurrently and may complete in any order. We asso-
ciate each PacketBatch with a unique stream. When the PacketBatch
is first passed to a GPU element (typically, HostToDeviceMemcpy),
it gets a stream assignment. Each subsequent BElement along the
path asynchronously queues execution of its operation within the
stream and passes control to the next BElement immediately, with-
out waiting for the GPU. This sequence of events continues until
control reaches a GPUCompletetionQueue, which is a push-to-pull
element, much like a Queue. When a PacketBatch is pushed into
the GPUCompletetionQueue, it simply adds the batch’s stream to
its FIFO queue and returns. When the GPUCompletetionQueue’s
bpull() method is called, usually by a downstream Debatcher, it
checks the status of the stream at the head of the FIFO. If the stream
has finished, bpull() returns the PacketBatch; if not, it indicates to
the caller that it has no packets ready.

3.9 Speeding Up Click’s Packet I/O
Click includes existing support for integration with Netmap [20] for
fast, zero-copy packet I/O from userspace. We found, however, that
Click’s design for this integration did not perform well enough to
handle the packet rates enabled by Snap.

Netmap uses the multiqueue (RSS/MQ) support in recent NICs
to enable efficient dispatch of packets to multiple threads or CPU
cores. The queues maintained by Netmap in RAM are mapped to
hardware queues maintained by the NIC; the NICs we use for our
prototype fix each receive and transmit queue at 512 packets. When
a packet arrives on the NIC, a free slot is found in a queue, and the
NIC places the packet in a buffer pointed to by the queue slot. When
the packet is passed to Click, the buffer, and thus the queue slot,
remains unavailable until Click is either finishes with the packet
(by transmitting it on another port or discarding it) or copies it out
into another buffer. Since packets may take quite some time to be
processed, they tie up these scarce queue slots, which can lead to
drops. This problem is exacerbated in Snap, which needs to wait
for suitably large batches of packets to arrive before sending them
to the GPU. Click’s solution is to copy packets out when it notices
the Netmap queues getting full. It uses a single global memory pool
for all threads, leading to concurrency problems. We found that

at the high packet rates supported by Snap, these copies occurred
for nearly every packet, adding up to high overhead incurred for
memory allocation and copying. Note that unlike our PacketBatch
structure, which copies only regions of interest, the copies discussed
here must copy the entire packet.

Unmodified Netmap gives the userspace application a number of
packet buffers equal to the number of slots in the hardware queues;
while kernel code can request more buffers, userspace code cannot.
We added a simple system call that enables applications to request
more packet buffers from Netmap. Though the size of the queues
themselves remain fixed, Snap can now manipulate the queue slots
to point to these additional buffers, allowing it to maintain a large
number of in-process packets without resorting to copying. Snap
maintains a pool of available packet buffers—when it receives a
packet from the NIC, it changes the queue to point to a free packet
buffer, and packet buffers are added back to the free pool when
the packets they hold are transmitted or dropped. This eliminates
packet buffer copying and overhead from complex memory allo-
cation (kmalloc()), and we use per-thread packet buffer pools to
avoid overhead from locking.

We also modified Click to pin packet I/O threads to specific cores.
This is a well-known technique that improves cache behavior and
interrupt routing when used with multiqueue NICs. Combined, these
two optimizations give Snap the ability to handle up to 2.4 times as
many packets per second as Click’s I/O code—this improvement
was critical for small packet sizes, where the unmodified packet I/O
path was unable to pull enough packets from the NIC to keep the
processing elements busy.

4. EVALUATION
We ran a set of experiments on Snap to evaluate how well it meets
our original goals: can we write a useful set of elements that run
on the GPU, can we compose them with each other and with CPU
code, and can we achieve high forwarding rates?

Snap is forked from commit 9200a74 in the Click source reposi-
tory [14]; “standard Click” experiments use this version. We used
the Netmap release from August 13, 2012 and Linux kernel 3.2.16.
Snap makes 2,179 lines of changes to Click itself, plus includes
4,636 lines of code for new elements and a 3,815 line library for inter-
acting with the GPU. We modified only 180 lines of code in Netmap.
The source for Snap, including our modifications to Netmap, can be
downloaded from https://github.com/wbsun/snap

