
Supporting Preemptive Task Executions and Memory Copies in GPGPUs

Can Basaran and Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
{cbasaran, kang}@cs.binghamton.edu

Abstract

GPGPUs (General Purpose Graphic Processing Units)
provide massive computational power. However, applying
GPGPU technology to real-time computing is challenging
due to the non-preemptive nature of GPGPUs. Especially, a
job running in a GPGPU or a data copy between a GPGPU
and CPU is non-preemptive. As a result, a high priority job
arriving in the middle of a low priority job execution or
memory copy suffers from priority inversion. To address the
problem, we present a new lightweight approach to support-
ing preemptive memory copies and job executions in GPG-
PUs. Moreover, in our approach, a GPGPU job and mem-
ory copy between a GPGPU and the hosting CPU are run
concurrently to enhance the responsiveness. To show the
feasibility of our approach, we have implemented a proto-
type system for preemptive job executions and data copies
in a GPGPU. The experimental results show that our ap-
proach can bound the response times in a reliable manner.
In addition, the response time of our approach is signifi-
cantly shorter than those of the unmodified GPGPU run-
time system that supports no preemption and an advanced
GPGPU model designed to support prioritization and per-
formance isolation via preemptive data copies.

1 Introduction

Processor technology has significantly been advanced.
Especially, GPUs provide massive parallelism for low
costs. For example, an NVIDIA Fermi GPU provides 512
cores [23]. GPUs are increasingly used for general purpose
computations as they are becoming more programmable
and flexible. For example, NVIDIA’s CUDA [15] and ATI’s
OpenCL [12] support general purpose GPU programming.
At the same time, the demand for high performance real-
time computing is increasing in cyber physical systems that
deal with large amounts of real-time sensor data. For exam-

This work was supported, in part, by NSF grant NSF CSR-1117352

ple, GPUs provide an order of magnitude speedup over mul-
ticore solutions for computer vision tasks in autonomous
driving [4]. Despite the powerful features, related work on
the application of GPUs to real-time computing is scarce
[5, 10, 14].

Unfortunately, applying GPGPU technology to real-time
computing is not straightforward. In fact, supporting real-
time scheduling for GPUs is a challenging problem that re-
quires significant research efforts. For example, it is largely
unknown how to analyze the schedulability of GPU tasks or
provide a reliable yet not overly pessimistic estimates of the
worst case execution times in GPUs [5, 10]. In this paper,
we focus on a specific piece of the problem, i.e., support-
ing a basic capability for preempting a memory copy, and a
GPU job, called kernel, execution for periodic soft real-time
tasks.

A GPU, called a device, is a coprocessor to the hosting
CPU. Thus, data have to be copied between the CPU and
GPU memory. Since the memory copy operation is per-
formed via non-preemptive DMA (Direct Memory Access),
a high priority task can be blocked due to a memory copy
transaction of a low priority task. In addition, a kernel can-
not be preempted once it starts running in the GPU. There-
fore, a high priority task can suffer from priority inversion.
The resulting real-time performance penalty can be serious
especially when a high priority task is blocked by a large
low priority kernel that does complex computations using
big data. Kato et al. [10] have developed a novel approach
called RGEM (Responsive GPGPU Execution Model) that
divides data into a set of fixed size chunks to allow preemp-
tion between the consecutive chunk copies. In this way,
their approach significantly decreases the response time of
high priority tasks, while supporting enhanced performance
isolation between tasks with different priorities. However,
their approach supports no kernel preemption. As a result, a
high priority kernel may be blocked by a low priority kernel
already running in the GPU.

To address these issues, we present a new approach,
called PKM (Preemptive Kernel Model), which supports
1) preemption of kernels that implement periodic real-time

2012 24th Euromicro Conference on Real-Time Systems

1068-3070/12 $26.00 © 2012 IEEE

DOI 10.1109/ECRTS.2012.15

287

2012 24th Euromicro Conference on Real-Time Systems

1068-3070/12 $26.00 © 2012 IEEE

DOI 10.1109/ECRTS.2012.15

287



tasks assigned fixed priorities, 2) efficient preemptive mem-
ory copies between the CPU and GPU memory, and 3)
concurrent processing of memory copies and periodic ker-
nels. In our approach, a job, i.e., a periodic task instance,
is implemented as a GPU kernel. To make a job preemp-
tive, PKM divides one kernel into a set of subkernels where
a subkernel is executed by a specified number of thread
blocks called a subgrid in this paper. In PKM, a job sus-
pends itself after finishing a current subkernel, if a high pri-
ority job is waiting.

PKM supports preemptive memory copies by dividing a
memory copy transaction into a series of copies of smaller
data chunks, similar to [10]. However, different from [10],
PKM allows concurrent executions of memory copies and
kernels. Because a job with the highest priority cannot start
running in the GPU before the data to process is copied to
the GPUmemory, a low priority kernel that already has data
to process in the GPU memory can be executed, while the
memory copy transaction for the highest priority task is be-
ing performed or vice versa. By overlapping data copies
and job executions, we aim to further reduce the response
time and unnecessary blocking between memory copies and
kernel executions. In addition, unlike [10], PKM directly
passes input sensor data from the operating system address
space to the GPU memory via DMA to eliminate unnec-
essary data copies between the operating system and user
address space. In this way, PKM further reduces the de-
lay for memory transactions, while decreasing the memory
consumption.

