
RGEM: A Responsive GPGPU Execution Model for Runtime Engines

Shinpei Kato† Karthik Lakshmanan† Aman Kumar‡ Mihir Kelkar‡

Yutaka Ishikawa∗ Ragunathan (Raj) Rajkumar‡

†Department of Computer Science, University of California Santa Cruz
‡Department of Electrical and Computer Engineering, Carnegie Mellon University

∗Department of Computer Science, The University of Tokyo

Abstract

General-purpose computing on graphics processing units,
also known as GPGPU, is a burgeoning technique to enhance
the computation of parallel programs. Applying this technique
to real-time applications, however, requires additional support
for timeliness of execution. In particular, the non-preemptive
nature of GPGPU, associated with copying data to/from the
device memory and launching code onto the device, needs to
be managed in a timely manner. In this paper, we present
a responsive GPGPU execution model (RGEM), which is a
user-space runtime solution to protect the response times of
high-priority GPGPU tasks from competing workload. RGEM
splits a memory-copy transaction into multiple chunks so that
preemption points appear at chunk boundaries. It also ensures
that only the highest-priority GPGPU task launches code onto
the device at any given time, to avoid performance interference
caused by concurrent launches. A prototype implementation of
an RGEM-based CUDA runtime engine is provided to evaluate
the real-world impact of RGEM. Our experiments demonstrate
that the response times of high-priority GPGPU tasks can be
protected under RGEM, whereas their response times increase
in an unbounded fashion without RGEM support, as the data
sizes of competing workload increase.

1 Introduction

The graphics processing unit (GPU) has become one of the
most powerful platforms for a wide class of parallel programs,
embracing the concept of many-core processors. As of 2011,
the peak performance of GPUs (in double precision) reaches
1,000 GFLOPS, which is nearly equivalent to ten times that
of traditional multi-core processors [31]. Modern GPUs, such
as NVIDIA GeForce GTX 580 [19], integrate more than five
hundred processing cores on a chip. Such a rapid growth of
GPUs is due to recent advances in programming support for
general-purpose computing on GPUs, also known as GPGPU,
which enables GPUs to be used easily for “compute” programs
in addition to graphics programs.

GPGPU solutions are increasingly used in many domains.
A recent announcement in June 2011 from TOP500 SUPER-
COMPUTER SITES [29] disclosed that three of the top five
supercomputers use GPUs. Cloud computing services, such
as Amazon EC2 [2], also leverage GPGPU to enhance their
data center systems. In addition, the benefit of GPGPU for

database and storage systems has been demonstrated by the
research community [1, 9, 17]. As seen in the trends, GPGPU
is primarily developed for high-performance computing, but is
also beneficial for embedded real-time computing, particularly
well-suited for the current state of the art in cyber-physical
systems that compute a large amount of data obtained through
sensors in real-time. A new version of the autonomous vehicle
developed by Carnegie Mellon University [30], for example,
employs four NVIDIA Fermi GPUs to enhance its computing
capability required to support autonomous driving tasks, such
as vision-based perception, motion planning, localization, and
navigation. A case study from Stanford’s autonomous vehicle
“Stanley” demonstrated that GPGPU can accelerate computer
vision tasks in autonomous driving by forty times compared
to multi-core solutions [28]. More generally speaking, many
cyber-physical systems applications that monitor and control
physical environments would benefit from GPGPU, given that
environmental data can often be processed independently, and
the amount of data to be processed is often massive.

Despite many benefits of GPGPU, there exist few studies
that explore how to apply GPGPU to real-time applications.
In fact, the current GPGPU programming frameworks impose
significant limitations for real-time setups, largely attributed
to the fact that GPGPU tasks need to copy data between the
device memory and the host memory to perform computation.
Since this memory-copy transaction is operated through non-
preemptive direct memory access (DMA), it could block other
device memory accesses requested by high-priority tasks, and
the blocking time increases, as the copied data size increases.
There is another issue that a piece of GPU-accelerated code,
often referred to as a kernel, cannot be preempted till it finishes
under the current GPGPU solutions, which could also affect
high-priority tasks waiting for the GPU. This non-preemptive
nature poses a core challenge for real-time GPGPU.

Figure 1 depicts detailed computation costs for a generic
GPGPU matrix multiplication program. Both memory-copy
and kernel execution costs increase, as the matrix data sizes
increase. It should be noted that data-upload usually takes a
longer time than data-download in a matrix multiplication of
A[] × B[] = C[], since a program needs to upload A[] and B[]
to compute multiplication, while only the resultant values in
C[] need to be downloaded. While the memory-copy cost is
often dominated by a data size and a bus interface, the kernel
execution cost is more dependent on GPU clock frequency, the
number of utilized processing cores, and the algorithm itself.

2011 32nd IEEE Real-Time Systems Symposium

1052-8725/11 $26.00 © 2011 IEEE

DOI 10.1109/RTSS.2011.13

57

 0.01

 0.1

 1

 10

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

T
im

e
(m

s)

Matrix Size

Memory Alloc
Memory Free
Data Upload

Data Download
Kernel Execution

Figure 1. Execution costs for an integer matrix
multiplication program on GeForce GTX 480.

In either case, the scale of these execution costs imposed on
non-preemptive regions is not trivial. A new GPGPU solution
is required for real-time computing.

The contribution of this paper is to develop a responsive
GPGPU execution model (RGEM) for improving the response
times of high-priority GPGPU tasks in real-time multi-tasking
environments. The first feature of RGEM is to split a memory-
copy transaction into multiple chunks, providing preemption
points at boundaries between the chunks. Hence, the blocking
time on the memory-copy transaction is bounded by the length
of time taken to copy a chunk of data. The second feature of
RGEM is to launch the kernels of different GPGPU tasks one
by one based on their priorities, which prevents high-priority
GPGPU tasks from getting interfered by concurrent workload
once launched. However, the kernel launch itself can still be
blocked by preceding low-priority workload launched earlier.
This issue is left open for future work. Since RGEM is a user-
space runtime solution, neither user applications nor device
drivers need modifications. To the best of our knowledge, this
is the first piece of work that can protect the response times of
GPGPU tasks in real-time multi-tasking environments.