All experiments were performed on a PC with an Intel Core
i7 930 quad-core CPU running at 2.8 GHz. It had 6 x 2 GB of
DDR3-1600 triple channel memory having 38.4 GB/s of bandwidth,
and an ASUS P6X58D-E motherboard with an Intel X58 chipset
having 25.8 GB/s QPI in each direction for PCIe 2.0 devices. The
GPU used was an NVIDIA TESLA C2070, which has 448 cores
running at 1.15 GHz and 6 GB of GDDR5 RAM. The NICs are two
Intel 82599EB dual-port 10 Gbps cards, for a total of four 10 Gbps
ports. The GPU is connected via a 16-lane PCIe v2.0 slot and the
NICs are each connected to 8-lane slots. All equipment used for
evaluation is publicly available as part of the Emulab testbed [27].
Packets were generated at full line rate using a modified version
of the packet generator that comes with the Netmap distribution,
using a separate set of hosts in Emulab. Packet sizes reported are
the Ethernet frame payload. When calculating throughput in Gbps,
we add in the Ethernet preamble, SFD, CRC, and interframe gap,
so that a reported rate of 10 Gbps represents 100% utilization on a
10 Gbps interface. Forwarding tables were designed such that all
packets were forwarded back out the interface they arrived on. This
ensured that all outgoing traffic was perfectly balanced so that any
drops we observed were due to effects within the Snap host, rather
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Configuration Throughput
Click 1 Path 4.55 Gbps 6.5 Mpps
Click 4 Paths (1 thread) 8.28 Gbps 11.8 Mpps
Click 4 Paths (4 threads) 13.02 Gbps 18.5 Mpps
Snap 1 Path 8.59 Gbps 12.2 Mpps
Snap 4 Paths 30.97 Gbps 44.0 Mpps

Table 2: Base Forwarding Performance of Snap and Click

than congestion on unbalanced outbound links.

4.1 Packet I/O Improvements
Our first set of experiments are simple microbenchmarks that eval-
uate the packet I/O optimizations described in Section 3.9. We
measured the forwarding rate for minimum-sized (64 byte) packets
using Click’s Netmap packet I/O engine and Snap’s improvements
to that engine. These experiments use the simplest possible for-
warder, which simply passes packets between interfaces with no
additional processing. We test both a one-path arrangement, which
passes packets from a single input NIC to a single output, and a
four-path arrangement that uses all four NICs in our test machine.
Click’s existing Netmap support is not thread-safe, allowing only
one packet I/O thread to be run. We added multithreading support
to standard Click’s Netmap code, and also report performance for
four threads, one per NIC. Snap adds support for multiple threads
per NIC, each using a different MQ/RSS queue, so we use sixteen
threads for the Snap configuration.

The performance numbers are found in Table 2. Snap’s improve-
ments to the I/O engine introduce a 1.89x speedup for single path
forwarding and 2.38x speedup for four-path forwarding. One in-
teresting result is that Snap’s four-path performance is not quite
four times that of its single-path performance. This suggests that
there may be room to improve the forwarding performance of Snap
using more cores; our test CPU has four physical cores and hyper-
threading, meaning that there are two I/O threads mapped to each
hyperthreaded core.

4.2 Applications
We have implemented elements for three kinds of packet processing
tasks. Each has a CPU and a GPU version:

GPUIPLookup: this GPU-based IP lookup element implements
Click’s standard IPRouteTable class using a radix tree. Its
CPU counterpart is Click’s RadixIPLookup element. For
evaluation, we used a routing table dump from routeview.
org [1] that has 167,000 entries.

SDNClassifier, GPUSDNClassifier: these two elements clas-
sify packets using seven fields from the Ethernet, IP, and UDP
or TCP headers. Each entry assigns an action by forwarding
the packet out of a specific outbound Port on the element.
This is roughly analogous to the flow space matching used
by many SDN forwarding schemes. SDNClassifier is the
CPU version. The classification rule set is ClassBench [24]’s
ACL1_10K filter set. We randomly assigned an action number
to each rule.

IDSMatcher, GPUIDSMatcher: these two elements implement Aho-
Corasick [2] string matching on packet payloads. The Aho-
Corasick algorithm can match multiple patterns simultane-
ously by scanning the entire packet payload once. We used
Snort’s [21] rules for Mysql, Apache, Webapps, and PHP to
simulate a set of rules for a Web application server.

We combine these elements to build three kinds of Snap configu-
rations, each of which has both a GPU and a CPU version:

SDN Forwarder: This configuration includes only the SDNClas-
sifier or its GPU counterpart. It simulates an SDN-like
switch.

DPI Router: This configuration includes an IP lookup element
(RadixIPLookup or GPUIPLookup) and a string matching
element (IDSMatcher or GPUIDSMatcher) as the major pro-
cessing elements. The intent is to simulate a router with a
simple deep packet inspection firewall.

IDS Router: This configurations includes all three elements (IP
lookup, IDS matcher, and SDN classifier) to simulate a more
sophisticated router with complicated forwarding rules and
intrusion detection.

4.3 Application Performance
Using these applications, we compared the performance of four
configurations: standard Click; Snap with only CPU Elements;
Snap with GPU elements, but with packet slicing disabled; and Snap
with all optimizations enabled. We experimented with a variety
of packet sizes. Each experiment lasted at least one minute, and
the numbers reported are the average of three runs. The results are
shown in Figure 8.