To show the feasibility of our approach, we have imple-
mented a prototype PKM system in an NVIDIA GeForce
GTX 460 GPU. The experimental results show that our
approach bounds the response times in a reliable manner.
Also, in an experiment, the response time of a high priority
task in PKM is approximately 1

10
and 1

100
of those mea-

sured in RGEM [10] and basic CUDA, which provide pre-
emptive data copies and no preemption respectively. Thus,
we heave experimentally verified that PKM is substantially
more cost-effective than the two methodologies represent-
ing the state of the art.

The rest of the paper is organized as follows. GPU back-
grounds and our preemptive model are discussed in Sec-
tion 2. PKM design and implementation are discussed in
Section 3. Performance evaluation is given in Section 4 and
related work is discussed in Section 5. Finally, Section 6
concludes the paper and discusses future work.

2 Preemptive GPGPU Model

In this section, basic GPGPU model based on the CUDA
architecture is discussed. Based on the model, the ap-
proaches taken by PKM for preemptive kernel executions
and memory copies are described.

2.1 System Model and Backgrounds

PKM aims to improve the performance of periodic soft
real-time GPGPU tasks. In PKM, a task set consists of
n(≥ 1) tasks where a task τi (1 ≤ i ≤ n) is associated
with a period Ti and fixed priority Pi. A task is assumed
to execute the same function to process input data, such
as sensor readings and audio/video data, at every period.
PKM is designed and implemented based on the NVIDIA
CUDA [15] architecture using tools provided by the CUDA
library [17]. Unlike [10], we do not modify underlying
GPU device drivers that could be specific to certain GPU
hardware, and different versions of GPU libraries or toolk-
its. Instead, PKM is designed to run in the user space and,
therefore, applicable to various GPUs as long as the basic
CUDA functionalities used in this paper are supported by
them.

A CUDA application has a non-interruptible entry func-
tion, called a kernel, which invokes other (non-kernel) GPU
device functions. To execute a kernel, data have to be up-
loaded from the CPU to GPU memory. After completing a
kernel, computational results have to be downloaded from
the device to the host memory. It is not allowed to preempt a
running kernel. Neither is it possible for the host to commu-
nicate with a kernel executed in the device. A GPGPU has
a number of SIMT (Single Instruction Multiple Threads)
multiprocessors that host and switch between GPU threads.
Thus, a GPU can accommodate thousands or even more live
threads. The number of processing elements and maximum
number of active threads that can run at once vary among
GPUs [18]. The latter may also vary even in one device
depending on the availability of resources at runtime.

CUDA provides a combination of hardware and soft-
ware techniques such as DMA, streams, and events to en-
hance the performance of GPU applications [17]. DMA sig-
nificantly improves the performance of host-device mem-
ory copies as it eliminates page faults and operating sys-
tem overhead. A stream is a group of CUDA opera-
tions that need to be executed sequentially in the device.
However, operations from different streams can be inter-
leaved. In PKM, we divide a kernel into subkernels to sup-
port fine grained preemption between subkernels, if nec-
essary, to avoid priority inversion due to non-preemptive
kernel execution in CUDA. Further, we support an asyn-
chronous, nonblocking memory copy using CUDA streams
and pinned memory in the host to execute subkernels and
memory copies of different streams, i.e., periodic jobs in a
concurrent manner. For example, while stream A does a
memory copy, stream B can execute its subkernel or vice
versa. CUDA also provides events to query the state of
asynchronous GPU transactions. Using events, the host
can check the status and progress of streams without be-
ing blocked. PKM extensively use streams and events to

288288



improve the response time of real-time tasks.
In PKM, a static set of periodic tasks are compiled

together with the scheduler. PKM is completely imple-
mented in the user space as a single process to avoid con-
text switches between tasks. Tasks are implemented as
C++ classes that inherit the Task base class and imple-
ment the Task::run_job() template function, which
is invoked by the scheduler at specified intervals. In the
Task::run_job() function, a periodic task instance
(i.e., a job) requests the GPU to execute a series of mem-
ory copies and a kernel.

2.2 Fine-grained preemption of large kernels

Since an active CUDA kernel cannot be preempted, a
large kernel can take up all the resources in the GPU for
a considerable amount of time once it starts running. A
CUDA kernel consists of one or more grids. A user-
specified grid needed to execute a kernel consists of a num-
ber of blocks where a block consists of a number of threads.
A CUDA programmer has to define the number of grids G,
the number of blocks per grid B, and the number of threads
per block R for a kernel. In PKM, a large kernel submitted
by a user task is partitioned into subgrids that consist of a
fixed number of CUDA blocks. PKM receives a complete
kernel execution request from a user and divides it into sub-
grids to run subkernels. A system administrator explores
an appropriate subkernel size S (the number of blocks per
subgrid) via profiling to support fine grained kernel preemp-
tion in PKM with acceptable overhead. Essentially, there is
a tradeoff between fine grained preemption and overhead.
Smaller subkernels support more fine-grained preemption,
but they are subject to more overhead. On the other hand,
larger subkernels experience less overhead at the cost of
more gross-grained preemption, which may increase the po-
tential for priority inversion. Since an appropriate value of
S are specific to an application and a device, we profile the
relation between the subkernel size and slowdown due to
partitioning a single kernel into multiple subkernels.