The rest of this paper is organized as follows. We introduce
our system model in Section 2. Section 3 provides the design
concept of RGEM. Section 4 presents an implementation of a
RGEM-based CUDA runtime engine. The advantages of using
RGEM are evaluated in Section 5. Section 6 discusses related
work. We provide our concluding remarks in Section 7.

2 System Model

The system is composed of a generic multi-core processor
and a graphics card. We particularly consider CUDA as the
underlying programming model, but the concept of RGEM is
applicable to a wide class of GPGPU programming models,
such as OpenCL and HMPP. The software stack consists of a
device driver, a compiler, and a runtime engine. The compiler
generates GPU code and CPU code. The CPU code contains a
program to launch the GPU code onto the GPU via the runtime
engine and device driver. The GPU code includes at least one
kernel, and a set of data used by each kernel is uploaded before
and downloaded after the kernel execution. In particular, we
assume that GPGPU programs use the following interfaces.

• MemAlloc(size) allocates device memory space of size
bytes, and returns a pointer to it. If there is no enough
space left for the requested size, the interface call fails.

• MemFree(ptr) frees the device memory space pointed
to by ptr, which must have been allocated through the
MemAlloc interface.

• MemCopyUpload(dst addr, src buf, size) copies data of
size bytes from a user-space buffer specified by src buf
in the host memory to the device memory at the address
specified by dst addr. This is a blocking call.

• MemCopyDownload(dst buf, src addr, size) copies data
of size bytes from the device memory at the address
specified by src addr to a user-space buffer specified by
dst buf in the host memory. This is a blocking call.

• Launch(kernel, arguments) launches the kernel program
specified by kernel with the data parameters specified by
arguments, which is already loaded as part of the GPU
code in the device memory. This is a blocking call.

We assume that GPGPU tasks have fixed priorities, which
are by default prioritized over other tasks running on the CPU.
They may or may not execute periodically with deadlines. The
CPU scheduler in the operating system (OS) dispatches tasks
based on their priorities, while the device driver dispatches the
requests to access the GPU when received. RGEM is aimed at
scheduling these requests before passed to the device driver.

3 System Design

This section presents the design concept of RGEM, which
makes high-priority GPGPU tasks responsive in multi-tasking
environments. RGEM is a runtime solution to manage GPGPU
tasks through the GPGPU programming interfaces introduced
in Section 2. Specifically, it uses the MemCopyUpload and
the MemCopyDownload interfaces to schedule memory-copy
transactions, while the Launch interface to schedule kernel
launches, in order to protect the response times of high-priority
GPGPU tasks from low-priority interference.

3.1 Memory-Copy Transaction Scheduling

RGEM provides preemptive scheduling of memory-copy
transactions. According to the current GPGPU programming
frameworks, GPGPU user-space buffers are directly mapped
onto OS-space buffers, which are accessible to/from the GPU
and the device memory, so that data can be accessed through
DMA. Due to this memory-mapped approach, the OS is not
aware of memory-copy transactions. RGEM hence manages
memory-copy transactions in user-space.

DMA is typically a non-preemptive operation, meaning that
blocking times are dependent on the DMA length. This length,
however, is not known a priori, and could be infinite in the
worst case. For example, malicious and buggy programs could
easily produce a large size of memory-copy transactions. The
basic idea behind RGEM is to split a non-preemptive memory-
copy transaction into multiple chunks to make it preemptive at
boundaries between the chunks.

Figure 2 depicts the concept of memory-copy transactions
under RGEM. The user buffer is split into multiple chunks by

58

chunk 1
chunk 2
chunk 3

chunk n

User-Space
Virtual Memory

chunk 1
chunk 2
chunk 3

chunk n

OS-Space
Virtual Memory

chunk 1
chunk 2
chunk 3

chunk n

GPU-Kernel
Virtual Memory

User Buffer

Memory-Mapped Buffer Accesible to/from
Device Memory

Memory
Copies

Allocated by
GPGPU Task

DMA
Transfers

Host Memory Device Memory

Figure 2. Concept of memory-copy transactions
under RGEM.

the runtime engine. This is transparent to the user task. For
each chunk k, two memory-copy transactions are atomically
coupled: (i) one between the user buffer and the memory-
mapped buffer and (ii) the other between the host memory and
the device memory via DMA. Making a scheduling decision
at a boundary between the chunks, memory-copy transactions
become preemptive at the granularity of the given chunk size.
The high-level pseudo-code for the MemCopyUpload and the
MemCopyDownload interfaces is illustrated in Figure 3. They
internally use four RGEM scheduling functions:

• RgemGetChunkSize() returns the chunk size defined by
a system designer.

• RgemEnqueue(queue) adds the task into queue.

• RgemDequeue(queue) removes the task from queue.

• RgemSched(queue) suspends the task if queue contains
higher-priority tasks.

As illustrated in Figure 3, both the MemCopyUpload and
the MemCopyDownload interfaces split the memory-copy
transaction into a nr chunks number of chunks. In order to
inform the runtime engine that the caller task is performing a
memory-copy transaction and hence should be scheduled, the
RgemMemEnqueue function is called before the transaction
starts. For every chunk copy, the RgemMemSched function is
called to create a scheduling point. If there are higher-priority
tasks pending for memory-copy transactions, the caller task
suspends at this point, and will be awakened later by some
other task when its priority becomes the highest among those
in the queue. If the operation is to upload, the memory-mapped
buffer and its address associated with the source buffer need to
be obtained through two helper functions, GetMapBuf() and
GetMapAddr(). The memcpy system call is then used to copy
data of the chunk size (ch size) from the source buffer to the
memory-mapped buffer at the given position (pos). This po-
sition must be updated every time a chunk is transferred. The
data are finally transferred to the device memory using another

MemCopyUpload(dst addr, src buf, size) {
ch size = RgemGetChunkSize();
nr chunks = �size/chunk size�;
pos = 0; copied size = 0;
RgemEnqueue(mem queue);
for (i = 0; i < nr chunks; i++) {