The results show that Snap gets significant performance improve-
ments over Click, particularly for small packet sizes. A significant
fraction of this speedup comes from our I/O optimizations, which
can be seen by comparing the bars for “Click” and “Snap-CPU:”
63% of the 3.1x speedup seen by the SDN forwarder on 64 byte
packets comes from this source. Another jump comes from moving
the processing-heavy elements to the GPU, with another modest
increase with the addition of packet slicing. Snap is able to drive
all four NICs at full line rate for all but the smallest packets: at and
above 128 bytes, it gets full line rate for all configurations (with the
exception of the IDS Router, which gets 39.6 GBps at 128 bytes).
Snap is limited by the availability of PCIe slots in our test machine,
which has 32 PCIe lanes: 16 are used by the GPU, and each dual-
port NIC uses 8 lanes, meaning that we cannot add any more NICs.
The results strongly suggest that Snap would be capable of higher
bandwidth on a machine with more or faster PCIe lanes, but such
hardware was not available for our tests. We thus leave exploration
of Snap’s full limits to future work and the availability of suitable
hardware, but we are optimistic that it will be capable of exceeding
40 Gbps for large packets. Conversely, this result also means that
there is headroom available to do more processing per packet than
is performed by our example applications.

For minimum sized packets, Snap reaches 29.9 Gbps (75% of
the full line rate) for the SDN forwarder; the primary cause of this
limitation appears to be due to packet I/O, as the throughput seen in
this experiment is very close to the trivial forwarder from Section 4.1.
The other two GPU applications reach almost the same performance:
29.2 Gbps for the DPI router and 28.0 Gbps for the IDS Router. This
matches our intuition, because with all of the complex processing
done on the GPU, the CPU only needs to perform simple operations
and can spend most of its time on packet I/O. When we use the
CPU elements, both packet I/O and the processing algorithms need
the CPU, and all three applications slow down significantly: the
IDS Router gets 14.73 Gbps, a slowdown of 52% from the trivial
forwarder. With the DPI and IDS Router configurations, standard
Click is unable to reach much more than 20 Gbps, even for large
packet sizes.

The ROI-based slicing mechanism makes a modest improvement
in forwarding throughput. For example, the SDN forwarder sees a
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(b) DPI Router
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(c) IDS Router

Figure 8: Performance of Click and Snap with three different
applications.

13.7% increase in throughput for 64 byte packets. Slicing enables
Snap to reach nearly the full rate supported by the packet I/O en-
gine for small packets. At larger packet sizes, the improvement
disappears because we have reached full line rate on the NICs.

4.4 Latency and Reordering
The most obvious drawback of batched processing is an increase
in latency, since packets arriving at the beginning of a batch must
wait for the batch to fill. To find out how much latency the batching
mechanism adds to Snap, we measured round-trip time for 64-byte
packets using both a CPU and GPU configuration. For the CPU-
only configuration, we saw a mean latency of 57.5µs (min: 31.4µs,
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Figure 9: Forwarding performance when using a GPUSDNClas-
sifier that diverges to two GPUIDSMatcher elements.

max: 320µs, σ: 25.7µs). For the GPU-based configuration with
batched processing (batch-size 1024), the mean latency was 508µs
(min: 292µs, max: 606µs, σ: 53.0µs); this represents an increase of
less than one quarter of a millisecond in each direction. Reducing
the batch-size from 1024 to 512, the latency reduces to 380.4µs on
average, but throughput also drops from 28 Gbps to 24 Gbps. The
additional latency added by batching for GPU elements is likely to
be noticeable, but tolerable, for many LAN applications. On WAN
links, this delay will be negligible compared to propagation delay.

As part of this experiment, we also checked for packet reordering.
We define the RSS dispatching rules of our router NICs to send
packets in the same UDP/TCP flow into the same NIC transmit
queue, and in the Snap configuration, we connected each FromDe-
vice element to a ToDevice with the same transmit and receive
queue IDs. With these settings, we found no reordering in the packet
stream.

4.5 Packet Divergence
To evaluate whether our design for handling divergent paths is effec-
tive, we built an IDS configuration that connects an GPUSDNClas-
sifier element with two GPUIDSMatcher elements. The classifier
marks each packet with a predicate indicating which of the two IDS
elements is to process it; this simulates a scenario in which packets
are to be handled by different IDSes depending on some property
such as source, destination, or port number. In both this configura-
tion and the IDS Router configuration from our earlier experiments,
each packet is processed by one IDS element; the difference is that
in the diverging configuration, there are two IDS elements, each of
which processes half of the packets. Thus, we can expect that, if the
overhead of our divergence handling strategy is low, the configura-
tion with two GPUIDSMatchers should achieve similar throughput
to the configuration with a single one. We evaluated this diverging
configuration with different packet sizes and measured the through-
put, which is shown in Figure 9. The performance under divergence
is very similar to the IDS Router result shown in Figure 8(c). It is
only slightly slower at small packet sizes: the diverging configura-
tion achieves 26.8 Gbps versus the IDS Router’s 28.0 Gbps for 64
byte packets, 39.4 Gbps vs. 39.6 Gbps for 128 byte packets, and
39.9 Gbps vs. 40.0 Gbps for 256 bytes packets. At and above 512
byte packets, both achieve a full 40.0 Gbps. We conclude that the
launch of extra GPU threads that have no work to do causes a slight
slowdown, but the effects are minimal.