Given S and the other aforementioned parameters, PKM
computes the number of subkernels: M = �G × B/S�
where each block has R threads. For example, assume that
a job requests a grid of 1024 blocks to execute a kernel.
PKM divides this job into 4 subgrids, if S = 256 blocks.
PKM processes a single subgrid of the job that currently
has the highest priority. When a higher priority job arrives,
it preempts the current job after finishing its subkernel cur-
rently being executed. To analyze this tradeoff, we have de-
signed a matrix multiplication application that has a single
grid. For varying sizes of input matrices, we measure the
response time of the task for the decreasing subkernel size

A subkernel and a subgrid used to run a subkernel are used inter-
changeably in this paper.

Data Size B M S Slowdown

1024x1024 4096
4 1024 0%
16 256 26%
64 64 340%

2048x2048 16384

4 4096 0%
16 1024 10%
64 256 32%

128 128 250%

4096x4096 65536

4 16384 0%
16 4096 2%
64 1024 8%

256 256 9%
512 128 42%

Table 1. Subkernel size vs. slowdown for ma-
trix multiplication (B: #blocks/grid, M : #sub-
kernels, and S: #blocks/subgrid)

and the increasing number of subkernels. The results of the
experiments for profiling is given in Table 1. We observe
from the table that larger tasks better tolerate finer grained
partitions in terms of the overhead. The 4096x4096 matrix
multiplication task takes around 750ms when executed as a
single kernel. When it is divided into 256 subkernels, it ex-
periences only 9% increase in the response time as shown
in Table 1. Notably, this is one of the desirable features of
PKM. A large kernel, which may cause severe priority in-
version and a significant real-time performance penalty as
a result, is readily divisible into a series of subkernels with
acceptable overhead. On the other hand, it is desirable to
partition a relatively small kernel into a small set of subker-
nels that does not introduce a large increase in the response
time. In this way, PKM calculates the subgrid size S for
each task, starting from the highest priority task. Specifi-
cally, for each task, PKM chooses the largest S that results
in a preemption interval that is equal to or shorter than the
minimum of the periods of the higher priority tasks, if any.

2.3 Preemption of large memory transactions

PKM runtime system divides a kernel or a memory trans-
action into a series of smaller units. Given a memory copy
request, PKM queues the request with the total data size.
(Each task in PKM has two queues for scheduling kernels
and memory transactions. A detailed description of the
queue management in PKM is given in Section 3.) Each
time the request is serviced, PKM copies only a smaller
chunk of data and decreases the request size by the size of
the portion, similar to [10]. Thus, the data chunk size af-
fects the granularity of preemption and corresponding over-
head. A smaller chunk size supports more fine-grained pre-

289289



emption between memory transactions potentially increas-
ing the overhead or vice versa. In this paper, we experi-
mentally picked 1MB as the chunk size, since it provides
fine granularity with the shortest response time for memory
transactions among the tested various chunk sizes.

In PKM, different from [10], PKM overlaps a kernel ex-
ecution with memory transactions as discussed before. Fur-
ther, data are directly written to the DMA buffer without
making an extra copy to the user space buffer and copy-
ing the data back to the DMA buffer. Removing extra data
copies are important especially for processing large real-
time sensor data such as audio/video streams, since ex-
tra copies will increase both the memory consumption and
delay for memory transactions. We are unaware of any
prior work that supports preemptive kernels and memory
copies, while supporting overlapped processing of kernels
and memory transactions for real-time applications.

3 System Design and Implementation

In this section, the data structures to model tasks and
scheduling queues are described. Also, our approach to
scheduling of preemptive kernels and memory transactions
is discussed.

3.1 Data Structures

Figure 1. Data structure of a task in PKM

The task data structure used by PKM is shown in Fig-
ure 1. It contains attributes to specify the priority and pe-
riod of a task. For each task, it also has a CUDA stream
handle, a queue for copy transactions, and another queue
for kernels. In PKM, each periodic real-time task is associ-
ated with a separate CUDA stream. Each task represented
by a stream has its own private queues for its kernels and
memory transactions separately.

The data structures used for copy and execution queue
entries are shown in Figure 2. They have common fields for
a timestamp and a CUDA event handle. In PKM, times-
tamps are only used to order memory/kernel operations
within a task. There is no total or partial order among the
timestamps of different tasks. Thus, a memory operation or
kernel without any unfinished preceding operation of a task
is eligible to run next. Among the eligible operations of

Figure 2. Data structure of a kernel ormemory
copy request

different tasks, PKM schedules a memory copy and kernel
with the highest priority.