RgemSched(mem queue);
copied size += ch size;
if (copied size > size)

chunk size -= copied size - size;
src map = GetMapBuf(src buf);
src addr = GetMapAddr(src map);
memcpy(src map+pos, src buf+pos, ch size);
DMA(dst addr+pos, src addr+pos, ch size);
pos += ch size;

}
RgemDequeue(mem queue);
RgemSched(mem queue);

}
MemCopyDownload(dst buf, src addr, size) {

ch size = RgemGetChunkSize();
nr chunks = �size/chunk size�;
pos = 0; copied size = 0;
RgemEnqueue(mem queue);
for (i = 0; i < nr chunks; i++) {

RgemSched(mem queue);
copied size += ch size;
if (copied size > size)

chunk size -= copied size - size;
dst map = GetMapBuf(dst buf);
dst addr = GetMapAddr(dst map);
DMA(dst addr+pos, src addr+pos, ch size);
memcpy(dst buf+pos, dst map+pos, ch size);
pos += ch size;

}
RgemDequeue(mem queue);
RgemSched(mem queue);

}
Figure 3. High-level pseudo-code for memory-
copy transactions under RGEM.

helper function, DMA(). If the operation is to download, on the
other hand, the data must be first transferred from the device
memory to the memory-mapped buffer using DMA, and then
copied to the user buffer by the memcpy system call. When
the transaction completes, the RgemMemDequeue function
is called to inform the runtime engine that the caller task need
not to be scheduled. Lastly, the RgemMemSched function is
called to awaken the highest-priority task in the queue, if any.

3.2 Kernel Launch Scheduling

The second feature of RGEM is to schedule the kernel
launches of GPGPU tasks. In the current GPU architectures,
as of 2011, multiple kernels from different contexts cannot be
executed simultaneously, while those from the same context
can upon some architectures, e.g., NVIDIA Fermi. If multiple

59

Launch(kernel, arguments) {
RgemEnqueue(kern queue);
RgemSched(kern queue);
SendLaunchCommand(kernel, arguments);
RgemDequeue(kern queue);
RgemSched(kern queue);

}
Figure 4. High-level pseudo-code for kernel
launches under RGEM.

HP Task

MP Task

LP Task

Runtime
Engine

Request

Request

Request time

time

time

time

Figure 5. Scheduling example for three kernel
launches under RGEM.

kernels from different contexts are loaded at once, they are in
turn dispatched by the hardware scheduler. Hence, they can
still execute concurrently, if not simultaneously. However, this
affects the response times of high-priority GPGPU tasks, since
the hardware scheduler does not consider task priorities. The
basic idea behind RGEM is to ensure at most one GPGPU task
to launch the kernel onto the GPU, and schedule these kernel
launches based on task priorities. In fact, such a concept has
already been used in TimeGraph [16], which is a device-driver
solution. RGEM, however, provides this concept at the user-
space runtime level, which requires no such specialized device
drivers. It should also be noted that RGEM can be used with
TimeGraph, as RGEM manages execution flows in user-space,
while TimeGraph schedules raw GPU commands in the device
driver. Interested readers are encouraged to read [16] about
how to schedule GPU commands.

Figure 4 shows the high-level pseudo-code of the Launch
interface. It uses the RgemEnqueue, the RgemDequeue, and
the RgemSched functions to schedule kernel launches, like
memory-copy transaction scheduling presented in Section 3.1.
However, the task queues are separate, since memory-copy
transactions and kernel launches can be overlapped upon many
GPU architectures. It also uses SendLaunchCommand(), a
helper function, to launch the kernel already loaded on the
GPU with the specified arguments.

Figure 5 illustrates a scheduling example for three GPGPU
tasks competing for the GPU to execute their kernels under
RGEM. While the medium-priority (MP) task is executing its
kernel, the low-priority (LP) and the high-priority (HP) tasks
request launching their kernels. If there is no RGEM support,
their requests are accepted in their arrival order, and the HP
task is blocked by the LP task. However, RGEM enables them
to be prioritized when the LP task’s kernel completes so that
the HP task can respond before the LP task.

4 System Implementation

We now present a prototype implementation of an RGEM-
based CUDA runtime engine for Linux. While this paper is
focused on CUDA, the concept of RGEM is applicable to other
programming models, such as OpenCL and HMPP.

4.1 RGEM Software Stack

Our implementation uses the GPGPU software library and
utility tools that we have developed in collaboration with
PathScale Inc., where all pieces of software including device
drivers, runtime engines, and compilers, are self-made. These
library and tools are not open-source, but source-code access
may be permitted upon request. More information is available
on the PathScale website1.

In this collaborative project, we have developed a CUDA
runtime engine providing both the CUDA Driver API and the
CUDA Runtime API [21]. Most standard CUDA programs
built by NVIDIA’s compiler [22] hence work with our runtime
engine. In addition, the performance difference between our
solution and NVIDIA’s proprietary one is not significant when
executing standalone GPGPU programs. Some performance
comparisons are reported in [14].

Our runtime engine abstracts GPU device drivers. It can be
used with NVIDIA’s proprietary driver [20] and PathScale’s
open-source driver [24]. It is also potentially available with
Linux’s open-source driver [8]. These drivers manage GPU
resources, such as the device memory and execution units,
providing ioctl interfaces for the user-space runtime engine to
access the GPU. For instance, these ioctl interfaces are used
when creating a GPU context, allocating and freeing device
memory space, and launching a kernel. Our runtime engine
also abstracts GPU architectures. So far NVIDIA’s Fermi and
Tesla architectures have been supported. Other architectures
are also planned to be supported in future work.

4.2 RGEM Scheduling Functions

RGEM-based runtime engines require the four scheduling
functions introduced in Section 3.1. Although there are several
approaches to implementing these functions, we take a user-
space inter-process communication (IPC) approach to make
our implementation self-contained in user-space. Specifically,
we use the POSIX-compliant IPC interfaces to make it widely
compatible with many existing systems.