4.6 Flexibility and Modularity
Finally, we demonstrate that Snap can be used to build not only
highly specialized forwarders, but also a complete standards com-
pliant IP router. This task is simple, because such configurations
already exist for Click. Specifically, we base our IP router off
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HostToDeviceMemcpy

Batcher(batch-size, timeout, …)

GPUIPLookup(CHK_ANNO ..., ...)

GPUIDSMatcher(…)

DeviceToHostMemcpy

GPUCompletionQueue

˙˙˙ ˙˙˙ ˙˙˙ ˙˙˙

Dispatcher(CHK_ANNO ...)

LookupIPRoute(...)

IDSMatcher(…)

IDSAlertDrop

˙˙˙ ˙˙˙ ˙˙˙ ˙˙˙

Debatcher

Dispatcher(CHK_ANNO ...)

IDSAlertDrop

GPU Configuration… CPU Configuration
… 

Figure 10: Major changes to the standard Click router to im-
plement a GPU-based IDS router.

of the configuration shown in Figure 8 of the Click paper [15],
which includes support for error checking of headers, fragmenta-
tion, ICMP redirects, TTL expiration, and ARP. We replace the
LookupIPRoute element with our GPUIPLookup element (and the
accompanying Batcher, etc.), and add an IDS element to both the
CPU and GPU configurations.

Due to the complexity of this router, we do not attempt to illustrate
the entire Snap configuration here. Instead, we illustrate the major
changes that we made to the standard Click router configuration in
Figure 10. The left part of the figure shows our GPU processing
path, and the right part is the original CPU route lookup path plus
an IDSMatcher and its auxiliary alert element. This figure also
shows a strategy for handling divergence on the GPU: the GPUIDS-
Matcher sets predicates on packets depending on whether they
should raise an alert, then pushes entire the PacketBatch downstream.
The GPUIPLookup is assigned a CHK_ANNO argument, which is
the predicate controlling processing of each packet. GPUIPLookup
thus ignores packets flagged for alerts by the IDS, and divergence
on the actual element graph is delayed until after the Debatcher,
using a Dispatcher element.

The performance of the CPU-based and GPU-based full router
configurations are shown in Figure 11. This fully-functional router
with built-in IDS is able to achieve 2/3 of the performance of a
trivial forwarder for minimum-sized packets, and almost full line
rate (38.8 Gbps) for 512-byte and larger packets. This demonstrates
the feasibility of composing complex graphs of CPU and GPU code,
and shows that existing CPU Click elements can be easily used
in Snap configurations without modification. The bottleneck in
performance appears to be the large number of CPU elements in
this configuration—there are 15 types of elements, some of which
are duplicated sixteen times, once for each thread. As future work,
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Figure 11: Fully functional IP router + IDS performance

we believe that the throughput can be significantly improved by
moving some of these to the GPU and applying the techniques
from Kim et al. [13] to optimize the remaining CPU portions of the
configuration.

5. CONCLUSION AND FUTURE WORK
We have presented Snap, a packet processing system that builds
upon Click to enable fast, flexible packet processing on GPUs. Snap
expands Click’s composable element structure, adding support for
batch processing and offloading of computation. At small packet
sizes (128 bytes), Snap increases the performance of a combined
IP router, SDN forwarder, and IDS on commodity hardware from
10.6 Gbps to 39.6 Gbps. This performance increase comes primarily
from two sources: an improved packet I/O engine for Click that
takes advantage of multi-queue NICs, and moving computationally
expensive processing tasks to the GPU. A trivial forwarder created
with Snap can forward at a rate of 44.0 Mpps, while the complex
SDN/IDS router reaches 90% of this rate (39.8 Mpps). These results
suggest that there is likely potential for elements that are even more
computationally complex than the ones we investigated, pointing
to future work in complex packet processing. The fact that we are
able to saturate all NICs in our test platform with such small packets
suggests that it will be possible to reach even higher throughputs
when PCIe 3.0 devices are available for testing, allowing us to double
the number of NICs on a bus.

While some of the new Elements implemented for Snap, such as
HostToDeviceMemcpy and GPUCompletetionQueue, are GPU-
specific, the extensions we made to the Click architecture should
be applicable to other parallel offload engines (such as network
processors and programmable NICs) as well.
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