The CUDA event handle in Figure 2 is used mainly to
check the completion of an operation after it is scheduled.
This event handle is also used to gather response time statis-
tics. In addition to these common attributes, each entry
has parameters specific to the operation it is representing.
A memory copy entry contains the source and destination
pointers, total data size of the request, and the direction of
the copy, i.e., upload from host to device or download from
device to host. A single copy entry is created for each user
data copy operation. The size, destination, and source point-
ers are updated as the data request is processed chunk by
chunk. A kernel execution entry stores a user supplied ex-
ecution object that is responsible for passing the executable
with parameters (if any) and keeping track of the comple-
tion of the kernel.

Our approach greatly simplifies the design of the system-
wide scheduler. The PKM scheduler only has to pick the
highest priority memory copy and kernel that are ready to
run immediately and submit them to the device. Having
two separate queues for copy and execution transactions al-
lows PKM to easily check each task for pending transac-
tions of a particular type in non-ascending order of priority.
Therefore, our approach does not require complex schedul-
ing schemes, system-wide queues, message passing, or syn-
chronized queue access mechanisms. The overhead of our
scheduling is bounded by the cost of sorting the pending
tasks and searching through them to find the highest prior-
ity kernel and memory operations ready to run. Pending
tasks can be sorted using a min-heap. An update of a min-
heap is performed in O(log n) time when the size of the
task set is n. Thus, the runtime overhead for scheduling
is bounded by O(n) time due to the search for a kernel or
memory transaction with the highest priority when a DMA
request or subkernel execution finishes.

Notably, in a periodic task model, it is unnecessary for
a job to continually check whether a higher priority job has
arrived. Considering the periods of tasks, our scheduler an-
alyzes offline when a task can be preempted by a higher
priority task. For an arbitrary pair of tasks with different

290290



priority levels, the scheduler computes offline when a low
priority job needs to check an arrival of a higher priority job
by computing the least common multiplier of the periods of
the two tasks. As a result, each job knows when it has to
suspend itself, if necessary, to avoid blocking a higher pri-
ority job. The scheduler has to compute this information for
only one hyper period of the task set and repeatedly apply
the computed result in the following hyper periods. There-
fore, the offline computation is performed in O(n2) time for
n tasks.

3.2 Concurrent Scheduling of Copy and Kernel
Operations

1 Task : : r un_ j ob ( )
2 {
3 PKMemCpy( dev_ds t , h o s t _ s r c , s i z e , UPLOAD) ;
4 PKExec ( Kerne lFunc ( Ke r n e l P a r ame t e r s ) ) ;
5 PKMemCpy( h o s t _ d s t , dev_ds t , s i z e , DOWNLOAD) ;
6 }

Listing 1. Specification of a user task

A user defines a job (i.e., a kernel) using a number of
functions provided by PKM. The pseudo code in Listing 1 is
an example job launcher of a periodic task. A job typically
generates a sequence of a data copy (upload), kernel execu-
tion, and data copy (download) requests through the PKM
runtime system. If run_job() is called at time t deter-
mined according to the task period, two entries are inserted
into the copy queue and one entry into the kernel queue of
the task with timestamps t, t + 2, and t + 1, respectively.

1 PKScheduler : : s ched ( )
2 {
3 t a s k _ l i s t . s o r t _ b y _ p r i o r i t y ( ) ;
4 i f ( c u r r e n t copy t r a n s a c t i o n i s comple t ed )
5 f o r e a c h ( t a s k i n t a s k _ l i s t )
6 i f ( t a s k . i sReady (COPY_QUEUE) )
7 {
8 CopyParams cp = t a s k . deque_copy (

CHUNK_SIZE) ;
9 l a unch COPY on t a s k . s t r e am us ing cp ;

10 break ;
11 }
12 i f ( c u r r e n t exec t r a n s a c t i o n i s comple t ed )
13 f o r e a c h ( t a s k i n t a s k _ l i s t )
14 i f ( t a s k . i sReady (EXEC_QUEUE) )
15 {
16 Kerne lParams kp = t a s k . deque_exec (

s ubGr i dS i z e ) ;
17 l a unch KERNEL on t a s k . s t r e am us ing kp ;
18 break ;
19 }
20 }
21

22 boo l e an Task : : i sReady ( queue )
23 {
24 i f ( queue == CopyQueue )
25 o t h e r _queue = ExecQueue ;
26 i f ( queue == ExecQueue )

27 o t h e r _queue = CopyQueue ;
28 re turn ( ! queue . empty ( ) and
29 queue . f r o n t ( ) . p r e c e d e s ( o t h e r _qu eu e . f r o n t ( ) ) ) ;
30 }

Listing 2. Pseudo code for scheduling

The scheduling function of PKM, i.e., sched() in
Listing 2, makes necessary scheduling decisions when
an instance of a periodic task is created via a call of
Task::run_job() or a previously scheduled copy oper-
ation or subkernel completes. PKM maintains tasks in pri-
ority order in a list called the task_list. Each schedul-
ing decision picks a copy operation and a subkernel that is
associated with the highest priority and eligible to run next.