Figure 6 shows the high-level pseudo-code for our RGEM
scheduling functions implementation. An argument q for each
function indicates an index of the queue to be managed: 0 for
memory-copy transactions and 1 for kernel launches. Each
task also holds its context ID (0, 1, 2, ...) as a global variable.

Task Descriptors: In order to schedule tasks in user-space,
each task must be able to access the status of co-scheduled
tasks. Our implementation uses the POSIX shared memory
API for this purpose. We create a shared memory region to
hold an array of task descriptors (task descriptors[]
in Figure 6), each of which contains the task’s context ID, the
priority, the chunk size, and some scheduler-related flags.

1http://www.pathscale.com/

60

caller task = task descriptors[the context ID];
RgemEnqueue(q) {

LockQueue(q);
caller task.queued[q] = true;
UnlockQueue(q);

}
RgemDequeue(q) {

LockQueue(q);
caller task.queued[q] = false;
UnlockQueue(q);

}
RgemSched(q) {

LockQueue(q);
caller task.running[q] = false;
run task = GetRunningTask(q);
hp task = GetHighestPriorityTask(q);
if (caller task.queued[q] == true) {

if (run task != null) {
UnlockQueue(q);
Suspend();

} else if (hp task.prio > caller task.prio) {
UnlockQueue(q);
WakeUp(hp task);
Suspend();

} else
UnlockQueue(q);

caller task.running[q] = true;
} else if (run task == null && hp task != null){

UnlockQueue(q);
WakeUp(hp task);

} else
UnlockQueue(q);

}
Figure 6. High-level pseudo-code for our RGEM
scheduling functions.

Queuing: Our implementation of the RgemEnqueue and
the RgemDequeue functions simply sets and clears a flag in
the corresponding task’s descriptor, and the task is scheduled
only if this flag is set. The task descriptors must be accessed
exclusively so that the runtime scheduler operates correctly.
We use the POSIX semaphore API for this purpose, creating
a mutex particularly. Tasks must acquire this mutex before
they access the task descriptors, and also release it later. The
LockQueue() and the UnlockQueue() functions in Figure 6
represent these procedures.

Scheduling: The RgemSched function is a scheduling
point. It suspends and awakens tasks based on their priorities.
The POSIX standard provides two APIs, signal and message
queue, suitable for these operations. Our implementation uses
the message queue, since it is a blocking call that can easily
realize suspend-resume operations, while the signal is a non-
blocking call that awakens tasks in their signal handlers. More
specifically, the Suspend() and the WakeUp() functions listed
in Figure 6 use the msgrcv() and the msgsnd() system calls to
suspend and awaken tasks respectively. The procedure of the
RgemSched functions is as follows.

First, it obtains a task with the “running” state and another
with the highest priority in the queue, using helper functions,
GetRunningTask() and GetHighestPriorityTask(). The caller
task is scheduled only if it exists in the queue. It must suspend
regardless of its priority, if some other task already has the
running state. If there is no such running task, but some higher-
priority tasks exist, the caller task awakens the highest-priority
task, and then suspends. The caller task is qualified to execute,
only if no task has the running state, and no higher-priority
tasks are pending. On the other hand, if the caller task is not
queued, it just awakens the highest-priority task, if exists in the
queue. This scheduling procedure ensures that at most one task
in the queue is allowed to execute on the GPU, thus satisfying
the RGEM specification.

Daemon Process: Our implementation creates one user-
space daemon process that monitors the tasks running under
RGEM. In initialization, it creates the shared memory space,
semaphore, and message queue used by the runtime engine. It
also repeatedly reads the chunk size of each task written in
a specification file (“/etc/rgem/#PID/chunk size”),
and reflects it to the value return by the RgemGetChunkSize
function. In consequence, system designers can manage the
granularity of chunks without applying any modifications to
application programs.

5 Evaluation

This section evaluates the advantages of using RGEM, as
compared to a traditional GPGPU execution model that does
not employ real-time support. Specifically, we compare our
prototype RGEM-based CUDA runtime engine to PathScale’s
CUDA runtime engine whose non-real-time execution logic
closely matches that of NVIDIA’s proprietary runtime engine.
Response times are primarily focused on in our evaluation,
since most real-time applications are response-time sensitive.
Performance overheads imposed by RGEM are also identified.

5.1 Experimental Setup

Our evaluation is conducted on a machine comprising an
NVIDIA’s GeForce GTX 480 graphics board and an Intel’s
Core 2 Duo processor. The Linux kernel Version 2.6.37 and
NVIDIA proprietary driver Version 270.41.06 [20] are used
as part of the underlying OS. Our microbenchmark programs,
Matrix Multiplication and Linear Search, are written using the
CUDA Driver API [21] and compiled by the NVIDIA CUDA
Compiler (NVCC) [22]. These GPGPU programs, in fact, play
an important role in real-time applications. For example, the
Matrix Multiplication program is used in image processing,
while the Linear Search program is used in path planning, in
an autonomous vehicle [30].

In our experiments, the microbenchmark program tasks are
scheduled as real-time processes in the Linux kernel, using the
SCHED FIFO scheduling policy, to shield them from Linux’s
background jobs. Among the microbenchmark program tasks,
the Matrix Multiplication task is assigned a higher priority,
since image processing must meet frame-rates of input data
from sensors, while path planning is more exhaustive. No
modifications are applied to the Linux kernel, device drivers,
and CUDA programs.

61

32 128 1K 4K 16K 64K 256K 1M 4M 16M 32
128

1K
4K

16K
64K

256K
1M

4M
16M

 0.001

 0.01

 0.1

 1

 10

 100

 1000

T
im

e
(m

s)

Chunk Size (bytes)

Data Size (bytes)

T
im

e
(m

s)

Figure 7. Impact of the chunk size and data size
on upload performance.

32 128 1K 4K 16K 64K 256K 1M 4M 16M 32
128

1K
4K

16K
64K

256K
1M

4M
16M

 0.001

 0.01

 0.1

 1

 10

 100

 1000

T
im

e
(m

s)

Chunk Size (bytes)

Data Size (bytes)

T
im

e
(m

s)

Figure 8. Impact of the chunk size and data size
on download performance.