Example. Figure 3 shows three tasks with high,
medium, and low priority scheduled using the algorithm in
Listing 2. The PKM scheduler schedules the first entry in
the copy queue of the high priority task, i.e., HP(10). The
scheduler then looks for a kernel execution transaction. Al-
though the kernel execution queue of the highest priority
task is not empty, the scheduler will not schedule H(12)
until the preceding data copy operations HP(10, 11) com-
plete. Thus, it skips to the next task MP, which is not ready
to execute, because the kernel execution transaction MP(9)
is waiting for copy transactions MP(6, 7, 8) and these in
turn are currently blocked by HP(10). Hence, the sched-
uler considers the lowest priority task LP and schedules the
execution transaction LP(16) which is not waiting for any
copy transaction. This decision completes the first schedul-
ing round of the snapshot shown in Figure 3. The next de-
cision is made when HP(10) or LP(16) completes. For the
clarity of presentation, in this example, it is assumed that an
arbitrary data copy and subkernel execution complete at the
same time. Thus, the PKM scheduler concurrently sched-
ules HP(11) and LP(17) transactions next and proceeds with
remainder of the schedule shown in Figure 3.

3.3 Design of Preemptive Kernels

Preemptive memory copies are relatively easy to support
due to the incremental nature of data copies between the
host and device. However, supporting preemptive kernels is
more complex than providing preemptive memory copies.
Depending on the availability of resources, a GPU may ex-
ecute a user-defined grid of thread blocks either at once or
divide the grid into subgrids and execute them one by one.
Note that a user cannot control the procedure. Neither is the
procedure clearly known. Moreover, a grid executing a ker-
nel is non-preemptive even if it is run as a series of subgrids
by the device.

To support parallel programming, however, CUDA guar-
antees the consistency of the block index, blockIdx, used
in a user kernel. For example, if a user specifies a grid
of 1024 blocks, blockIdx ranges from 0 to 1023, even

291291



Figure 3. PKM scheduling example (HP: High Priority, MP: Middle Priority, LP: Low Priority, TS:
Timestamp, Params: Parameters)

if the underlying CUDA runtime system divides the grid
into, for example, 4 subgrids of 256 blocks each and ex-
ecute the subgrids one by one. For instance, a state-
ment such as char *block_data = src[blockIdx

* 1024] partitions data into chunks so that each CUDA
block receives a specific chunk of 1024 bytes of data based
on its block index. However, if we were to manually sched-
ule the same kernel in four grids of 256 blocks to enable pre-
emption, the previous assignment statement will not execute
correctly, since CUDA is unaware that these four smaller
grids are correlated. As a result, the blocks in each of the
four grids will be assigned 0 - 255 block indexes. Thus, one
cannot support preemptive kernels by manually partition-
ing a grid into subgrids. Even if the approach works, it is
onerous to require a user to redesign and re-implement the
kernel to support fine grained preemption, which may not
be a user’s main concern.

To address the problem, PKM provides a new feature
called subBlockOffset. In the previous example, PKM com-
putes a list of subBlockOffsets (0, 256, 512, 768) and
passes it to the kernel when each grid is launched. In this
way, the kth subkernel (0 ≤ k ≤ 3 in this example) re-
ceives an offset of k × S where S is the subkernel size
(256 in the example). PKM then computes subBlockIdx
= blockIdx + subBlockOffset for the kernel and
use the computed subBlockIdx to perform the data as-
signment discussed before; that is, PKM replaces the pre-
vious assignment statement with char *block_data =
src[subBlockIdx * 1024]. To write a preemptive ker-
nel, a user only has to use the PreemptiveKernel construc-
tor provided by PKM. PKM automatically divides a grid
to subgrids, where the size of a subgrid (a subkernel) is
determined offline by profiling the subgrid size vs. over-

head relation as discussed before. In summary, to divide a
kernel to subkernels and invoke them without requiring a
user to manually partition a kernel, PKM implements ker-
nel preemption by launching subkernels and maintaining a
subBlockIdx which is used by the real-time tasks in-
stead of CUDA auto-variable blockIdx.

4 Performance Evaluation

In this section, we have implemented PKM and
RGEM [10]. We compare their performance to basic CUDA
that provides no preemption. Especially, we measure the re-
sponse time that is important for real-time computing. The
system used in the experiments has an NVIDIA GeForce
GTX 460 GPU, AMD Athlon II X4 630 CPU, 4GB RAM,
and 500GB hard disk running Linux 2.6.32.21 kernel.

For performance evaluation, we use two micro-
benchmarks: matrix multiplication and linear search, sim-
ilar to RGEM [10]. Matrix multiplication (MM) task rep-
resents a compute intensive task such as processing video
sensor data. Linear search (LS) task is more I/O intensive,
it scans its input data and produces a small list of matches.
It models filtering large sensor data to pick important ones.
While it is relatively easy to implement LS as a series of
independent small kernels, MM requires direct support for
preemptive kernels due to incremental nature of LS. In this
paper, we implement an instance of a periodic LS task as a
series of subkernels for PKM and RGEM. Specifically, each
LS subkernel uploads 1MB of data, processes the data, and
downloads the result. However, only PKM supports pre-
emptive subkernels for matrix multiplication. In our exper-
iments, PKM subgrid size for MM is 1024 blocks.