5.2 Experimental Results

Implication of Chunk and Data Sizes: We first identify
performance overheads caused by splitting data into chunks,
in order to derive an appropriate chunk size. Figure 7 shows
the impact of the chunk size and data size on data-upload to
the device memory from the host memory, where both the
chunk size and data size are set to be powers of two. The time
taken to upload the data increases, as the chunk size decreases
and/or the data size increases, i.e., the number of chunks in-
creases. Interestingly, the upload cost increases proportionally
with a log-scale of ten of the data size when the chunk size
is small (e.g. 32KB), while it remains almost constant until
the data size reaches a certain amount when the chunk size is
large (e.g., 16MB). Specifically, a data size of 64KB seems to
be a transition boundary. We consider that there might exist
some memory transfer block at the hardware level that inter-
nally splits transactions around 64KB, though a detailed inves-
tigation needs to be conducted. The same effect is observed in
data download performance shown in Figure 8.

The above measurement allows us to derive the overhead
for copying a chunk of data between the device memory and
the host memory. To remove the concern of dependency on
any hardware memory transfer blocks, we focus on data sizes
greater than 64KB. If there is no overhead, the time taken to
copy a certain amount of data between the device memory and

 1

 10

 100

 1000

 10000

32 128 512 4K 16K 64K 256K 1M 4M 16M

T
im

e
(m

s)

Chunk Size (bytes)

Upload
Download

Figure 9. Response times for data-upload and
data-download as a function of the chunk size.

the host memory should be the same for any chunk size. Look-
ing at the upload cost for a data size of 16MB in Figure 7,
however, it depends on the chunk size. Hence, there exists an
overhead. According to our measurements, uploading a data
block of 16MB takes about 3892ms with a chunk size of 32B,
while it takes about 15ms with a chunk size of 32KB. Let OU

be the overhead cost for uploading one chunk, and U16M be
the time taken to upload a data block of 16MB excluding the
overhead. Now, the following must hold true:

U16M + 16M/32× OU = 3892

U16M + 16M/32K × OU = 15

Hence, OU � 0.007ms and U16M � 11.210ms are obtained.
The time U1 taken to upload a data block of 1b is also found
to be U1 = 11.210ms/16M � 6.681E-7ms.

The same analysis can be applied to the download time.
Our measurement shows 4088ms for downloading a data block
of 16MB with a chunk size of 32B, while it takes 21ms with
a chunk size of 32KB. Let OD be the overhead cost to down-
load one chunk, and D16M and D1 be the times taken to down-
load a data block of 16MB and 1b, excluding the overhead,
respectively. Solving the equations like above, OD � 0.008ms,
D16M � 17.025ms, and D1 � 1.015E-6ms are obtained.

These analytic results point to a conclusion regarding the
appropriate chunk size based on the given data size. If the
chunk size is too small, the runtime engine would suffer from
the overhead, while it can preempt memory-copy transactions
in a fine-grained way. If the chunk size is too big, meanwhile,
the runtime engine would not be responsive in memory-copy
transactions, while the overhead might be negligible. What
causes the difference between the upload and download costs
also needs additional investigation, but we expect that the write
operation to the host memory, i.e., data download, faces more
bus contentions, since background jobs and OS daemons may
update some data in the host memory due to some inputs from
external resources such as networks or disks.

Implication of Response Times and Overheads: We next
obtain an appropriate chunk size that addresses the trade-off
between response times and overheads in our setup. Figure 9
depicts the response times of the Matrix Multiplication task
with regards to data-upload and data-download for different

62

 1

 10

 100

 1000

32 128 512 4K 16K 64K 256K 1M 4M 16M 64M 256M

T
im

e
(m

s)

Data Size of Competing Workload (bytes)

RGEM-based CUDA Runtime
Vanilla CUDA Runtime

(a) 1024×1024 integer matrix.

 1

 10

 100

 1000

32 128 512 4K 16K 64K 256K 1M 4M 16M 64M 256M

T
im

e
(m

s)

Data Size of Competing Workload (bytes)

RGEM-based CUDA Runtime
Vanilla CUDA Runtime

(b) 256×256 integer matrix.

Figure 10. Response times as a function of data
sizes of competing workload.

chunk sizes, when the Linear Search task with a data size of
16MB is contending as a low-priority task. If the chunk size
is smaller than 1MB, a shorter response time is obtained by
a smaller chunk size due to less overhead. However, once it
reaches around 1MB, a response time starts increasing as the
chunk size increases, since the blocking time introduced by the
low-priority Linear Search task has more impact than the over-
head. This is an important observation for our RGEM-based
runtime engine to address the trade-off between response times
and overheads. A difference is observed between the upload
and download costs again, and we believe that it is largely
attributed to hardware-level issues, including bus contentions
and cache effects, which needs more investigations.

For the rest of experiments, we set 1MB to be the chunk size
uniformly for all tasks so that we can maximize the advantage
of using our RGEM solution.

Response-Time Improvement: We now demonstrate how
our RGEM-based CUDA runtime engine could improve the
response times of high-priority GPGPU tasks, as compared to
a vanilla CUDA runtime engine without real-time support.

Figure 10 (a) shows the response times of the high-
priority Matrix Multiplication task with a data size of 4MB
(1024×1024 integer), competing with the low-priority Linear
Search task for multiple cases where the Linear Search task
have different data sizes from 32B to 512MB. The average exe-
cution time of this Matrix Multiplication task in stand-alone is

about 33ms, and it tries to execute periodically at every interval
of 50ms. The Linear Search task has variable execution times
depending on its data size, and executes an exhaustive search
as fast as possible. According to the results, the Matrix Multi-
plication task running under our RGEM-based CUDA runtime
engine is provided with stable execution times around 39ms.
However, when running under PathScale’s vanilla CUDA run-
time, the execution time eventually hits 481ms for the case
where the Linear Search task has a data size of 512MB, while
it is kept around 34ms if the contending data size is less than
4MB. Hence, our RGEM-based CUDA runtime engine incurs
some overhead, but it is less than 15% of the execution time,
and the response time of high-priority activities is protected
from the interference of low-priority activities. On the other
hand, the response time is affected in unbounded fashion with-
out RGEM support, as the contending data size increases.

Figure 10 (b) shows the results of a similar setup to the
above, but the data size of matrix multiplication is reduced
to 256KB (256×256 integer). The overhead imposed by our
RGEM-based CUDA runtime engine is now negligible, since
a fewer number of chunks is needed to complete memory-copy
transactions for matrix multiplication. In addition the blocking
time caused by the Linear Search task holds the same, while
the execution time of the Matrix Multiplication task itself is
much smaller in this setup. Hence, there is more impact on
response times, as the contending data size increases.

The above results indicate that RGEM is more beneficial
for protecting high-priority GPGPU tasks with a smaller size
of data from low-priority workload with a larger size of data. If
the contending data size is small enough, RGEM could cause
more impact on response times than its prioritization benefit
due to the overhead, but the performance penalty is trivial as
compared to task execution times, and thus acceptable.

So far we have studied the response times of “high-priority”
tasks. We now focus on the interference between multiple
tasks for such a case that the response times of “low-priority”
tasks are also considered. Figure 11 shows the response times
of two instances of the 1024×1024 Matrix Multiplication task
on a time (on each job), executing periodically at an interval
of 50ms with different priorities. Since the same two tasks
are compared, we can study how much they affect each other.
According to the results, our RGEM-based CUDA runtime
engine clearly prioritizes the two tasks, while they interfere
with each other without RGEM support. Since our setup starts
the execution of the low-priority task slightly earlier than the
high-priority task, the response time of the high-priority task
is likely to be longer under the vanilla CUDA runtime engine
due to the blocking time introduced on data-download at the
end of each job. This blocking time does not appear under
our RGEM-based CUDA runtime engine due to its preemp-
tion support. It should also be noted that the average sum of
the response times of the high- and low-priority tasks for each
period is about 114ms under our RGEM-based CUDA runtime
engine, while is about 113ms under the vanilla CUDA runtime
engine. This observation implies that the overhead imposed
by RGEM is acceptable. In consequence, RGEM needs not to
compromise throughput very much, though response times can
be significantly improved over a traditional GPGPU execution
model, if the chunk size is chosen properly.

63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

T
im

e
(m

s)

Job instances

High-Priority Task
Low-Priority Task

(a) Our RGEM-based CUDA runtime.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

T
im

e
(m

s)

Job instances

High-Priority Task
Low-Priority Task

(b) A vanilla CUDA runtime without real-time support.

Figure 11. Interference between two GPGPU
tasks with different priorities.

In order to evaluate the scalability of our RGEM-based
CUDA runtime engine, we next compare the response times of
four instances of the same 1024 × 1024 Matrix Multiplication
task, where each CPU core executes two tasks in a partitioned
manner. According to the results shown in Figure 12, the four
tasks are clearly prioritized under RGEM, whereas there is a
significant interference among them without RGEM support.
It is also interesting to observe that the response times of high-
priority tasks are maintained at almost the same level as the
previous case where two tasks run concurrently. This means
that our RGEM-based CUDA runtime engine can schedule
kernel launches effectively, even though multiple tasks request
kernel launches concurrently.

6 Related Work

GPU resource management is not yet well-studied, but is
becoming a hot topic nowadays. TimeGraph [15, 16] is a novel
approach to real-time GPU resource management using a GPU
command scheduler at the device-driver level. GERM [4] also
supports a GPU command scheduler at the device-driver level,
which manages fairness rather than timeliness. GPU command
schedulers could be alternative to RGEM, but pay non-trivial
overheads due to queuing and dispatching for all commands.
RGEM is more suitable for GPGPU in that tasks are queued
and dispatched only when they copy data and launch kernels.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Job instances

High-Priority Task
Medium-High-Priority Task
Medium-Low-Priority Task

Low-Priority Task

(a) Our RGEM-based CUDA runtime.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

T
im

e
(m

s)

Job instances

High-Priority Task
Medium-High-Priority Task
Medium-Low-Priority Task

Low-Priority Task

(b) A vanilla CUDA runtime without real-time support.

Figure 12. Interference between four GPGPU
tasks with different priorities.

There is also a CPU scheduling approach that handles GPU
executions as critical sections [7]. PTask [26] is another novel
approach to GPU resource management that abstracts GPUs
by OSes through a dataflow programming model. These OS
approaches, however, require users to use new APIs. Due to
the fact that detailed specifications of GPU architectures from
vendors are not fully public, the functionality and performance
of the existing approaches with low-level device drivers and
OSes are limited. Some open-source projects are trying to
identify GPU resource management schemes [14].

User-space GPU resource management is more commonly
studied, particularly for virtualized systems [6, 12, 13, 18].
These systems, however, rely on the existing runtime solution
eventually, and would therefore suffer from blocking times on
memory-copy transactions and GPGPU kernel executions in
real-time setups. RGEM, on the other hand, is a runtime model
with real-time support. It could even provide a reliable runtime
engine underlying these GPU-virtualized systems. There are
also compile-time and application-level solutions [5, 11, 27],
which allow user-space tasks to manage GPU resource usage.
Since these solutions require modifications or recompilations
of GPGPU programs using specific compilers, algorithms, and
APIs, a generality of programming needs to be compromised.
RGEM is beneficial in that legacy GPGPU programs work
without any modifications; our prototype implementation of
RGEM is aligned with the CUDA programming model.

64

The runtime performance of RGEM depends highly on the
underlying IPC mechanisms. While we have used POSIX-
compliant IPC mechanisms (shared memory, semaphores, and
message queues) in this paper, it is worth investigating how to
apply different models and solutions that meet real-time needs
more tightly [10, 23, 25].

7 Conclusion

We have presented RGEM, a responsive GPGPU execution
model, which improves the response times of high-priority
GPGPU tasks in real-time multi-tasking environments. We
have also provided a prototype implementation of an RGEM-
based CUDA runtime engine to evaluate the benefit of RGEM
for real-world GPGPU applications. Our experimental results
have demonstrated that the response times of high-priority
GPGPU tasks can be successfully protected under RGEM,
whereas their response times can be arbitrarily affected by low-
priority activities without RGEM support. We believe that the
contributions of RGEM are significant in facilitating GPGPU
solutions for real-time applications.