292292



4.1 Priority Inversion vs. Response Time

In this experiment, we aim to measure the response time
of a high priority (HP) task when there is a competing task
with a low priority (LP). A HP task does 1024x1024 MM at
every 50ms. An LP task is either LS or MM. We measure
the response time of the HP task as the input data size of an
LP task increases. Each data point in Figure 4 is the average
response time of the HP task when the HP task is executed
every 50ms and a low priority LS or MM task is run peri-
odically for a specific size of the input data for 100s. The
input data sizes of the low priority LS task used for these
experiments are 512KB, 1MB, 2MB, ..., 512MB. The data
sizes of the low priority MM used for the experiments are
256x256, 512x512, 768x768, ..., 4096x4096. As we use
bigger data, we also increase the period of the low priority
LS task from 20ms to 500ms. When a low priority MM task
is used to generate competing workloads, we extend the pe-
riod from 20ms to 800ms to avoid overloading the GPU. By
doing these extensive experiments, we intend to observe the
impact of potential priority inversion on the performance of
the HP task. We have derived 90% confidence intervals;
however, we have omitted them since they are less than 1%.

In Figure 4(a), we show the response time of the high pri-
ority MM task when the competing workload is LS. When
the lower priority task is LS, the response time of the HP
task in both RGEM and PKM is nearly constant as shown
in Figure 4(a). The response time of the HP task is 6ms for
PKM and 14ms for RGEM. By supporting kernel preemp-
tion in addition to preempting data chunk copies, and over-
lapping execution of these, PKM achieves over 2x speedup
and up to an order of magnitude performance enhancement
for the high priority task compared to RGEM and CUDA,
respectively. When the input data of the low priority LS
task is only 512KB, CUDA supports the shortest response
among the tested approaches as shown in Figure 4(a), be-
cause it does not have any overhead for supporting preemp-
tive memory copies or kernel executions. However, the re-
sponse time of the HP task in CUDA increases rapidly as
the input size of the LS increase due the non-preemptive
nature and resulting priority inversion. PKM achieves sub-
stantial performance enhancement compared to CUDA and
RGEM, because it can preempt low priority kernel execu-
tions as well as memory transactions. Although RGEM can
preempt low priority data chunk copies, it cannot preempt a
low priority kernel. As a result, it shows better performance
than CUDA does, while providing worse performance than
PKM does.

In Figure 4(b), we show the response time of the high
priority MM task when the competing workload is another
MM task with lower priority. The average response time of

Task Type Period Data Size
τ0 MM 50ms 1024 x 1024
τ1 LS 100ms 32MB
τ2 MM 100ms 1024 x 1024
τ3 MM 600ms 2048 x 2048
τ4 LS 1200ms 96MB

Table 2. Experimental Settings

the HP task in PKM is stable around 6ms as shown in Fig-
ure 4(b). In RGEM, however, the response time increases
from approximately 6ms to 100ms, since it suffers from pri-
ority inversion. Its performance is degraded compared to
that in Figure 4(a), since the low priority MM task is a sin-
gle kernel. The basic CUDAwith no support for preemption
shows the largest response time increase, reaching approx-
imately 600ms. Hence, the response time of RGEM and
basic CUDA is up to roughly 16x and 100x higher than that
of PKM.

4.2 Preemptive vs. Non-Preemptive Kernels

In this experiment, we measure the performance of PKM
and RGEM for a set of periodic tasks τ0 − τ4 listed in de-
scending fixed priority order in Table 2. Tasks τ0, τ2, and
τ3 are single kernel MM applications that are preemptive
only under PKM, while τ1 and τ4 are LS applications. The
performance results are shown in Figure 5 and summarized
in Table 3. We show the average response time with 90%
confidence intervals and also report the longest observed re-
sponse time for each task. On average, PKM completes an
instance of the highest priority task τ0 in 17.75 ± 0.57ms.
The maximum observed response time of τ0 is bounded by
25ms in PKM in Table 3. For every task, PKM substan-
tially reduces the response time compared to RGEM, while
bounding the response time in a relatively more reliable
manner with considerably smaller fluctuations compared to
RGEM as shown in Figure 5. Since high priority tasks fin-
ish early in PKM, lower priority tasks experience less fre-
quent preemption during data copies and kernel executions.
As a result, the performance of lower priority tasks also en-
hance. Notably, in RGEM, the maximum response time of
τ0 is 90ms, which is longer than the period of τ0 (50ms). In
contrast, PKM does not show such an undesirable behavior
by supporting preemptive kernels unlike RGEM. Moreover,
all the task instances finish before the task periods. Overall,
PKM significantly decreases the response time and its varia-
tions by supporting preemptive kernels and memory copies,
while multiplexing memory copies and kernel executions of
different tasks.