In future work, we will explore preemption support for
a GPGPU kernel execution to achieve a fully-preemptive
GPGPU execution model. This requires additional work on
firmware implementations for the microcontroller on the GPU.
We will also seek for coordinated resource management with
the runtime engine and the device driver.

Acknowledgment

We thank PathScale Inc for having provided their tools and
software for our system implementation and experiments.

References

[1] S. Al-Kiswany, A. Gharaibeh, E. Santos-Neto, G. Yuan, and M. Ri-
peanu. StoreGPU: Exploiting Graphics Processing Units to Accelerate
Distributed Storage Systems. In Proceedings of the ACM International
Symposium on High Performance Distributed Computing, pages 165–
174, 2008.

[2] Amazon. Amazon Elastic Compute Cloud (Amazon EC2). http://
aws.amazon.com/ec2/.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.
Applying New Scheduling Theory to Static Priority Pre-Emptive
Scheduling. Software Engineering Journal, 8:284–292, 1993.

[4] M. Bautin, A. Dwarakinath, and T. Chiueh. Graphics Engine Resource
Management. In Proc. of the Annual Multimedia Computing and Net-
working Conference, 2008.

[5] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. Dynamic Load Bal-
ancing on Single- and Multi-GPU Systems. In Proc. of the IEEE Inter-
national Parallel and Distributed Processing Symposium, 2010.

[6] M. Dowty and J. Sugeman. GPU Virtualization on VMware’s Hosted
I/O Architecture. ACM SIGOPS Operating Systems Review, 43(3):73–
82, 2009.

[7] G. Elliott and J. Anderson. Real-Time Multiprocessor Systems with
GPUs. In Proc. of the International Conference on Real-Time and Net-
work Systems, pages 197–206, 2010.

[8] FreeDesktop. Nouveau Open-Source GPU Driver. http://
nouveau.freedesktop.org/.

[9] A. Gharaibeh, S. Al-Kiswany, S. Gopalakrishnan, and M. Ripeanu. A
GPU Accelerated Storage System. In Proceedings of the ACM Interna-
tional Symposium on High Performance Distributed Computing, pages
167–178, 2010.

[10] R. Govindan and D. Anderson. Scheduling and IPC Mechanisms for
Continuous Media. In Proc. of the ACM Symposium on Operating Sys-
tems Principles, pages 68–80, 1991.

[11] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron. Enabling Task
Parallelism in the CUDA Scheduler. In Proc. of the Workshop on Pro-
gramming Models for Emerging Architectures, pages 69–76, 2009.

[12] V. Gupta, A. Gavrilovska, N. Tolia, and V. Talwar. GViM: GPU-
accelerated Virtual Machines. In Proc. of the ACM Workshop on System-
level Virtualization for High Performance Computing, pages 17–24,
2009.

[13] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ranganathan. Pegasus:
Coordinated Scheduling for Virtualized Accelerator-based Systems. In
Proc. of the USENIX Annual Technical Conference, 2011.

[14] S. Kato, S. Brandt, Y. Ishikawa, and R. Rajkumar. Operating Systems
Challenges for GPU Resource Management. In Proc. of the Interna-
tional Workshop on Operating Systems Platforms for Embedded Real-
Time Applications, pages 23–32, 2011.

[15] S. Kato, K. Lakshmanan, Y. Ishikawa, and R. Rajkumar. Resource Shar-
ing in GPU-accelerated Windowing Systems. In Proc. of the IEEE Real-
Time and Embedded Technology and Aplications Symposium, pages
191–200, 2011.

[16] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU Scheduling for Real-Time Multi-Tasking Environments. In Proc.
of the USENIX Annual Technical Conference, 2011.

[17] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A.D. Nguyen, T. Kaldewey,
V.W. Lee, S.A. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive
Tree Search on Modern CPUs and GPUs. In Proceedings of the 2010
ACM SIGMOD/PODS Conference, 2010.

[18] H.A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara.
VMM-Independent Graphics Acceleration. In Proc. of the ACM/Usenix
International Conference on Virtual Execution Environments, pages 33–
43, 2007.

[19] NVIDIA. GeForce GTX 580. http://www.nvidia.com/.
[20] NVIDIA. Linux X64 (AMD64/EM64T) Display Driver. http://

www.nvidia.com/object/linux-display-amd64-270.
41.06-driver.html.

[21] NVIDIA. NVIDIA CUDA Programming Guide Version 3.0. http:
//developer.download.nvidia.com/compute/cuda/3_
0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf.

[22] NVIDIA. NVIDIA CUDA Toolkit Version 3.2. http://
developer.nvidia.com/cuda-toolkit-32-downloads.

[23] S. Oikawa and H. Tokuda. Efficient Timing Management for User-Level
Real-Time Threads. In Proc. of the IEEE Real-Time and Embedded
Technology and Aplications Symposium, pages 27–32, 1995.

[24] PathScale. PSCNV Open-Source GPU Driver. https://github.
com/pathscale/pscnv/.

[25] R. Rajkumar, M. Gagliardi, and L. Sha. The Real-Time Pub-
lisher/Subscriber Inter-Process Communication Model for Distributed
Real-Time Systems: Design and Implementation. In Proc. of the
IEEE Real-Time and Embedded Technology and Aplications Sympo-
sium, pages 66–75, 2011.

[26] C. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask:
Operating System Abstractions To Manage GPUs as Compute Devices.
In Proc. of the ACM Symposium on Operating Systems Principles, 2011.

[27] A. Saba and R. Mangharam. Anytime Algorithms for GPU Architec-
tures. In Proc. of the IEEE Real-Time Systems Symposium, 2011.

[28] S. Thrun. GTC Closing Keynote. http://livesmooth.
istreamplanet.com/nvidia100923/, 2010.