293293



 1

 10

 100

 0  100  200  300  400  500

R
es

po
ns

e 
tim

e 
H

P
 (

m
s)

Data size of LP in megabytes

Linear Search

PKM
CUDA
RGEM

(a) Linear Search

 1

 10

 100

 1000

 0.5  1  1.5  2  2.5  3  3.5  4

R
es

po
ns

e 
tim

e 
H

P
 (

m
s)

Dimension of LP in millions of elements

Matrix Multiplication

PKM
CUDA
RGEM

(b) Matrix Multiplication

Figure 4. Priority Inversion vs. Response Time: Response time of a high priority task (1024 x 1024
matrix multiplication with 50ms period) for increasing competing loads

 100

 0  10  20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(m
s)

Time (s)

PKM

τ0
τ1
τ2
τ3
τ4

(a) PKM

 100

 0  10  20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(m
s)

Time (s)

RGEM

τ0
τ1
τ2
τ3
τ4

(b) RGEM

Figure 5. Preemptive vs. Non-Preemptive Kernels: Response time of PKM and RGEM

4.3 Response Times under No Priority Inversion

Finally, we compare the performance of PKM and
RGEM in terms of memory management. For this pur-
pose, we generate three tasks τ0, τ1, and τ2 listed in de-
scending priority order. A periodic instance of task τ0 pro-
cesses a 1024 x 1024 matrix multiplication, while tasks τ1

and τ2 are linear search tasks periodically processing 64MB
and 128MB data, respectively. They are assigned 50ms,
100ms, and 100ms periods. Since the periods are harmonic,
they are released at every 100ms at which the jobs are exe-
cuted in priority order. Thus, priority inversion due to non-
preemptive kernels is eliminated. By doing this, we aim to
favor RGEM and evaluate the efficiency of PKM’s memory
copy mechanism and overlapped processing of memory and

kernel operations.

Figure 6 shows the performance results. Given the har-
monic tasks, the response time of each task in PKM and
RGEM is nearly constant. Thus, the confidence intervals
are almost zero in this set of experiments. The response
time of the highest priority task τ0 is 6ms and 14ms in
PKM and RGEM, respectively. Also, the response times
of τ1 and τ2 in PKM is considerably shorter than that in
RGEM as shown in Figure 6. Since a kernel does not block
for memory transactions of the other tasks and vice versa,
PKM shows considerable enhancement in terms of the re-
sponse time compared to RGEM.

294294



Task PKM AVG RGEM AVG PKM Max RGEM Max
τ0 17.75±0.57ms 28.52±3.73ms 25ms 90ms
τ1 27.36±0.11ms 60.79±6.41ms 29ms 149ms
τ2 39.75±0.59ms 103.96±8.01ms 47ms 194ms
τ3 235.54±1.92ms 388.00±0.00ms 248ms 388ms
τ4 248.03±0.02ms 576.00±0.00ms 249ms 576ms

Table 3. Preemptive vs. Non-Preemptive Kernels: Maximum and average response time with 90%
confidence intervals

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(m
s)

Time (s)

PKM

τ0
τ1
τ2

(a) PKM

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90  100

R
es

po
ns

e 
T

im
e 

(m
s)

Time (s)

RGEM

τ0
τ1
τ2

(b) RGEM

Figure 6. Response time of PKM and RGEM with no priority inversion

5 Related Work

GPUs are employed to support high performance for
various applications including scientific applications [7, 3],
cryptography [22], intrusion detection [19], bioinfomatics
[13], databases [2], and storage systems [1]. However, the
detailed architectures of GPUs are not fully known to the
public. As a result, scheduling and resource management
for real-time support is challenging [10, 11, 5, 6, 16].

TimeGraph [11] is a GPU command scheduler at the de-
vice driver level. It supports prioritization and isolation for
real-time applications. TimeGraph is executed to schedule
every GPU command. RGEM [10] is subject to less over-
head, since it is run only when data are copied and kernels
are launched. PKM is also executed for data copies and
kernel launches. PKM provides enhanced real-time sup-
port by supporting preemptive kernel executions in addition
to preemptive memory copies. Moreover, PKM overlaps
the processing of memory copies and kernels using CUDA
streams. It provides these features in the user space lever-
aging basic CUDA capabilities without requiring any addi-
tional support from the underlying device drivers or operat-
ing system.

Research efforts have been made to integrate GPUs as
part of real-time multiprocessor systems [5, 6]. One of their

approaches, called Shared Resource Model, considers GPU
executions as critical sections. Another model, called Con-
tainer Method, provides less pessimistic analysis for real-
time scheduling. A brief analysis of the response time
bound in RGEM is given in [10]. Also, quality adaptive
anytime algorithms are developed to produce lower qual-
ity results early, if necessary, to support the timeliness of
real-time queries when the GPU is overloaded [14]. Our
contribution is providing more efficient methods to support
preemptive GPU computing, which can be used as a vehicle
to improve the responsiveness and schedulability of real-
time GPU tasks. Therefore, our work is complementary to
these approaches. For example, the response time bound
analysis in [10] can be extended to compute the bound for
PKM by considering the impact of preemptive kernels. Our
approach could also be integrated with an adaptive scheme,
such as [14], to gracefully adapt the quality of service under
overload. A thorough investigation of these research issues
is reserved for future work.