[29] TOP500 supercomputer sites. http://www.top500.org/, 2011.
[30] C. Urmson, J. Anhalt, H. Bae, D. Bagnell, C. Baker, R. Bittner,

T. Brown, M. Clark, M. Darms, D. Demitrish, J. Dolan, D. Dug-
gins, D. Ferguson, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh,
M. Hebert, T. Howard, S. Kolski, M. Likhachev, B. Litkouhi, A. Kelly,
M. McNaughton, N. Miller, J. Nickolaou, K. Peterson, B. Pilnick,
R. Rajkumar, P. Rybski, V. Sadekar, B. Salesky, Y-W. Seo, S. Singh,
J. Snider, J. Struble, A. Stentz, M. Taylor, W. Whittaker, Z. Wolkowicki,
W. Zhang, and J. Ziglar. Autonomous Driving in Urban Environments:
Boss and the Urban Challenge. Journal of Field Robotics, 25(8):425–
466, 2008.

[31] Wikipedia. FLOPS. http://wikipedia.org/wiki/FLOPS.

Appendix – Blocking Delay Analysis

Although RGEM reduces the blocking delays during mem-
ory copies and kernel launches, it cannot fully eliminate these
delays as they are artifacts of the non-preemptive nature of the

65

DMA transfer and GPGPU kernel execution. In this section,
we provide an analysis to obtain upper bounds on such block-
ing delays, which can be incorporated into classical fixed-
priority scheduling response-time analysis [3]. We assume that
host-device memory copies are bi-directional, and the GPGPU
kernel execution can be done in parallel with the memory-copy
operation. We also assume that the RgemSched interface is
performed at the highest priority so that it is not preempted
when selecting the task, while it is assigned back the origi-
nal priority when performing the memory-copy or the kernel-
launch operations.

Before describing the analysis, we first introduce the nec-
essary notation and terminology below.

• τi represents a task with period Ti.

• UTi and DTi denote the total amount of data to be up-
loaded and downloaded by each instance of task τi re-
spectively.

• CS denotes the chunk size specified by RGEM.

• EQi(q) and DQi(q) denote upper bounds on the the time
required to enqueue and dequeue task τi to queue q re-
spectively.

• qm denotes the memory-copy queue.

• qk denotes the kernel-launch queue.

• UL(b) and DL(b) denote upper bounds on the time taken
to upload and download a data block of b bytes respec-
tively.

• O denotes an upper bound on the overhead for setting up
a single DMA transfer.

• S denotes an upper bound on the overhead of a single
scheduler invocation, which includes the time taken to
pick the highest-priority task.

• χ is an upper bound on the context switching cost.

• KNi is the total number of kernels launched by τi.

• KCi, j is the worst-case execution time of the jth GPGPU
kernel launched by task τi.

• KCi denotes the total worst-case execution time of all
the GPGPU kernels launched by each job of task τi, i.e.,

KCi =

KNi∑

j=1

KCi, j

First, we develop an upper bound on response time RUi(b)
for task τi to upload b bytes to device memory.

Consider that there are n tasks in the system, τ1 through τn,
which could upload data to device memory, including the task
τi under consideration. Each job of a task in GPGPU applica-
tions is typically composed of data upload to device memory,
followed by a series of kernel launches, and completes with
data download from device memory. Without loss of gener-
ality, we consider the tasks to be arranged in non-decreasing
order of periods and increasing order of priorities.

We can compute RUi(b) as:

RUi(b) = EQi(qm)+� b
CS

�(S+O+BUi+UL(CS)+χ)+DQi(qm)

(1)

BUi is an upper bound on the delay incurred by task τi for a
single chunk upload. Equation 1 follows from the pseudo-code
of the memory-copy operation under RGEM given in Figure 3.

An upper bound BUi is computed iteratively using the con-
vergence (BU0

i = UL(CS)):

BUn+1
i = UL(CS)+

i−1∑

h=1

�BUn
i

Th
+1��UTh

CS
�(S +O+UL(CS)+χ)

This follows from the fact that there could already be a non-
preemptive memory upload of at most chunk size CS from a
lower-priority task happening when τi requests its memory up-
load, which results in a blocking term of UL(CS). The second
term captures the interference from the memory uploads of
higher-priority tasks τh.

We can similarly compute an upper bound on response time
RDi(b) for task τi to download a data block of b bytes from
device memory to host memory.

RDi(b) = EQi(qm)+� b
CS

�(S+O+BDi+DL(CS)+χ)+DQi(qm)

(2)

BDi is an upper bound on the delay incurred by task τi

for a single chunk download. Equation 2 also follows from
the pseudo-code of the memory-copy operation under RGEM
given in Figure 3.

An upper bound BDi is computed iteratively using the con-
vergence (BD0

i = DL(CS)):

BDn+1
i = DL(CS)+

i−1∑

h=1

�BDn
i

Th
+1��DTh

CS
�(S +O+DL(CS)+χ)

This follows from the fact that there could already be a non-
preemptive memory download of at most chunk size CS from
a lower-priority task happening when τi requests its memory
download, which results in a blocking term of DL(CS). The
second term captures the interference from the memory up-
loads of higher-priority tasks τh.

Now, we can similarly derive an upper bound on the re-
sponse time RKi for the cumulative kernel execution times for
a task τi. Note that the individual kernel executions themselves
are non-preemptive, similar to the memory transfer operations.

RKi = EQi(qk)+
KNi∑

j=1

(S +O+BKi+KCi, j+χ)+DQi(qk) (3)

BKi is an upper bound on the kernel launch delay in-
curred by task τi for a single kernel. An upper bound on
BKi is obtained iteratively using the convergence (BK0

i =
n

max
l=(i+1)

(
KNl

max
j=1

KTl, j)):

BKn+1
i =

n
max

l=(i+1)
(

KNl
max

j=1
KTl,k) +

i−1∑

h=1

�BKn
i

Th
+ 1�(S + O + KCh + χ)

This follows from the fact that when τi issues the kernel
launch, there could be a kernel from a lower priority task τl that
is already executing on the GPU in a non-preemptive fashion.
We need to consider the worst case of such a blocking and
then compute an upper bound on the maximum interference
from the higher priority tasks, as captured by the second term.

66