PTask [21] is a novel approach designed to support GPU
resource management via a data flow model in the oper-
ating system. GViM [8] is a GPU-accelerated virtual ma-
chine (VM) manager that provides GPU resource manage-
ment through CUDA APIs. It enables VMs to time-share a
GPU. Pegasus [9] also provides novel approaches to sharing

295295



a GPU to increase the utilization. Ravi et al. [20] improves
GPU-accelerated VM technology by supporting inter-VM
concurrent kernel executions. However, research on global
CPU-GPU scheduling for sharing a GPU as a coproces-
sor to increase the performance of multi-processor systems
mainly focuses on fairness rather than prioritization [6, 21].

6 Conclusion and Future Work

In this paper, we present a new approach to supporting
fully preemptive execution of soft real-time tasks in GPG-
PUs via preemptive kernel execution and data copies be-
tween the host and device. Moreover, our approach simul-
taneously runs a computational job and memory transaction
to reduce the delay. For performance evaluation, we have
designed and implemented a prototype system for preemp-
tive data copies and job executions in a GPGPU. The ex-
perimental results show that our approach can bound the re-
sponse times in a reliable manner, while achieving an up to
two orders of magnitude shorter response time. In terms of
both the average and maximum observed response time, our
approach consistently outperformed the tested baselines. In
the future, we will further improve PKM, while investigat-
ing other research issues such as QoS adaptation of real-
time tasks in GPUs and admission control.

References

[1] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and
M. Ripeanu. StoreGPU: Exploiting Graphics Processing
Units to Accelerate Distributed Storage Systems. In Pro-
ceedings of the 17th international symposium on High per-
formance distributed computing, 2008.

[2] P. Bakkum and K. Skadron. Accelerating SQL Database
Operations on a GPUwith CUDA. InWorkshop on General-
Purpose Computation on Graphics Processing Units, 2010.

[3] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse
Matrix Solvers on the GPU: Conjugate Gradients and Multi-
grid. ACM Transactions on Graphics, 22:917–924, 2003.

[4] Christopher Urmson et al. Autonomous driving in urban en-
vironments: Boss and the Urban Challenge. Journal of Field
Robotics Special Issue on the 2007 DARPA Urban Chal-
lenge, Part I, 25(1):425–466, 2008.

[5] G. Elliott and J. Anderson. Real-Time Multiprocessor Sys-
tems with GPUs. In International Conference on Real-Time
and Network Systems, 2010.

[6] G. Elliott and J. Anderson. Globally Scheduled Real-Time
Multiprocessor Systems with GPUs. Real-Time Systems,
special issue on selected papers from the 19th International
Conference on Real-Time and Network Systems, 48(1):34–
74, 2012.

[7] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High Performance Discrete Fourier Trans-
forms on Graphics Processors. In International Conference
for High Performance Computing, Networking, Storage and
Analysis, 2008.

[8] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia,
V. Talwar, and P. Ranganathan. GViM: GPU-Accelerated
Virtual Machines. In ACM Workshop on System-level Virtu-
alization for High Performance Computing, 2009.

[9] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ran-
ganathan. Pegasus: Coordinated Scheduling for Virtualized
Accelerator-based Systems. In USENIX Annual Technical
Conference, Portland, OR, June 2011.

[10] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa,
and R. Rajkumar. RGEM: A Responsive GPGPU Execution
Model for Runtime Engines . In IEEE Real-Time Systems
Symposium, 2011.

[11] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU Scheduling for Real-Time Multi-Tasking
Environments. In USENIX Annual Technical Conference,
2011.

[12] Khronos OpenCL Working Group. The OpenCL Specifica-
tion, version 1.0.29, 2008.

[13] S. Manavski and G. Valle. CUDA Compatible GPU Cards
as Efficient Hardware Accelerators for Smith-Waterman Se-
quence Alignment. BMC Bioinformatics, 9:1–9, 2008.

[14] R. Mangharam and A. A. Saba. Anytime Algorithms for
GPUArchitectures. In IEEE Real-Time Systems Symposium,
2011.

[15] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
Parallel Programming with CUDA. ACM Queue, 6(2):40–
53, 2008.

[16] J. Nickolls and W. Dally. The GPU Computing Era. IEEE
Micro, 30(2):56 –69, 2010.

[17] NVIDIA. CUDA Programming Guide 3.2. NVIDIA, 2009.
[18] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,

J. Krüger, A. E. Lefohn, and T. Purcell. A Survey
of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26:80–113, 2007.

[19] Q. Qian, H. Che, R. Zhang, and M. Xin. The Compari-
son of the Relative Entropy for Intrusion Detection on CPU
and GPU. Australasian Conference on Information Systems,
2010.

[20] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar. Sup-
porting GPU Sharing in Cloud Environments with a Trans-
parent Runtime Consolidation Framework. In ACM Confer-
ence on High Performance Distributed Computing, 2011.

[21] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating System Abstractions to Man-
age GPUs as Compute Devices. In ACM Symposium on Op-
erating Systems Principles, 2011.

[22] R. Szerwinski and T. Güneysu. Exploiting the Power of
GPUs for Asymmetric Cryptography. InWorkshop on Cryp-
tographic Hardware and Embedded Systems, 2008.

[23] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi
GF100 GPU Architecture. IEEE Micro, 31(2):50–59, 2011.

296296


